1
|
Singh B, Singh L, Bhatt ID, Kandpal ND. Tailored NADES solvents for the extraction optimization of benzylisoquinoline alkaloids from Thalictrum foliolosum DC.- A potential phyto-nutraceutical source. Food Chem 2025; 463:141016. [PMID: 39241417 DOI: 10.1016/j.foodchem.2024.141016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
From a perspective focused on phyto-nutraceuticals, alkaloids are considered to be the most significant metabolites, as they exhibit a broad range of pharmacological applications. Therefore, it is essential, to conduct a thorough investigation of the extraction techniques employed and to optimize the overall process. Considering this, we delved into tailor-made natural deep eutectic solvents coupled with ultrasonic-assisted extraction and macroporous resins aided recovery of therapeutics alkaloids from Thalictrum foliolosum DC. The extraction parameters including duty cycle (X1), extraction time (X2), water content (X3), and liquid-to-solid ratio (X4) were optimized through response surface methodology. Under the optimal extraction conditions [duty cycle- 61 %, ultrasonication extraction time- 10.35 min, water content- 30.51 %, and liquid-to-solid ratio- 30 mL/g], the yield of berberine (11.91 ± 0.12 mg/g DW), berbamine (11.85 ± 0.16 mg/g DW), magnoflorine (6.06 ± 0.05 mg/g DW), and palmatine (2.53 ± 0.015 mg/g DW) were found to be near the model prediction. Further, adsorption/desorption characteristics were investigated, and the results highlight AB-8 resin as most effective for the recovery of berberine and palmatine, while, XAD-7HP resin is best suited for berbamine and magnoflorine. FT-IR analysis shows similar spectra among the purified extracts with significantly (p < 0.05) higher antioxidant and anti-glycemic activities. In conclusion, the developed method complies with the criteria of green extraction which can be harnessed as a natural antioxidant in pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Basant Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Laxman Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Indra D Bhatt
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India.
| | - Narain D Kandpal
- Department of Chemistry, S. S. J. Campus, Soban Singh Jeena University Almora, India
| |
Collapse
|
2
|
Dzulkharnien NSF, Rohani R, Tan Kofli N, Mohd Kasim NA, Abd Muid S, Patrick M, Mohd Fauzi NA, Alias H, Ahmad Radzuan H. Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques. Bioorg Chem 2024; 150:107513. [PMID: 38905888 DOI: 10.1016/j.bioorg.2024.107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
The interaction of green zinc oxide nanoparticles (ZnO NPs) with bacterial strains are still scarcely reported. This work was conducted to study the green-one-pot-synthesized ZnO NPs from the Aloe Vulgarize (AV) leaf peel extract assisted with different sonication techniques followed by the physicochemical, biological activities and molecular docking studies. The NPs structure was analyzed using FTIR, UV-vis and EDX. The morphology, particle size and crystallinity of ZnO NPs were identified using FESEM and XRD. It was found that the formed flower-like structure with sharp edge and fine size of particulates in ZnO NPs/AV could enhance the bacterial inhibition. The minimum inhibitory concentration (MIC) for all the tested bacterial strains is at 3.125 µg/ml and the bacterial growth curve are dependent on the ZnO NPs dosage. The results of disc diffusion revealed that the ZnO NPs/AV possess better antibacterial effect with bigger ZOI due to the presence of AV active ingredient. The molecular docking between active ingredients of AV in the NPs with the protein of IFCM and 1MWU revealed that low binding energy (Ebind = -6.56 kcal/mol and -8.99 kcal/mol, respectively) attributes to the excessive hydrogen bond from AV that highly influenced their interaction with the amino acid of the selected proteins. Finally, the cytotoxicity test on the biosynthesized ZnO NPs with concentration below 20 µg/ml are found nontoxic on the HDF cell. Overall, ZnO NPs/20 % AV (probe sonication) is considered as the best synthesis option due to its efficient one-pot method, short sonication time but own the best antibacterial effect.
