1
|
Tarkan AS, Bayçelebi E, Giannetto D, Özden ED, Yazlık A, Emiroğlu Ö, Aksu S, Uludağ A, Aksoy N, Baytaşoğlu H, Kaya C, Mutlu T, Kırankaya ŞG, Ergüden D, Per E, Üremiş İ, Candan O, Kekillioğlu A, Yoğurtçuoğlu B, Ekmekçi FG, Başak E, Özkan H, Kurtul I, Innal D, Killi N, Yapıcı S, Ayaz D, Çiçek K, Mol O, Çınar E, Yeğen V, Angulo E, Cuthbert RN, Soto I, Courchamp F, Haubrock PJ. Economic costs of non-native species in Türkiye: A first national synthesis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120779. [PMID: 38599083 DOI: 10.1016/j.jenvman.2024.120779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Biological invasions are increasingly recognised as a major global change that erodes ecosystems, societal well-being, and economies. However, comprehensive analyses of their economic ramifications are missing for most national economies, despite rapidly escalating costs globally. Türkiye is highly vulnerable to biological invasions owing to its extensive transport network and trade connections as well as its unique transcontinental position at the interface of Europe and Asia. This study presents the first analysis of the reported economic costs caused by biological invasions in Türkiye. The InvaCost database which compiles invasive non-native species' monetary costs was used, complemented with cost searches specific to Türkiye, to describe the spatial and taxonomic attributes of costly invasive non-native species, the types of costs, and their temporal trends. The total economic cost attributed to invasive non-native species in Türkiye (from 202 cost reporting documents) amounted to US$ 4.1 billion from 1960 to 2022. However, cost data were only available for 87 out of 872 (10%) non-native species known for Türkiye. Costs were biased towards a few hyper-costly non-native taxa, such as jellyfish, stink bugs, and locusts. Among impacted sectors, agriculture bore the highest total cost, reaching US$ 2.85 billion, followed by the fishery sector with a total cost of US$ 1.20 billion. Management (i.e., control and eradication) costs were, against expectations, substantially higher than reported damage costs (US$ 2.89 billion vs. US$ 28.4 million). Yearly costs incurred by non-native species rose exponentially over time, reaching US$ 504 million per year in 2020-2022 and are predicted to increase further in the next 10 years. A large deficit of cost records compared to other countries was also shown, suggesting a larger monetary underestimate than is typically observed. These findings underscore the need for improved cost recording as well as preventative management strategies to reduce future post-invasion management costs and help inform decisions to manage the economic burdens posed by invasive non-native species. These insights further emphasise the crucial role of standardised data in accurately estimating the costs associated with invasive non-native species for prioritisation and communication purposes.
Collapse
Affiliation(s)
- Ali Serhan Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye; Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, United Kingdom.
| | - Esra Bayçelebi
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Daniela Giannetto
- Department of Biology, Faculty of Sciences, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Emine Demir Özden
- Department of Plant Protection, Faculty of Agriculture, Düzce University, Düzce, Türkiye
| | - Ayşe Yazlık
- Department of Plant Protection, Faculty of Agriculture, Düzce University, Düzce, Türkiye
| | - Özgür Emiroğlu
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Sadi Aksu
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Ahmet Uludağ
- Plant Protection Department, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Necmi Aksoy
- Department of Forest Botany, Faculty of Forestry, Düzce University, Düzce, Türkiye
| | - Hazel Baytaşoğlu
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Cüneyt Kaya
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Tanju Mutlu
- Vocational School of Technical Sciences, Environmental Protection Technologies Department, Recep Tayyip Erdoğan University, Türkiye
| | | | - Deniz Ergüden
- Department of Marine Sciences, Faculty of Marine Sciences and Technology, İskenderun Technical University, İskenderun, Türkiye
| | - Esra Per
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| | - İlhan Üremiş
- Plant Protection Department, Faculty of Agriculture, Hatay Mustafa Kemal University, Antakya, Hatay, Türkiye
| | - Onur Candan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, Ordu, Türkiye
| | - Aysel Kekillioğlu
- Department of Biology, Faculty of Science and Literature, Nevşehir HBV University, Nevşehir, Türkiye
| | - Baran Yoğurtçuoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, Türkiye
| | - F Güler Ekmekçi
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, Türkiye
| | - Esra Başak
- Project House Cooperative, Moda Caddesi Borucu Han No:20/204 Kadıköy, Istanbul, Türkiye
| | - Hatice Özkan
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Türkiye
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, United Kingdom; Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, İzmir, Türkiye
| | - Deniz Innal
- Department of Biology, Faculty of Sciences and Literature, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Nurçin Killi
- Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Sercan Yapıcı
- Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Dinçer Ayaz
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Kerim Çiçek
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye; Natural History Application and Research Centre, Ege University, Izmir, Türkiye
| | - Oğuzcan Mol
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Emre Çınar
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Vedat Yeğen
- Fisheries Research Institute, Eğirdir, Isparta, Türkiye
| | - Elena Angulo
- Estación Biológica de Doñana, CSIC, Avda. Americo Vespucio 26, 41092, Seville, Spain
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif sur Yvette, France
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait.
