1
|
Hagelstam-Renshaw C, Ringelberg JJ, Sinou C, Cardinal-McTeague W, Bruneau A. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. REVISTA BRASILEIRA DE BOTANICA : BRAZILIAN JOURNAL OF BOTANY 2024; 48:11. [PMID: 39703368 PMCID: PMC11652589 DOI: 10.1007/s40415-024-01058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 12/21/2024]
Abstract
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate (Cercis) and succulent (Adenolobus) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time. Supplementary Information The online version contains supplementary material available at 10.1007/s40415-024-01058-z.
Collapse
Affiliation(s)
- Charlotte Hagelstam-Renshaw
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| | - Jens J. Ringelberg
- School of Geosciences, Old College, University of Edinburgh, South Bridge, Edinburgh, EH8 9YL UK
| | - Carole Sinou
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| | - Warren Cardinal-McTeague
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| |
Collapse
|
2
|
Estrada-Castillón E, Villarreal-Quintanilla JÁ, Cuéllar-Rodríguez G, Torres-Colín L, Encina-Domínguez JA, Sánchez-Salas J, Muro-Pérez G, González-Cuéllar DA, Galván-García OM, Rubio-Pequeño LG, Mora-Olivo A. The Fabaceae in Northeastern Mexico (Subfamilies Caesalpinioideae (Excluding Tribe Mimoseae), Cercidoideae, and Detarioideae). PLANTS (BASEL, SWITZERLAND) 2024; 13:2477. [PMID: 39273961 PMCID: PMC11397501 DOI: 10.3390/plants13172477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
As part of the Fabaceae project of northeastern Mexico and based on field work, collection of botanical samples over the past 37 years, and reviewing botanical materials in national and international herbaria, the diversity of legumes of the subfamilies Caesalpinioideae (excluding tribe Mimoseae), Cercidoideae, and Detarioideae in northeastern Mexico has been recorded. New nomenclatural changes in tribes and genera of the subfamily Caesalpinioideae found in the new scientific bibliography are included. The subfamily Caesalpinioideae (excluding the tribe Mimoseae) includes five tribes: tribe Caesalpinieae, with eight genera (Caesalpinia, Coulteria, Denisophytum, Erythrostemon, Guilandina, Hoffmannseggia, Haematoxylum, and Pomaria) and 21 species; tribe Cassieae with three genera (Cassia, Chamaecrita, and Senna) and 28 species; tribe Ceratonieae with one genus (Ceratonia) and 1 species; tribe Gleditsieae with one genus (Gleditsia) and 1 species. The subfamily Cercidoideae includes two genera (Bauhinia and Cercis) and eight species, and the subfamily Detarioideae includes only one genus and one species (Tamarindus indicus). The total flora of these three subfamilies comprises 18 genera and 63 species, including 56 native species and 7 exotic ones: Bauhinia variegata, Cassia fistula, Ceratonia siliqua, Delonix regia, Erythrostemon gilliesii, Senna alata, and Tamarindus indicus. Endemism includes a total of 22 species and nine infraspecific categories.
Collapse
Affiliation(s)
| | | | | | - Leticia Torres-Colín
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónomoa de Mexico, A.P. 70-233, Ciudad de México 04510, Mexico
| | | | - Jaime Sánchez-Salas
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35010, Mexico
| | - Gisela Muro-Pérez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35010, Mexico
| | | | | | | | - Arturo Mora-Olivo
- Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87019, Mexico
| |
Collapse
|
3
|
Alvarado-Reyes AJ, Paulino JV, Terra V, de Freitas Mansano V. Floral ontogeny reveals potential synapomorphies for Senegalia sect. Monacanthea p.p. (Leguminosae). JOURNAL OF PLANT RESEARCH 2024; 137:907-925. [PMID: 38963651 DOI: 10.1007/s10265-024-01554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
Senegalia was recently described as non-monophyletic; however, its sections exhibit robust monophyletic support, suggesting a potential reclassification into separate genera-Senegalia sect. Monocanthea p.p. is the largest section. It contains 164 species of pantropical distribution and includes all of the current 99 neotropical species of Senegalia; however, no morphological characteristics are available to differentiate this section. To characterize this section, we examined floral developmental traits in four species of Senegalia sect. Monocanthea p.p. These traits were previously considered as potentially distinguishing features within Acacia s.l. and include the onset patterns of the androecium, the timing of calyx union, the origin of the staminal disc, and the presence of stomata on the petals. Furthermore, we analyzed previously unexplored traits, such as corolla union types, inflorescence development, and micromorphological features related to the indumentum, as well as the presence and location of stomata. The characteristics proposed as potential synapomorphies of the group include the postgenital fusion of the corolla and the presence of a staminal disc formed at the base of the filaments. The other analyzed floral characteristics were not informative for the characterization of the group. Future studies of floral ontogeny will help to establish more precise patterns, mainly whether corolla union and staminal tube formation occur similarly in African and Asian sections of Senegalia.