Collapse
Affiliation(s)
- Nur Syafiqah Farhanah Dzulkharnien
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Noorhisham Tan Kofli
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Noor Alicezah Mohd Kasim
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Suhaila Abd Muid
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Melonney Patrick
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Noor Akhmazillah Mohd Fauzi
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, 86400, Johor, Malaysia
| | - Hajar Alias
- Department of Chemical Engineering, Faculty of Chemical Engineering and Natural Resources, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Husna Ahmad Radzuan
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Cheun-Arom T, Kitisripanya T, Nuntawong P, Sritularak B, Chuanasa T. Exploring anti-diabetic potential of compounds from roots of Dendrobium polyanthum Wall. ex Lindl. through inhibition of carbohydrate-digesting enzymes and glycation inhibitory activity. Heliyon 2024; 10:e34502. [PMID: 39114042 PMCID: PMC11305242 DOI: 10.1016/j.heliyon.2024.e34502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Eight compounds, including one anthraquinone, two bibenzyls, one phenanthrene, three dihydrophenanthrenes, and one flavonoid, were isolated from the roots of Dendrobium polyanthum Wall. ex Lindl. Among these, six compounds were investigated for inhibitory activities against alpha-glucosidase, alpha-amylase, and advanced glycation end products (AGEs) production. Additionally, molecular docking was conducted to analyze the interactions of the test compounds with alpha-glucosidase. Moscatin, the only isolated phenanthrene, displayed the strongest anti-alpha-glucosidase activity with an IC50 of 32.45 ± 1.04 μM, approximately 10-fold smaller than that of acarbose. Furthermore, moscatilin most strongly inhibited alpha-amylase and AGEs production with IC50 values of 256.94 ± 9.87 and 67.89 ± 9.42 μM, respectively. Molecular docking analysis revealed the effective binding of all substances to alpha-glucosidase with smaller lowest binding energy values than acarbose. Moscatin was selected for kinetics studies, and it was identified as a non-competitive inhibitor with approximately 9-fold greater inhibitory capability than acarbose. This study represents the first report on the phytochemical constituents and antidiabetic potential of compounds derived from the roots of D. polyanthum Wall. ex Lindl.
Collapse
Affiliation(s)
- Thaniwan Cheun-Arom
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Poomraphie Nuntawong
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Taksina Chuanasa
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
4
|
Roney M, Dubey A, Issahaku AR, Uddin MN, Tufail A, Wilhelm A, Zamri NB, Aluwi MFFM. Insights from in silico exploration of major curcumin analogs targeting human dipeptidyl peptidase IV. J Biomol Struct Dyn 2024:1-14. [PMID: 38260948 DOI: 10.1080/07391102.2024.2306197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The goal of this work is to use a variety of in-silico techniques to identify anti-diabetic agents against DPP-IV enzyme from five main curcumin analogues. To produce the successful molecules, five main curcumin analogues were docked into the active site of DPP-IV enzyme. In comparison to the control molecule (Saxagliptin, -6.9 kcal/mol), all the compounds have the highest binding affinity (-7.6 to -7.7 kcal/mol) for the DPP-IV enzyme. These compounds underwent further testing for studies on drug-likeness, pharmacokinetics, and acute toxicity to see the efficacy and safety of compounds. To assess the stability of the docking complex and the binding posture identified during the docking experiment, our study got THC as the lead compound, which was then exposed to 200 ns of molecular dynamic simulation and PCA analysis. Additionally, DFT calculations were conducted to determine the thermodynamic, molecular orbital, and electrostatic potential characteristics of lead compound. Overall, the lead chemical has shown strong drug-like properties, is non-toxic, and has a sizable affinity for the DPP-IV enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | | | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Aisha Tufail
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Anke Wilhelm
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Normaiza Binti Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
5
|
Sivaraman SA, Sabareesh V. An Update on Dipeptidyl Peptidase-IV Inhibiting Peptides. Curr Protein Pept Sci 2024; 25:267-285. [PMID: 38173201 DOI: 10.2174/0113892037287976231212104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Diabetes is a chronic metabolic disorder. According to the International Diabetes Federation, about 537 million people are living with diabetes. The two types of diabetes are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), among which the population affected by T2DM is relatively higher. A major reason for T2DM is that insulin stimulation is hampered due to the inactivation of incretin hormones. Dipeptidyl peptidase-IV (DPP-IV) is a serine protease that is directly involved in the inactivation of incretin hormones, e.g., glucagon-like peptide-1 (GLP-1). Therefore, the inhibition of DPP-IV can be a promising method for managing T2DM, in addition to other enzyme inhibition strategies, such as inhibition of α-amylase and α -glucosidase. Currently, about 12 different gliptin drugs are available in the market that inhibit DPP-IV in a dose-dependent manner. Instead of gliptins, 'peptides' can also be employed as an alternative and promising way to inhibit DPP-IV. Peptide inhibitors of DPP-IV have been identified from various plants and animals. Chemically synthesized peptides have also been experimented for inhibiting DPP-IV. Most peptides have been analysed by biochemical assays, whereas some in vitro assays have also been reported. Molecular docking analysis has been applied to comprehend the mechanism of inhibition. In this review, certain aspects of natural as well as synthetic peptides are described that have been proven to inhibit DPP-IV.