| |
Collapse
|
2
|
Bodey TW, Angulo E, Bang A, Bellard C, Fantle-Lepczyk J, Lenzner B, Turbelin A, Watari Y, Courchamp F. Economic costs of protecting islands from invasive alien species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14034. [PMID: 36349474 DOI: 10.1111/cobi.14034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Biological invasions represent a key threat to insular systems and have pronounced impacts across environments and economies. The ecological impacts have received substantial focus, but the socioeconomic impacts are poorly synthesized across spatial and temporal scales. We used the InvaCost database, the most comprehensive assessment of published economic costs of invasive species, to assess economic impacts on islands worldwide. We analyzed socioeconomic costs across differing expenditure types and examined temporal trends across islands that differ in their political geography-island nation states, overseas territories, and islands of continental countries. Over US$36 billion in total costs (including damages and management) has occurred on islands from 1965 to 2020 due to invasive species' impacts. Nation states incurred the greatest total and management costs, and islands of continental countries incurred costs of similar magnitude, both far higher than those in overseas territories. Damage-loss costs were significantly lower, but with qualitatively similar patterns across differing political geographies. The predominance of management spending differs from the pattern found for most countries examined and suggests important knowledge gaps in the extent of many damage-related socioeconomic impacts. Nation states spent the greatest proportion of their gross domestic products countering these costs, at least 1 order of magnitude higher than other locations. Most costs were borne by authorities and stakeholders, demonstrating the key role of governmental and nongovernmental bodies in addressing island invasions. Temporal trends revealed cost increases across all island types, potentially reflecting efforts to tackle invasive species at larger, more socially complex scales. Nevertheless, the already high total economic costs of island invasions substantiate the role of biosecurity in reducing and preventing invasive species arrivals to reduce strains on limited financial resources and avoid threats to sustainable development goals.
Collapse
Affiliation(s)
- Thomas W Bodey
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK
| | - Elena Angulo
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Alok Bang
- Society for Ecology Evolution and Development, Wardha, India
- School of Arts and Sciences, Azim Premji University, Bangalore, India
| | - Céline Bellard
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Jean Fantle-Lepczyk
- School of Forestry & Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| | - Bernd Lenzner
- Bioinvasions, Macroecology, Global Change Group, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Anna Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Yuya Watari
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
3
|
The naturalized vascular flora of Malesia. Biol Invasions 2023. [DOI: 10.1007/s10530-022-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractMajor regional gaps exist in the reporting and accessibility of naturalized plant species distribution data, especially within Southeast Asia. Here, we present the Malesian Naturalized Alien Flora database (MalNAF), the first standardized island-group level checklist of naturalized vascular plant species for the Malesian phytogeographical region. We used MalNAF to investigate the composition, origins, and habitat preferences of the naturalized flora. The naturalized vascular flora of Malesia consists of at least 1177 species. Richness is highest in the Philippines (539 spp.) and lowest in the Maluku Islands (87 spp.). But, the Lesser Sunda Islands had the highest naturalized species richness relative to native richness and Singapore has a higher naturalized plant species richness than would be expected given its size. When comparing the data for Malesia with a global dataset, we found that naturalized richness increased with area for islands but not for continental regions. Across the archipelago, 31 species are widespread, occurring in every island group, but the majority have a limited distribution of 2.4 ± 2.3 (mean ± SD) island groups per naturalized species. The naturalized plant species are representatives of 150 families, twenty of which are newly introduced to the region. Families richest in naturalized plant species in Malesia were Fabaceae (= Leguminosae) (160 spp.), Poaceae (= Gramineae) (138 spp.), and Asteraceae (= Compositae) (96 spp.). Most of these have a native range that includes tropical Asia, closely followed by those from Southern America (inclusive of the Caribbean, Central and South America), although at the island-group level, most have a higher proportion with a Southern American native range. Most naturalized species occur in anthropogenic habitats, but many are present in “natural” habitats with fewer species, such as Leucaena leucocephala, reported from specialized habitats like drylands. MalNAF provides a baseline for future studies of naturalized plant species distributions in the region.