Collapse
Affiliation(s)
- Anderson Javier Alvarado-Reyes
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo, Brazil, 13083-862.
| | - Juliana Villela Paulino
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av Prof Paulo Rocco s/n Bl A 2° andar sala 06, Ilha do Fundão, Rio de Janeiro, 21941902, RJ, Brazil
| | - Vanessa Terra
- Instituto de Biologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Vidal de Freitas Mansano
- DIPEQ, Instituto de Pesquisas Jardim Botânico Do Rio de Janeiro, Rua Pacheco Leão 915, Rio de Janeiro, RJ, 22460‑030, Brazil
| |
Collapse
|
4
|
Contreras-Díaz R, Carevic FS, van den Brink L, Huanca-Mamani W, Jung P. Structure, gene composition, divergence time and phylogeny analysis of the woody desert species Neltuma alba, Neltuma chilensis and Strombocarpa strombulifera. Sci Rep 2024; 14:13604. [PMID: 38871769 DOI: 10.1038/s41598-024-64287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Neltuma alba (Algarrobo blanco), Neltuma chilensis (Algarrobo Chileno) and Strombocarpa strombulifera (Fortuna) are some of the few drought resistant trees and shrubs found in small highly fragmented populations, throughout the Atacama Desert. We reconstructed their plastid genomes using de novo assembly of paired-end reads from total genomic DNA. We found that the complete plastid genomes of N. alba and N. chilensis are larger in size compared to species of the Strombocarpa genus. The Strombocarpa species presented slightly more GC content than the Neltuma species. Therefore, we assume that Strombocarpa species have been exposed to stronger natural selection than Neltuma species. We observed high variation values in the number of cpSSRs (chloroplast simple sequence repeats) and repeated elements among Neltuma and Strombocarpa species. The p-distance results showed a low evolutionary divergence within the genus Neltuma, whereas a high evolutionary divergence was observed between Strombocarpa species. The molecular divergence time found in Neltuma and Strombocarpa show that these genera diverged in the late Oligocene. With this study we provide valuable information about tree species that provide important ecosystem services in hostile environments which can be used to determine these species in the geographically isolated communities, and keep the highly fragmented populations genetically healthy.
Collapse
Affiliation(s)
- Roberto Contreras-Díaz
- Centro Regional de Investigación de Desarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama, Copayapu 485, Copiapó, Chile.
- Núcleo Milenio de Ecología Histórica Aplicada Para los Bosques Áridos (AFOREST), Santiago, Chile.
| | - Felipe S Carevic
- Laboratorio de Ecología Vegetal, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Campus Huayquique, Iquique, Chile
- Núcleo Milenio de Ecología Histórica Aplicada Para los Bosques Áridos (AFOREST), Santiago, Chile
| | - Liesbeth van den Brink
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Wilson Huanca-Mamani
- Laboratorio de Biología Molecular de Plantas, Facultad de Ciencias Agronómicas, Centro de Genética y Genómica UASARA, Universidad de Tarapacá, 1000000, Arica, Chile
| | - Patrick Jung
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10-16, 66953, Pirmasens, Germany
| |
Collapse
|
5
|
Rocha VDD, Dal'Sasso TCDS, Williams CCV, Simon MF, Bueno ML, Oliveira LOD. From forest to savanna and back to forest: Evolutionary history of the genus Dimorphandra (Fabaceae). JOURNAL OF PLANT RESEARCH 2024; 137:377-393. [PMID: 38369599 DOI: 10.1007/s10265-024-01523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
The tree genus Dimorphandra (Fabaceae), which contains 26 species divided into three subgenera, was studied using DNA sequence data from six chloroplast genome regions (cpDNA) and the nuclear internal transcribed spacer (ITS). The analyses, which included Bayesian phylogenies and haplotype networks, ancestral area reconstructions, and ecological niche modeling, allowed for exploring the evolutionary history of Dimorphandra. Within the subgenus Phaneropsia, the cpDNA sequence data were more closely-related to species from the genus Mora, while the ITS sequence data displayed a closer phylogenetic relationship with the subgenus Pocillum. This incongruence may be due to incomplete lineage sorting associated with ancient polymorphisms. The Amazonian Dimophandra lineages were highly polymorphic and divergent, while those from the Cerrado and the Atlantic Forest had low levels of polymorphisms. The Amazon likely gave rise to the Dimophandra lineage that produced the Cerrado species, while a Cerrado lineage likely gave rise to the Atlantic Forest species. Habitat shifts were identified as a key factor in shaping the late evolutionary history of Dimorphandra.