Collapse
Affiliation(s)
- Sachithanantham Annapoorani Sivaraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Varatharajan Sabareesh
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| |
Collapse
|
6
|
Al-Nema M, Gaurav A, Lee VS. Designing of 2,3-dihydrobenzofuran derivatives as inhibitors of PDE1B using pharmacophore screening, ensemble docking and molecular dynamics approach. Comput Biol Med 2023; 159:106869. [PMID: 37071939 DOI: 10.1016/j.compbiomed.2023.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
In recent years, the PDE1B enzyme has become a desirable drug target for the treatment of psychological and neurological disorders, particularly schizophrenia disorder, due to the expression of PDE1B in brain regions involved in volitional behaviour, learning and memory. Although several inhibitors of PDE1 have been identified using different methods, none of these inhibitors has reached the market yet. Thus, searching for novel PDE1B inhibitors is considered a major scientific challenge. In this study, pharmacophore-based screening, ensemble docking and molecular dynamics simulations have been performed to identify a lead inhibitor of PDE1B with a new chemical scaffold. Five PDE1B crystal structures have been utilised in the docking study to improve the possibility of identifying an active compound compared to the use of a single crystal structure. Finally, the structure-activity- relationship was studied, and the structure of the lead molecule was modified to design novel inhibitors with a high affinity for PDE1B. As a result, two novel compounds have been designed that exhibited a higher affinity to PDE1B compared to the lead compound and the other designed compounds.
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Unnikrishnan PS, Animish A, Madhumitha G, Suthindhiran K, Jayasri MA. Bioactivity Guided Study for the Isolation and Identification of Antidiabetic Compounds from Edible Seaweed- Ulva reticulata. Molecules 2022; 27:molecules27248827. [PMID: 36557959 PMCID: PMC9783910 DOI: 10.3390/molecules27248827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Managing diabetes is challenging due to the complex physiology of the disease and the numerous complications associated with it. As part of the ongoing search for antidiabetic chemicals, marine algae have been demonstrated to be an excellent source due to their medicinal properties. In this study, Ulva reticulata extracts were investigated for their anti-diabetic effect by examining its inhibitory effects on α-amylase, α-glucosidase, and DPP-IV and antioxidant (DPPH) potential in vitro and its purified fraction using animal models. Among the various solvents used, the Methanolic extract of Ulva reticulata (MEUR) displayed the highest antidiabetic activity in both in vitro and in vivo; it showed no cytotoxicity and hence was subjected to bioassay-guided chromatographic separation. Among the seven isolated fractions (F1 to F7), the F4 (chloroform) fraction exhibited substantial total phenolic content (65.19 μg mL-1) and total flavonoid content (20.33 μg mL-1), which showed the promising inhibition against α-amylase (71.67%) and α-glucosidase (38.01%). Active fraction (F4) was further purified using column chromatography, subjected to thin-layer chromatography (TLC), and characterized by spectroscopy techniques. Upon structural elucidation, five distinct compounds, namely, Nonane, Hexadecanoic acid, 1-dodecanol, Cyclodecane methyl, and phenol, phenol, 3,5-bis(1,1-dimethylethyl) were identified. The antidiabetic mechanism of active fraction (F4) was further investigated using various in vitro and in vivo models. The results displayed that in in vitro both 1 and 24 h in vitro cultures, the active fraction (F4) at a concentration of 100 μg mL-1 demonstrated maximum glucose-induced insulin secretion at 4 mM (0.357 and 0.582 μg mL-1) and 20 mM (0.848 and 1.032 μg mL-1). The active fraction (F4) reduces blood glucose levels in normoglycaemic animals and produces effects similar to that of standard acarbose. Active fraction (F4) also demonstrated outstanding hypoglycaemic activity in hyperglycemic animals at a dose of 10 mg/kg B.wt. In the STZ-induced diabetic rat model, the active fraction (F4) showed a (61%) reduction in blood glucose level when compared to the standard drug glibenclamide (68%). The results indicate that the marine algae Ulva reticulata is a promising candidate for managing diabetes by inhibiting carbohydrate metabolizing enzymes and promoting insulin secretion.