Collapse
|
4
|
Kourantidou M, Verbrugge LNH, Haubrock PJ, Cuthbert RN, Angulo E, Ahonen I, Cleary M, Falk-Andersson J, Granhag L, Gíslason S, Kaiser B, Kosenius AK, Lange H, Lehtiniemi M, Magnussen K, Navrud S, Nummi P, Oficialdegui FJ, Ramula S, Ryttäri T, von Schmalensee M, Stefansson RA, Diagne C, Courchamp F. The economic costs, management and regulation of biological invasions in the Nordic countries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116374. [PMID: 36352726 DOI: 10.1016/j.jenvman.2022.116374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
A collective understanding of economic impacts and in particular of monetary costs of biological invasions is lacking for the Nordic region. This paper synthesizes findings from the literature on costs of invasions in the Nordic countries together with expert elicitation. The analysis of cost data has been made possible through the InvaCost database, a globally open repository of monetary costs that allows for the use of temporal, spatial, and taxonomic descriptors facilitating a better understanding of how costs are distributed. The total reported costs of invasive species across the Nordic countries were estimated at $8.35 billion (in 2017 US$ values) with damage costs significantly outweighing management costs. Norway incurred the highest costs ($3.23 billion), followed by Denmark ($2.20 billion), Sweden ($1.45 billion), Finland ($1.11 billion) and Iceland ($25.45 million). Costs from invasions in the Nordics appear to be largely underestimated. We conclude by highlighting such knowledge gaps, including gaps in policies and regulation stemming from expert judgment as well as avenues for an improved understanding of invasion costs and needs for future research.
Collapse
Affiliation(s)
- Melina Kourantidou
- University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Esbjerg Ø, Denmark; Institute of Marine Biological Resources and Inland Waters, Hellenic Center for Marine Research, Athens, Greece.
| | - Laura N H Verbrugge
- Aalto University, Department of Built Environment, Water & Development Research Group, Aalto, Finland; University of Helsinki, Department of Forest Sciences, Helsinki, Finland
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; University of South Bohemia in České Budějovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Ross N Cuthbert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, Northern Ireland
| | - Elena Angulo
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France; Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Inkeri Ahonen
- Swedish Environmental Protection Agency, Stockholm, Sweden
| | - Michelle Cleary
- Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, Alnarp, Sweden
| | | | - Lena Granhag
- Chalmers University of Technology, Göteborg, Sweden
| | - Sindri Gíslason
- Southwest Iceland Nature Research Centre, Suðurnesjabær, Iceland
| | - Brooks Kaiser
- University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Esbjerg Ø, Denmark
| | - Anna-Kaisa Kosenius
- University of Helsinki, Department of Economics and Management, P.O. Box 27, 00014 Helsinki, Finland
| | - Henrik Lange
- Swedish Environmental Protection Agency, Stockholm, Sweden
| | | | | | - Ståle Navrud
- School of Economics and Business, Norwegian University of Life Sciences, Ås, Norway
| | - Petri Nummi
- University of Helsinki, Department of Forest Sciences, Helsinki, Finland
| | | | - Satu Ramula
- Department of Biology, University of Turku, Turku, Finland
| | | | | | | | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
5
|
Macêdo RL, Franco ACS, Kozlowsky-Suzuki B, Mammola S, Dalu T, Rocha O. The global social-economic dimension of biological invasions by plankton: Grossly underestimated costs but a rising concern for water quality benefits? WATER RESEARCH 2022; 222:118918. [PMID: 35932706 DOI: 10.1016/j.watres.2022.118918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Planktonic invasive species cause adverse effects on aquatic biodiversity and ecosystem services. However, these impacts are often underestimated because of unresolved taxonomic issues and limited biogeographic knowledge. Thus, it is pivotal to start a rigorous quantification of impacts undertaken by planktonic invasive species on global economies. We used the InvaCost database, the most up-to-date database of economic cost estimates of biological invasions worldwide, to produce the first critical assessment of the economic dimension of biological invasions caused by planktonic taxa. We found that in period spanning from 1960 to 2021, the cumulative global cost of plankton invasions was US$ 5.8 billion for permanent plankton (holoplankton) of which viruses