Collapse
Affiliation(s)
- Vinicius Delgado da Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs s/n, Vicosa, Minas Gerais, 36570-000, Brazil
| | - Thaís Carolina da Silva Dal'Sasso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs s/n, Vicosa, Minas Gerais, 36570-000, Brazil
- Environmental Genomics Group, Christian-Albrechts University of Kiel, and the Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | - Marcelo Leandro Bueno
- Laboratório de Macroecologia e Evolução (LAMEV), Universidade Estadual de Mato Grosso do Sul, Mundo Novo, Brazil
| | - Luiz Orlando de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs s/n, Vicosa, Minas Gerais, 36570-000, Brazil.
| |
Collapse
|
6
|
Bruneau A, de Queiroz LP, Ringelberg JJ, Borges LM, Bortoluzzi RLDC, Brown GK, Cardoso DBOS, Clark RP, Conceição ADS, Cota MMT, Demeulenaere E, de Stefano RD, Ebinger JE, Ferm J, Fonseca-Cortés A, Gagnon E, Grether R, Guerra E, Haston E, Herendeen PS, Hernández HM, Hopkins HCF, Huamantupa-Chuquimaco I, Hughes CE, Ickert-Bond SM, Iganci J, Koenen EJM, Lewis GP, de Lima HC, de Lima AG, Luckow M, Marazzi B, Maslin BR, Morales M, Morim MP, Murphy DJ, O’Donnell SA, Oliveira FG, Oliveira ACDS, Rando JG, Ribeiro PG, Ribeiro CL, Santos FDS, Seigler DS, da Silva GS, Simon MF, Soares MVB, Terra V. Advances in Legume Systematics 14. Classification of Caesalpinioideae. Part 2: Higher-level classification. PHYTOKEYS 2024; 240:1-552. [PMID: 38912426 PMCID: PMC11188994 DOI: 10.3897/phytokeys.240.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/19/2023] [Indexed: 06/25/2024]
Abstract
Caesalpinioideae is the second largest subfamily of legumes (Leguminosae) with ca. 4680 species and 163 genera. It is an ecologically and economically important group formed of mostly woody perennials that range from large canopy emergent trees to functionally herbaceous geoxyles, lianas and shrubs, and which has a global distribution, occurring on every continent except Antarctica. Following the recent re-circumscription of 15 Caesalpinioideae genera as presented in Advances in Legume Systematics 14, Part 1, and using as a basis a phylogenomic analysis of 997 nuclear gene sequences for 420 species and all but five of the genera currently recognised in the subfamily, we present a new higher-level classification for the subfamily. The new classification of Caesalpinioideae comprises eleven tribes, all of which are either new, reinstated or re-circumscribed at this rank: Caesalpinieae Rchb. (27 genera / ca. 223 species), Campsiandreae LPWG (2 / 5-22), Cassieae Bronn (7 / 695), Ceratonieae Rchb. (4 / 6), Dimorphandreae Benth. (4 / 35), Erythrophleeae LPWG (2 /13), Gleditsieae Nakai (3 / 20), Mimoseae Bronn (100 / ca. 3510), Pterogyneae LPWG (1 / 1), Schizolobieae Nakai (8 / 42-43), Sclerolobieae Benth. & Hook. f. (5 / ca. 113). Although many of these lineages have been recognised and named in the past, either as tribes or informal generic groups, their circumscriptions have varied widely and changed over the past decades, such that all the tribes described here differ in generic membership from those previously recognised. Importantly, the approximately 3500 species and 100 genera of the former subfamily Mimosoideae are now placed in the reinstated, but newly circumscribed, tribe Mimoseae. Because of the large size and ecological importance of the tribe, we also provide a clade-based classification system for Mimoseae that includes 17 named lower-level clades. Fourteen of the 100 Mimoseae genera remain unplaced in these lower-level clades: eight are resolved in two grades and six are phylogenetically isolated monogeneric lineages. In addition to the new classification, we provide a key to genera, morphological descriptions and notes for all 163 genera, all tribes, and all named clades. The diversity of growth forms, foliage, flowers and fruits are illustrated for all genera, and for each genus we also provide a distribution map, based on quality-controlled herbarium specimen localities. A glossary for specialised terms used in legume morphology is provided. This new phylogenetically based classification of Caesalpinioideae provides a solid system for communication and a framework for downstream analyses of biogeography, trait evolution and diversification, as well as for taxonomic revision of still understudied genera.