Collapse
Affiliation(s)
| | - Andhere Animish
- Marine Biotechnology and Bioproducts Laboratory, Vellore Institute of Technology, School of Biosciences and Technology, Vellore 632014, India
| | - Gunabalan Madhumitha
- Chemistry of Heterocycles and Natural Products Research Laboratory, Vellore Institute of Technology, School of Advanced Sciences, Vellore 632014, India
| | - Krishnamurthy Suthindhiran
- Marine Biotechnology and Bioproducts Laboratory, Vellore Institute of Technology, School of Biosciences and Technology, Vellore 632014, India
| | - Mangalam Achuthananthan Jayasri
- Marine Biotechnology and Bioproducts Laboratory, Vellore Institute of Technology, School of Biosciences and Technology, Vellore 632014, India
- Correspondence:
| |
Collapse
|
8
|
Nwabueze OP, Sharma M, Balachandran A, Gaurav A, Abdul Rani AN, Małgorzata J, Beata MM, Lavilla CA, Billacura MP. Comparative Studies of Palmatine with Metformin and Glimepiride on the Modulation of Insulin Dependent Signaling Pathway In Vitro, In Vivo & Ex Vivo. Pharmaceuticals (Basel) 2022; 15:1317. [PMID: 36355489 PMCID: PMC9695187 DOI: 10.3390/ph15111317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
(1) Insulin resistance, a symptom of type 2 diabetes mellitus (T2DM), is caused by the inactivation of the insulin signaling pathway, which includes IRS-PI3K-IRS-1-PKC-AKT2 and GLUT4. Metformin (biguanide) and glimepiride (sulfonylurea) are both drugs that are derivatives of urea, and they are widely used as first-line drugs for the treatment of type 2 diabetes mellitus. Palmatine has been previously reported to possess antidiabetic and antioxidant properties. (2) The current study compared palmatine to metformin and glimepiride in a type 2 diabetes model for ADME and insulin resistance via the PI3K/Akt/GLUT4 signaling pathway: in vitro, in vivo, ex vivo, and in silico molecular docking. (3) Methods: Differentiated L6 skeletal muscle cells and soleus muscle tissue were incubated in standard tissue culture media supplemented with high insulin and high glucose as a cellular model of insulin resistance, whilst streptozotocin (STZ)-induced Sprague Dawley rats were used as the diabetic model. The cells/tissue/animals were treated with palmatine, while glimepiride and metformin were used as standard drugs. The differential gene expression of PI3K, IRS-1, PKC-α, AKT2, and GLUT4 was evaluated using qPCR. (4) Results: The results revealed that the genes IRS-PI3K-IRS-1-PKC-AKT2 were significantly down-regulated, whilst PKC-α was upregulated significantly in both insulin-resistant cells and tissue animals. Interestingly, palmatine-treated cells/tissue/animals were able to reverse these effects. (5) Conclusions: Palmatine appears to have rejuvenated the impaired insulin signaling pathway through upregulation of the gene expression of IRS-1, PI3K, AKT2, and GLUT4 and downregulation of PKC-expression, according to in vitro, in vivo, and ex vivo studies.
Collapse
Affiliation(s)
- Okechukwu Patrick Nwabueze
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Mridula Sharma
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Abbirami Balachandran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Anis Najwa Abdul Rani
- Faculty of Pharmaceutical Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Jeleń Małgorzata
- Faculty of Pharmaceutical Sciences, Department of Organic Chemistry, Medical University of Silesia, Jagiellonska Str. 4, 41-200 Sosnowiec, Poland
| | - Morak-Młodawska Beata
- Faculty of Pharmaceutical Sciences, Department of Organic Chemistry, Medical University of Silesia, Jagiellonska Str. 4, 41-200 Sosnowiec, Poland
| | - Charlie A. Lavilla
- Chemistry Department, College of Science & Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Merell P. Billacura
- Department of Chemistry, College of Natural Sciences and Mathematics, Mindanao State University-Main Campus, Marawi City 9700, Philippines
| |
Collapse
|
9
|
Aati HY, Anwar M, Al-Qahtani J, Al-Taweel A, Khan KUR, Aati S, Usman F, Ghalloo BA, Asif HM, Shirazi JH, Abbasi A. Phytochemical Profiling, In Vitro Biological Activities, and In-Silico Studies of Ficus vasta Forssk.: An Unexplored Plant. Antibiotics (Basel) 2022; 11:antibiotics11091155. [PMID: 36139935 PMCID: PMC9495161 DOI: 10.3390/antibiotics11091155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/31/2022] Open
Abstract
Ficus vasta Forssk. (Moraceae family) is an important medicinal plant that has not been previously investigated for its phytochemical and biological potential. Phytochemical screening, total bioactive content, and GCMS analysis were used to determine its phytoconstituents profile. Antioxidant, antibacterial, antifungal, anti-viral, cytotoxicity, thrombolytic, and enzyme inhibition activities were examined for biological evaluation. The plant extract exhibited the maximum total phenolic (89.47 ± 3.21 mg GAE/g) and total flavonoid contents (129.2 ± 4.14 mg QE/g), which may be related to the higher antioxidant potential of the extract. The extract showed strong α-amylase (IC50 5 ± 0.21 µg/mL) and α-glucosidase inhibition activity (IC50 5 ± 0.32 µg/mL). Significant results were observed in the case of antibacterial, antifungal, and anti-viral activities. The F. vasta extract inhibited the growth of HepG2 cells in a dose-dependent manner. The GCMS analysis of the extract provided the preliminary identification of 28 phytocompounds. In addition, the compounds identified by GCMS were subjected to in silico molecular docking analysis in order to identify any interactions between the compounds and enzymes (α-amylase and α-glucosidase). After that, the best-docked compounds were subjected to ADMET studies which provide information on pharmacokinetics, drug-likeness, physicochemical properties, and toxicity. The present study highlighted that the ethanol extract of F. vasta has antidiabetic, antimicrobial, anti-viral, and anti-cancer potentials that can be further explored for novel drug development.