encompassed nearly 93%. Apart from viruses, we found more costs related to zooplankton (US$ 297 million) than to the other groups summed, including myco- (US$ 73 million), phyto- (43 million), and bacterioplankton (US$ 0.7 million). Strikingly, harmful and potentially toxic cyanobacteria and dinoflagellates are completely absent from the database. Furthermore, the data base showed a decrease in costs over time, which is probably an artifact as a sharp rise of novel planktonic alien species has gained international attention. Also, assessments of the costs of larval meroplanktonic stages of littoral and benthic invasive invertebrates are lacking whereas cumulative global cost of their adults stages is high up to US$ 98 billion billion and increasing. Considering the challenges and perspectives of increasing but unnoticed or neglected impacts by plankton invasions, the assessment of their ecological and economic impacts should be of high priority.
Collapse
Affiliation(s)
- Rafael L Macêdo
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil; Graduate Program in Conservation and Ecotourism, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil; Neotropical Limnology Group (NEL), Federal University of Rio de Janeiro State, Av. Pasteur, 458, 22290-240, Rio de Janeiro, RJ, Brasil.
| | - Ana Clara S Franco
- Graduate Course in Neotropical Biodiversity, Federal University of Rio de Janeiro State, 458, 22290-240, Rio de Janeiro, Brazil
| | - Betina Kozlowsky-Suzuki
- Graduate Program in Conservation and Ecotourism, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil; Neotropical Limnology Group (NEL), Federal University of Rio de Janeiro State, Av. Pasteur, 458, 22290-240, Rio de Janeiro, RJ, Brasil; Graduate Course in Neotropical Biodiversity, Federal University of Rio de Janeiro State, 458, 22290-240, Rio de Janeiro, Brazil
| | - Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland; Molecular Ecology Group (MEG), Water Research Institute, National Research Council of Italy (CNR-IRSA), 28922, Verbania Pallanza, Italy
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa; Wissenshaftskolleg zu Berlin Institute for Advanced Study, Berlin, 14193, Germany
| | - Odete Rocha
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| |
Collapse
|
6
|
Soto I, Cuthbert RN, Kouba A, Capinha C, Turbelin A, Hudgins EJ, Diagne C, Courchamp F, Haubrock PJ. Global economic costs of herpetofauna invasions. Sci Rep 2022; 12:10829. [PMID: 35902706 PMCID: PMC9334389 DOI: 10.1038/s41598-022-15079-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Biological invasions by amphibian and reptile species (i.e. herpetofauna) are numerous and widespread, having caused severe impacts on ecosystems, the economy and human health. However, there remains no synthesised assessment of the economic costs of these invasions. Therefore, using the most comprehensive database on the economic costs of invasive alien species worldwide (InvaCost), we analyse the costs caused by invasive alien herpetofauna according to taxonomic, geographic, sectoral and temporal dimensions, as well as the types of these costs. The cost of invasive herpetofauna totaled at 17.0 billion US$ between 1986 and 2020, divided split into 6.3 billion US$ for amphibians, 10.4 billion US$ for reptiles and 334 million US$ for mixed classes. However, these costs were associated predominantly with only two species (brown tree snake Boiga irregularis and American bullfrog Lithobates catesbeianus), with 10.3 and 6.0 billion US$ in costs, respectively. Costs for the remaining 19 reported species were relatively minor (< 0.6 billion US$), and they were entirely unavailable for over 94% of known invasive herpetofauna worldwide. Also, costs were positively correlated with research effort, suggesting research biases towards well-known taxa. So far, costs have been dominated by predictions and extrapolations (79%), and thus empirical observations for impact were relatively scarce. The activity sector most affected by amphibians was authorities-stakeholders through management (> 99%), while for reptiles, impacts were reported mostly through damages to mixed sectors (65%). Geographically, Oceania and Pacific Islands recorded 63% of total costs, followed by Europe (35%) and North America (2%). Cost reports have generally increased over time but peaked between 2011 and 2015 for amphibians and 2006 to 2010 for reptiles. A greater effort in studying the costs of invasive herpetofauna is necessary for a more complete understanding of invasion impacts of these species. We emphasise the need for greater control and prevention policies concerning the spread of current and future invasive herpetofauna.