Collapse
Affiliation(s)
- Anne Bruneau
- Institut de recherche en biologie végétale and Département de Sciences biologiques, Université de Montréal, 4101 Sherbrooke E., Montreal (QC) H1X 2B2, CanadaUniversité de MontréalMontrealCanada
| | - Luciano Paganucci de Queiroz
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Jens J. Ringelberg
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UKUniversity of EdinburghEdinburghUnited Kingdom
| | - Leonardo M. Borges
- Universidade Federal de São Carlos, Departamento de Botânica, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, BrazilUniversidade Federal de São CarlosSão CarlosBrazil
| | - Roseli Lopes da Costa Bortoluzzi
- Programa de Pós-graduação em Produção Vegetal, Universidade do Estado de Santa Catarina, Centro de Ciências Agroveterinárias, Avenida Luiz de Camões 2090, 88520-000, Lages, Santa Catarina, BrazilUniversidade do Estado de Santa CatarinaSanta CatarinaBrazil
| | - Gillian K. Brown
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, 4066, AustraliaQueensland Herbarium and Biodiversity ScienceToowongAustralia
| | - Domingos B. O. S. Cardoso
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
- Programa de Pós-Graduação em Biodiversidade e Evolução (PPGBioEvo), Instituto de Biologia, Universidade Federal de Bahia (UFBA), Rua Barão de Jeremoabo, s.n., Ondina, 40170-115, Salvador, BA, BrazilUniversidade Federal de BahiaSalvadorBrazil
| | - Ruth P. Clark
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UKRoyal Botanic GardensRichmondUnited Kingdom
| | - Adilva de Souza Conceição
- Programa de Pós-graduação em Diversidade Vegetal, Universidade do Estado da Bahia, Herbário HUNEB, Campus VIII, Rua do Gangorra 503, 48608-240, Paulo Afonso, Bahia, BrazilUniversidade do Estado da BahiaBahiaBrazil
| | - Matheus Martins Teixeira Cota
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Else Demeulenaere
- Center for Island Sustainability and Sea Grant, University of Guam, UOG Station, Mangilao, 96923, GuamUniversity of GuamMangilaoGuam
| | - Rodrigo Duno de Stefano
- Centro de Investigación Científica de Yucatán, A.C. (CICY), Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo; CP 97205, Mérida, Yucatán, MexicoCentro de Investigación Científica de Yucatán, A.C.MéridaMexico
| | - John E. Ebinger
- Eastern Illinois University, Charleston, IL 61920, USAEastern Illinois UniversityCharlestonUnited States of America
| | - Julia Ferm
- Department of Ecology, Environment and Plant Sciences, 10691, Stockholm University, Stockholm, SwedenStockholm UniversityStockholmSweden
| | - Andrés Fonseca-Cortés
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, 50 Stone Road, Guelph (ON) N1G 2W1, CanadaRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
- Chair of Phytopathology, Technical University Munich, 85354 Freising, GermanyUniversity of GuelphGuelphCanada
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UKTechnical University MunichFreisingGermany
| | - Rosaura Grether
- Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, 09340 Ciudad de México, MexicoUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMexico
| | - Ethiéne Guerra
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, Bloco IV - Prédio 43433, Porto Alegre, RS, 91501-970, BrazilUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Elspeth Haston
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UKTechnical University MunichFreisingGermany
| | - Patrick S. Herendeen
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USAChicago Botanic GardenGlencoeUnited States of America
| | - Héctor M. Hernández
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de México, MexicoUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Helen C. F. Hopkins
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UKRoyal Botanic GardensRichmondUnited Kingdom
| | - Isau Huamantupa-Chuquimaco
- Herbario Alwyn Gentry (HAG), Universidad Nacional Amazónica de Madre de Dios (UNAMAD), AV. Jorge Chávez N°1160, Madre de Dios, PeruUniversidad Nacional Amazónica de Madre de DiosMadre de DiosPeru
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| | - Stefanie M. Ickert-Bond
- Department of Biology & Wildlife & Herbarium (ALA) at the University of Alaska Museum of the North, University of Alaska Fairbanks, P.O. Box 756960, Fairbanks AK 99775-6960, USAUniversity of Alaska FairbanksFairbanksUnited States of America
| | - João Iganci
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, Bloco IV - Prédio 43433, Porto Alegre, RS, 91501-970, BrazilUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós-Graduação em Fisiologia Vegetal, Universidade Federal de Pelotas, Instituto de Biologia, Campus Universitário Capão do Leão, Passeio André Dreyfus, Departamento de Botânica, Prédio 21, Pelotas, Rio Grande do Sul, 96010-900, BrazilUniversidade Federal de PelotasPelotasBrazil
| | - Erik J. M. Koenen
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Faculté des Sciences, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050 Bruxelles, BelgiumUniversité Libre de BruxellesBruxellesBelgium
| | - Gwilym P. Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UKRoyal Botanic GardensRichmondUnited Kingdom
| | - Haroldo Cavalcante de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
- Instituto Nacional da Mata Atlântica / INMA-MCTI, Av. José Ruschi, 4, Centro, 29650-000, Santa Teresa, Espírito Santo, BrazilInstituto Nacional da Mata AtlânticaSanta TeresaBrazil
| | - Alexandre Gibau de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
| | - Melissa Luckow