Collapse
Affiliation(s)
- Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: (H.Y.A.); (K.-u.-R.K.)
| | - Mariyam Anwar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jawaher Al-Qahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Areej Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (H.Y.A.); (K.-u.-R.K.)
| | - Sultan Aati
- UWA, University of Western Australia, Nedland, WA 6009, Australia
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hafiz Muhammad Asif
- Faculty of Medicine and Allied Health Sciences, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jafir Hussain Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aliza Abbasi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
10
|
Hou Z, Jin Y, Li Y, Fan H, Xiao C, Li Q, Zhang Y. Immobilization of peroxisome proliferator-activated receptor gamma and the application in screening modulators of the receptor from herbal medicine. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1190:123098. [PMID: 35026651 DOI: 10.1016/j.jchromb.2022.123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Screening and identification of potential compounds from herbal medicine is a prevailing way to find a lead for the development of innovative drugs. This promotes the development of new methods that are feasible in complex matrices. Here, we described a one-step reversible methodology to immobilize nuclear peroxisome proliferator-activated receptor gamma (PPARγ) onto amino microsphere coated with a DNA strand specifically binding to the receptor. The specific interaction allowed us to achieve the immobilization of PPARγ by mixing the DNA modified microspheres with E. coli lysates expressing the receptor. Characterization of the immobilized receptor was carried out by morphology and binding specificity analysis. Feasibility of immobilized PPARγ in the drug-receptor interaction analysis was performed by an injection amount-dependent method. Besides, immobilized PPARγ was also applied in screening modulators of the receptor from Coptidis Rhizoma extract. The binding of the screened compounds to PPARγ was examined by time-resolved fluorescence resonance energy transfer assay. The results showed that immobilized PPARγ was stable for thirty days with a high-specificity of ligand recognition at the subtype receptor level. Berberine and palmatine were the bioactive compounds of Coptidis Rhizoma specifically binding to PPARγ. The two compounds exhibited half maximal inhibitory concentrations of 4.11 and 2.98 μM during their binding to the receptor. We concluded that the current method is possible to become a common strategy for the immobilization of nuclear receptors, and the immobilized receptor is a high throughput method for recognizing and separating the receptor modulators from complex matrices including herbal medicine.
Collapse
Affiliation(s)
- Zhaoling Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yan Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yuxin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Hushuai Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Chaoni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
11
|
Identification of dual inhibitor of phosphodiesterase 1B/10A using structure-based drug design approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Abstract
Medicinal plants play a fundamental part in health sectors via the management of different infectious diseases because of their wide plenitude wellspring of bioactive phytochemicals. Research activities on them have got attention throughout the world in the present days in search of low-cost and safe compounds for the management of diabetes. This is the literature-based analysis of alkaloids from medicinal plants in preventive or treatment approaches to diabetes. The most abundant and diversified group of secondary metabolites, i.e., alkaloids, show antidiabetic activity through the inhibition of enzymes (α-amylase, α-glucosidase, aldose reductase, dipeptidyl peptidase-IV, and protein tyrosine phosphatase-1B); inhibition of advanced glycation end products; increment of insulin secretion and its sensitivity; enhancement of glucose uptake; and their antioxidant ability. The study is useful for the examination of dynamic alkaloids for the advancement of a new medication for mankind.
Collapse
|