Collapse
Affiliation(s)
- Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Ross N Cuthbert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - César Capinha
- Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território-IGOT, Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisbon, Portugal
- Laboratório Associado Terra, Lisbon, Portugal
| | - Anna Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Emma J Hudgins
- Department of Biology, Carleton University, Ottawa, Canada
| | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| |
Collapse
|
7
|
Vaissière AC, Courtois P, Courchamp F, Kourantidou M, Diagne C, Essl F, Kirichenko N, Welsh M, Salles JM. The nature of economic costs of biological invasions. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Cuthbert RN, Diagne C, Hudgins EJ, Turbelin A, Ahmed DA, Albert C, Bodey TW, Briski E, Essl F, Haubrock PJ, Gozlan RE, Kirichenko N, Kourantidou M, Kramer AM, Courchamp F. Biological invasion costs reveal insufficient proactive management worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153404. [PMID: 35148893 DOI: 10.1016/j.scitotenv.2022.153404] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs - 12-times less than damage costs from invasions ($1130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1-2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management - particularly pre-invasion - and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made.
Collapse
Affiliation(s)
- Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany; School of Biological Sciences, Queen's University Belfast, BT9 5DL Belfast, United Kingdom.
| | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Emma J Hudgins
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Anna Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, P.O. Box 7207, Hawally 32093, Kuwait
| | - Céline Albert
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Thomas W Bodey
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany
| | - Franz Essl
- BioInvasions, Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany
| | - Rodolphe E Gozlan
- ISEM UMR226, Université de Montpellier, CNRS, IRD, EPHE, 34090 Montpellier, France
| | - Natalia Kirichenko
- Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia; Siberian Federal University, Krasnoyarsk 660041, Russia; Saint Petersburg State Forest Technical University, Saint Petersburg 194021, Russia
| | - Melina Kourantidou
- University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Degnevej 14, 6705 Esbjerg Ø, Denmark; Woods Hole Oceanographic Institution, Marine Policy Center, Woods Hole, MA 02543, United States; Institute of Marine Biological Resources and Inland Waters, Hellenic Center for Marine Research, Athens 164 52, Greece
| | - Andrew M Kramer
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, United States
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France.
| |
Collapse
|
9
|
Bang A, Cuthbert RN, Haubrock PJ, Fernandez RD, Moodley D, Diagne C, Turbelin AJ, Renault D, Dalu T, Courchamp F. Massive economic costs of biological invasions despite widespread knowledge gaps: a dual setback for India. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02780-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractBiological invasions are one of the top drivers of the ongoing biodiversity crisis. An underestimated consequence of invasions is the enormity of their economic impacts. Knowledge gaps regarding economic costs produced by invasive alien species (IAS) are pervasive, particularly for emerging economies such as India—the fastest growing economy worldwide. To investigate, highlight and bridge this gap, we synthesised data on the economic costs of IAS in India. Specifically, we examine how IAS costs are distributed spatially, environmentally, sectorally, taxonomically, temporally, and across introduction pathways; and discuss how Indian IAS costs vary with socioeconomic indicators. We found that IAS have cost the Indian economy between at least US$ 127.3 billion to 182.6 billion (Indian Rupees ₹ 8.3 trillion to 11.9 trillion) over 1960–2020, and these costs have increased with time. Despite these massive recorded costs, most were not assigned to specific regions, environments, sectors, cost types and causal IAS, and these knowledge gaps are more pronounced in India than in the rest of the world. When costs were specifically assigned, maximum costs were incurred in West, South and North India, by invasive alien insects in semi-aquatic ecosystems; they were incurred mainly by the public and social welfare sector, and were associated with damages and losses rather than management expenses. Our findings indicate that the reported economic costs grossly underestimate the actual costs, especially considering the expected costs given India’s population size, gross domestic product and high numbers of IAS without reported costs. This cost analysis improves our knowledge of the negative economic impacts of biological invasions in India and the burden they can represent for its development. We hope this study motivates policymakers to address socio-ecological issues in India and launch a national biological invasion research programme, especially since economic growth will be accompanied by greater impacts of global change.