- School of Integrative Plant Science, Plant Biology Section, Cornell University, 215 Garden Avenue, Roberts Hall 260, Ithaca, NY 14853, USACornell UniversityIthacaUnited States of America
| | - Brigitte Marazzi
- Natural History Museum of Canton Ticino, Viale C. Cattaneo 4, 6900 Lugano, SwitzerlandNatural History Museum of Canton TicinoLuganoSwitzerland
| | - Bruce R. Maslin
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia, 6983, AustraliaWestern Australian HerbariumBentley Delivery CentreAustralia
- Singapore Herbarium, 1 Cluny Road, Singapore, SingaporeSingapore HerbariumSingaporeSingapore
| | - Matías Morales
- Instituto de Recursos Biológicos, CIRN–CNIA, INTA. N. Repetto & Los Reseros s.n., Hurlingham, Buenos Aires, ArgentinaInstituto de Recursos BiológicosBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, ArgentinaConsejo Nacional de Investigaciones Científicas y TécnicasCiudad Autónoma de Buenos AiresArgentina
| | - Marli Pires Morim
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
| | - Daniel J. Murphy
- Royal Botanic Gardens Victoria, Melbourne, Victoria, 3004, AustraliaRoyal Botanic Gardens VictoriaVictoriaAustralia
| | - Shawn A. O’Donnell
- Geography and Environmental Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne, NE1 8ST, UKNorthumbria UniversityNewcastle upon TyneUnited Kingdom
| | - Filipe Gomes Oliveira
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Ana Carla da Silva Oliveira
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Juliana Gastaldello Rando
- Programa de Pós-graduação em Ciências Ambientais, Universidade Federal do Oeste da Bahia, Rua Professor José Seabra Lemos 316, 47800-021, Barreiras, Bahia, BrazilUniversidade Federal do Oeste da BahiaBarreirasBrazil
| | - Pétala Gomes Ribeiro
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Carolina Lima Ribeiro
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Felipe da Silva Santos
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - David S. Seigler
- Department of Plant Biology, University of Illinois, Urbana, IL 61801, USAUniversity of IllinoisUrbanaUnited States of America
| | - Guilherme Sousa da Silva
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-876, São Paulo/SP, BrazilUniversidade Estadual de CampinasSão PauloBrazil
| | - Marcelo F. Simon
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Caixa Postal 02372, 70770-917, Brasília/DF, BrazilEmpresa Brasileira de Pesquisa AgropecuáriaBrasíliaBrazil
| | - Marcos Vinícius Batista Soares
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, Bloco IV - Prédio 43433, Porto Alegre, RS, 91501-970, BrazilUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Vanessa Terra
- Instituto de Biologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria/RS, BrazilUniversidade Federal de Santa MariaSanta MariaBrazil
| |
Collapse
|
7
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Caycho E, La Torre R, Orjeda G. Assembly, annotation and analysis of the chloroplast genome of the Algarrobo tree Neltuma pallida (subfamily: Caesalpinioideae). BMC PLANT BIOLOGY 2023; 23:570. [PMID: 37974117 PMCID: PMC10652460 DOI: 10.1186/s12870-023-04581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Neltuma pallida is a tree that grows in arid soils in northwestern Peru. As a predominant species of the Equatorial Dry Forest ecoregion, it holds significant economic and ecological value for both people and environment. Despite this, the species is severely threatened and there is a lack of genetic and genomic research, hindering the proposal of evidence-based conservation strategies. RESULTS In this work, we conducted the assembly, annotation, analysis and comparison of the chloroplast genome of a N. pallida specimen with those of related species. The assembled chloroplast genome has a length of 162,381 bp with a typical quadripartite structure (LSC-IRA-SSC-IRB). The calculated GC content was 35.97%. However, this is variable between regions, with a higher GC content observed in the IRs. A total of 132 genes were annotated, of which 19 were duplicates and 22 contained at least one intron in their sequence. A substantial number of repetitive sequences of different types were identified in the assembled genome, predominantly tandem repeats (> 300). In particular, 142 microsatellites (SSR) markers were identified. The phylogenetic reconstruction showed that N. pallida grouped with the other Neltuma species and with Prosopis cineraria. The analysis of sequence divergence between the chloroplast genome sequences of N. pallida, N. juliflora, P. farcta and Strombocarpa tamarugo revealed a high degree of similarity. CONCLUSIONS The N. pallida chloroplast genome was found to be similar to those of closely related species. With a size of 162,831 bp, it had the classical chloroplast quadripartite structure and GC content of 35.97%. Most of the 132 identified genes were protein-coding genes. Additionally, over 800 repetitive sequences were identified, including 142 SSR markers. In the phylogenetic analysis, N. pallida grouped with other Neltuma spp. and P. cineraria. Furthermore, N. pallida chloroplast was highly conserved when compared with genomes of closely related species. These findings can be of great potential for further diversity studies and genetic improvement of N. pallida.
Collapse
Affiliation(s)
- Esteban Caycho
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru
| | - Renato La Torre
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru
| | - Gisella Orjeda
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru.