Collapse
|
10
|
Kirichenko N, Haubrock PJ, Cuthbert RN, Akulov E, Karimova E, Shneider Y, Liu C, Angulo E, Diagne C, Courchamp F. Economic costs of biological invasions in terrestrial ecosystems in Russia. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.58529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Terrestrial ecosystems, owing to the presence of key socio-economic sectors such as agriculture and forestry, may be particularly economically affected by biological invasions. The present study uses a subset of the recently developed database of global economic costs of biological invasions (InvaCost) to quantify the monetary costs of biological invasions in Russia, the largest country in the world that spans two continents. From 2007 up to 2019, invasions costed the Russian economy at least US$ 51.52 billion (RUB 1.38 trillion, n = 94 cost entries), with the vast majority of these costs based on predictions or extrapolations (US$ 50.86 billion; n = 87) and, therefore, not empirically observed. Most cost entries exhibited low geographic resolution, being split between European and Asian parts of Russia (US$ 44.17 billion; n = 72). Just US$ 7.35 billion (n = 22) was attributed to the European part solely and none to the Asian part. Invasion costs were documented for 72 species and particularly insects (37 species). The empirically-observed costs, summing up to US$ 660 million (n = 7), were reported only for four species: two insects Agrilus planipennis Fairmaire and Cydalima perspectalis (Walker) and two plants Ambrosia artemisiifolia L. and Heracleum sosnowskyi Manden. The vast majority of economic costs were related to resource damages and economic losses, with very little reported expenditures on managing invasions in terrestrial ecosystems. In turn, agriculture (US$ 37.42 billion; n = 68) and forestry (US$ 14.0 billion; n = 20) were the most impacted sectors. Overall, we report burgeoning economic costs of invasions in Russia and identify major knowledge gaps, for example, concerning specific habitat types (i.e. aquatic) and management expenditures, as well as for numerous known invasive taxa with no reported economic costs (i.e. vertebrates). Given this massive, largely underestimated economic burden of invasions in Russia, our work is a call for improved reporting of costs nationally and internationally.
Collapse
|
11
|
Zenni RD, Essl F, García-Berthou E, McDermott SM. The economic costs of biological invasions around the world. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.69971] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Not applicable
Collapse
|
12
|
Cuthbert RN, Bartlett AC, Turbelin AJ, Haubrock PJ, Diagne C, Pattison Z, Courchamp F, Catford JA. Economic costs of biological invasions in the United Kingdom. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.59743] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the high costs of invasion are frequently cited and are a key motivation for environmental management and policy, synthesised data on invasion costs are scarce. Here, we quantify and examine the monetary costs of biological invasions in the United Kingdom (UK) using a global synthesis of reported invasion costs. Invasive alien species have cost the UK economy between US$6.9 billion and $17.6 billion (£5.4 – £13.7 billion) in reported losses and expenses since 1976. Most costs were reported for the entire UK or Great Britain (97%); country-scale cost reporting for the UK's four constituent countries was scarce. Reports of animal invasions were the costliest ($4.7 billion), then plant ($1.3 billion) and fungal ($206.7 million) invasions. Reported damage costs (i.e. excluding management costs) were higher in terrestrial ($4.8 billion) than aquatic or semi-aquatic environments ($29.8 million), and primarily impacted agriculture ($4.2 billion). Invaders with earlier introduction years accrued significantly higher total invasion costs. Invasion costs have been increasing rapidly since 1976, and have cost the UK economy $157.1 million (£122.1 million) per annum, on average. Published information on specific economic costs included only 42 of 520 invaders reported in the UK and was generally available only for the most intensively studied taxa, with just four species contributing 90% of species-specific costs. Given that many of the invasive species lacking cost data are actively managed and have well-recognised impacts, this suggests that cost information is incomplete and that totals presented here are vast underestimates owing to knowledge gaps. Financial expenditure on managing invasions is a fraction (37%) of the costs incurred through damage from invaders; greater investments in UK invasive species research and management are, therefore, urgently required.
Collapse
|