| |
Collapse
|
9
|
Stull GW, Pham KK, Soltis PS, Soltis DE. Deep reticulation: the long legacy of hybridization in vascular plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:743-766. [PMID: 36775995 DOI: 10.1111/tpj.16142] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Hybridization has long been recognized as a fundamental evolutionary process in plants but, until recently, our understanding of its phylogenetic distribution and biological significance across deep evolutionary scales has been largely obscure. Over the past decade, genomic and phylogenomic datasets have revealed, perhaps not surprisingly, that hybridization, often associated with polyploidy, has been common throughout the evolutionary history of plants, particularly in various lineages of flowering plants. However, phylogenomic studies have also highlighted the challenges of disentangling signals of ancient hybridization from other sources of genomic conflict (in particular, incomplete lineage sorting). Here, we provide a critical review of ancient hybridization in vascular plants, outlining well-documented cases of ancient hybridization across plant phylogeny, as well as the challenges unique to documenting ancient versus recent hybridization. We provide a definition for ancient hybridization, which, to our knowledge, has not been explicitly attempted before. Further documenting the extent of deep reticulation in plants should remain an important research focus, especially because published examples likely represent the tip of the iceberg in terms of the total extent of ancient hybridization. However, future research should increasingly explore the macroevolutionary significance of this process, in terms of its impact on evolutionary trajectories (e.g. how does hybridization influence trait evolution or the generation of biodiversity over long time scales?), as well as how life history and ecological factors shape, or have shaped, the frequency of hybridization across geologic time and plant phylogeny. Finally, we consider the implications of ubiquitous ancient hybridization for how we conceptualize, analyze, and classify plant phylogeny. Networks, as opposed to bifurcating trees, represent more accurate representations of evolutionary history in many cases, although our ability to infer, visualize, and use networks for comparative analyses is highly limited. Developing improved methods for the generation, visualization, and use of networks represents a critical future direction for plant biology. Current classification systems also do not generally allow for the recognition of reticulate lineages, and our classifications themselves are largely based on evidence from the chloroplast genome. Updating plant classification to better reflect nuclear phylogenies, as well as considering whether and how to recognize hybridization in classification systems, will represent an important challenge for the plant systematics community.
Collapse
Affiliation(s)
- Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
10
|
Ringelberg JJ, Koenen EJ, Sauter B, Aebli A, Rando JG, Iganci JR, de Queiroz LP, Murphy DJ, Gaudeul M, Bruneau A, Luckow M, Lewis GP, Miller JT, Simon MF, Jordão LS, Morales M, Bailey CD, Nageswara-Rao M, Nicholls JA, Loiseau O, Pennington RT, Dexter KG, Zimmermann NE, Hughes CE. Precipitation is the main axis of tropical plant phylogenetic turnover across space and time. SCIENCE ADVANCES 2023; 9:eade4954. [PMID: 36800419 PMCID: PMC10957106 DOI: 10.1126/sciadv.ade4954] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Early natural historians-Comte de Buffon, von Humboldt, and De Candolle-established environment and geography as two principal axes determining the distribution of groups of organisms, laying the foundations for biogeography over the subsequent 200 years, yet the relative importance of these two axes remains unresolved. Leveraging phylogenomic and global species distribution data for Mimosoid legumes, a pantropical plant clade of c. 3500 species, we show that the water availability gradient from deserts to rain forests dictates turnover of lineages within continents across the tropics. We demonstrate that 95% of speciation occurs within a precipitation niche, showing profound phylogenetic niche conservatism, and that lineage turnover boundaries coincide with isohyets of precipitation. We reveal similar patterns on different continents, implying that evolution and dispersal follow universal processes.
Collapse
Affiliation(s)
- Jens J. Ringelberg
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008 Zurich, Switzerland
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008 Zurich, Switzerland
| | - Benjamin Sauter
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008 Zurich, Switzerland
| | - Anahita Aebli
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008 Zurich, Switzerland
| | - Juliana G. Rando
- Programa de Pós Graduação em Ciências Ambientais, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Rua Prof. José Seabra de Lemos, 316, Bairro Recanto dos Pássaros, 47808-021 Barreiras-BA, Brazil
| | - João R. Iganci
- Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Travessa André Dreyfus s/n, 96010-900 Capão do Leão-RS, Brazil
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, 91501-970 Porto Alegre-RS, Brazil
| | - Luciano P. de Queiroz
- Departamento Ciências Biológicas, Universidade Estadual de Feira de Santana, Avenida Transnordestina s/n, Novo Horizonte, 44036-900 Feira de Santana-BA, Brazil
| | - Daniel J. Murphy
- Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne, VIC 3004, Australia
- School of Biological, Earth and Environmental Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Myriam Gaudeul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), MNHN-CNRS-SU-EPHE-UA, 57 rue Cuvier, CP 39, 75231 Paris, Cedex 05, France
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, Canada
| | - Melissa Luckow
- School of Integrative Plant Science, Plant Biology Section, Cornell University, 215 Garden Avenue, Roberts Hall 260, Ithaca, NY 14853, USA
| | - Gwilym P. Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Joseph T. Miller
- Global Biodiversity Information Facility, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
| | - Marcelo F. Simon
- Embrapa Recursos Genéticos e Biotecnologia, 70770-901 Brasília-DF, Brazil
| | - Lucas S. B. Jordão
- Programa de Pós-Graduação em Botânica, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, 22460-030 Rua Pacheco Leão-RJ, Brazil
| | - Matías Morales
- Instituto de Recursos Biológicos, CIRN-CNIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía y Ciencias Agroalimentarias, Universidad de Morón, B1708JPD Morón, Buenos Aires, Argentina
| | - C. Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM 88001, USA
| | - Madhugiri Nageswara-Rao
- United States Department of Agriculture - Agricultural Research Service, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
| | - James A. Nicholls
- Australian National Insect Collection, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Oriane Loiseau
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UK
| | - R. Toby Pennington
- Department of Geography, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, UK
| | - Kyle G. Dexter
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UK
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, UK
| | - Niklaus E. Zimmermann
- Department of Environmental System Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008 Zurich, Switzerland
| |
Collapse
|
11
|
James EK. The seeds of nodulation. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153812. [PMID: 36183574 DOI: 10.1016/j.jplph.2022.153812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Euan K James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
12
|
Borges LM, Inglis PW, Simon MF, Ribeiro PG, de Queiroz LP. Misleading fruits: The non-monophyly of Pseudopiptadenia and Pityrocarpa supports generic re-circumscriptions and a new genus within mimosoid legumes. PHYTOKEYS 2022; 205:239-259. [PMID: 36762012 PMCID: PMC9849003 DOI: 10.3897/phytokeys.205.82275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/19/2022] [Indexed: 05/12/2023]
Abstract
Generic delimitation in Piptadenia and allies (mimosoid legumes) has been in a state of flux, particularly caused by over-reliance on fruit and seed morphology to segregate species out of Piptadenia into the genera Parapiptadenia, Pityrocarpa and Pseudopiptadenia. Although supporting their segregation from Piptadenia, previous phylogenetic analyses suggested that some of these segregated genera are not monophyletic. Here, we test the monophyly of Parapiptadenia, Pityrocarpa and Pseudopiptadenia with dense taxon sampling across these genera, including the type species of each genus. Our analysis recovers Parapitadenia as monophyletic, but places Pseudopiptadenia species in two distinct lineages, one of which includes all three species of Pityrocarpa. Given that the type species of both Pseudopiptadenia and Pityrocarpa are nested in the same clade, we subsume Pseudopiptadenia under the older name Pityrocarpa. The remaining Pseudopiptadenia species are assigned to the new genus Marlimorimia. Alongside high molecular phylogenetic support, recognition of Parapiptadenia, Pityrocarpa and Marlimorimia as distinct genera is also supported by combinations of morphological traits, several of which were previously overlooked.
Collapse
Affiliation(s)
- Leonardo M. Borges
- Universidade Federal de São Carlos, Departamento de Botânica, Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, BrazilUniversidade Federal de São CarlosSão CarlosBrazil
| | - Peter W. Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Caixa Postal 02372, Brasília, DF, 70770-917, BrazilEmbrapa Recursos Genéticos e Biotecnologia, Parque Estação BiológicaBrasíliaBrazil
| | - Marcelo F. Simon
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Caixa Postal 02372, Brasília, DF, 70770-917, BrazilEmbrapa Recursos Genéticos e Biotecnologia, Parque Estação BiológicaBrasíliaBrazil
| | - Pétala Gomes Ribeiro
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas. Av. Transnordestina s.n., Novo Horizonte, Feira de Santana, BA, 44036-900, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Luciano P. de Queiroz
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas. Av. Transnordestina s.n., Novo Horizonte, Feira de Santana, BA, 44036-900, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| |
Collapse
|
13
|
Tamayo-Cen I, Torke BM, López Contreras JE, Carnevali Fernández-Concha G, Ramírez Morillo I, Can Itza LL, Duno de Stefano R. Revisiting the phylogeny and taxonomy of the Pithecellobium clade (Leguminosae, Caesalpinioideae) with new generic circumscriptions. PHYTOKEYS 2022; 205:279-298. [PMID: 36762016 PMCID: PMC9849026 DOI: 10.3897/phytokeys.205.82728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 05/21/2023]
Abstract
We present the most complete molecular phylogeny to date of the Pithecellobium clade of subfamily Caesalpinioideae. This neotropical group was informally recognised (as the Pithecellobium alliance) at the end of the 20th century by Barneby and Grimes (1996) and includes five genera and 33 species distributed from the southern United States and Caribbean Islands to north-eastern South America. Our aims were to further test the monophyly of the group and its genera and to identify sister group relationships within and amongst the genera. A phylogenetic analysis of nuclear ribosomal DNA sequences (ITS and ETS) was performed. The results provide further support for the monophyly of the Pithecellobium clade. The genera Ebenopsis, Pithecellobium and Sphinga were strongly supported as monophyletic. Havardia and Painteria were found to be non-monophyletic, prompting their re-circumscriptions and the description of two new genera: Gretheria and Ricoa. New combinations are made for the three species transferred to the new genera.
Collapse
Affiliation(s)
- Iván Tamayo-Cen
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A. C. (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
| | - Benjamin M. Torke
- Institute of Systematic Botany, New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York, 10458-5126 USANew York Botanical GardenNew YorkUnited States of America
| | - José Enrique López Contreras
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A. C. (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
- Centro de Investigación de Ciencias Ambientales, Universidad Autónoma del Carmen, C. 56 núm, 4 Esquina Avenida Concordia, Colonia Benito Juárez CP 24180, Ciudad del Carmen, Campeche, MexicoUniversidad Autónoma del CarmenCampecheMexico
| | - German Carnevali Fernández-Concha
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A. C. (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
| | - Ivón Ramírez Morillo
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A. C. (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
| | - Lilia Lorena Can Itza
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A. C. (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
| | - Rodrigo Duno de Stefano
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A. C. (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
| |
Collapse
|
14
|
de Souza ÉR, de Almeida PGC, Rocha L, Koenen EJ, Burgos MA, Lewis GP, Hughes CE. Boliviadendron, a new segregate genus of mimosoid legume (Leguminosae, Caesalpinioideae, mimosoid clade) narrowly endemic to the interior Andean valleys of Bolivia. PHYTOKEYS 2022; 205:439-452. [PMID: 36762005 PMCID: PMC9849042 DOI: 10.3897/phytokeys.205.82256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 05/21/2023]
Abstract
Phylogenetic analyses of DNA sequence data sampling all species of Leucochloron alongside representatives of genera of the Inga and Albizia clades of the larger ingoid clade of mimosoid legumes (sensu Koenen et al. 2020) confirm the non-monophyly of the genus Leucochloron. We show that Leucochloronbolivianum is placed in the Albizia clade, while the remaining four species of Leucochloron are placed in the Inga clade, in line with previous results. To rectify this non-monophyly, L.bolivianum is segregated as the new genus, Boliviadendron, with a single species, Boliviadendronbolivianum, narrowly endemic to the interior Andean valleys of Bolivia. We illustrate this new segregate genus, present a map of its distribution and discuss the striking lack of morphological distinctions between Boliviadendron and Leucochloron, as well as the phylogenetic and morphological affinities of Boliviadendron to the genera Enterolobium and Albizia.
Collapse
Affiliation(s)
- Élvia Rodrigues de Souza
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Programa de Pós-graduação em Botânica, Av. Transnordestina s.n., Feira de Santana, Bahia, 44036-900, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Priscilla Gomes C. de Almeida
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Programa de Pós-graduação em Botânica, Av. Transnordestina s.n., Feira de Santana, Bahia, 44036-900, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Lamarck Rocha
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Programa de Pós-graduação em Botânica, Av. Transnordestina s.n., Feira de Santana, Bahia, 44036-900, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Erik J.M. Koenen
- University of Zurich, Department of Systematic and Evolutionary Botany, Zollikerstrasse 107, 8008 Zurich, SwitzerlandUniversity of ZurichZürichSwitzerland
- Present address: Evolutionary Biology & Ecology, Université Libre de Bruxelles, Faculté des Sciences, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050 Bruxelles, BelgiumUniversité Libre de BruxellesBruxellesBelgium
| | - Margoth Atahuachi Burgos
- Herbario Forestal Nacional Martín Cárdenas, Centro de Biodiversidad y Genética, Universidad Mayor de San Simón, Cochabamba, BoliviaUniversidad Mayor de San SimónCochabambaBolivia
| | - Gwilym P. Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UKRoyal Botanic Gardens, KewRichmondUnited Kingdom
| | - Colin E. Hughes
- University of Zurich, Department of Systematic and Evolutionary Botany, Zollikerstrasse 107, 8008 Zurich, SwitzerlandUniversity of ZurichZürichSwitzerland
| |
Collapse
|
15
|
O’Donnell SA, Ringelberg JJ, Lewis GP. Re-circumscription of the mimosoid genus Entada including new combinations for all species of the phylogenetically nested Elephantorrhiza (Leguminosae, Caesalpinioideae, mimosoid clade). PHYTOKEYS 2022; 205:99-145. [PMID: 36762010 PMCID: PMC9849012 DOI: 10.3897/phytokeys.205.76790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/07/2022] [Indexed: 05/14/2023]
Abstract
Recent phylogenomic analyses of 997 nuclear genes support the long-held view that the genus Entada is congeneric with Elephantorrhiza. Entada is resolved as monophyletic only if the genus Elephantorrhiza is subsumed within it. The two genera were distinguished solely by relatively minor differences in the mode of dehiscence of the fruits (a craspedium separating into one-seeded endocarp segments in Entada versus a craspedium with the whole fruit valve breaking away from the persistent replum in Elephantorrhiza) and the craspedial fruit type itself provides a shared synapomorphy for the re-circumscribed Entada. Here, we provide a synopsis of Entada, including 11 new combinations in total, for the eight species, one subspecies and one variety previously placed in Elephantorrhiza, as well as a new combination for a subspecies of Entadarheedei Spreng. not previously dealt with when Entadapursaetha DC. was placed in synonymy. These new combinations are: Entadaburkei (Benth.) S.A. O'Donnell & G.P. Lewis, comb. nov.; Entadaelephantina (Burch.) S.A. O'Donnell & G.P. Lewis, comb. nov.; Entadagoetzei (Harms) S.A. O'Donnell & G.P. Lewis, comb. nov.; Entadagoetzeisubsp.lata (Brenan & Brummitt) S.A. O'Donnell & G.P. Lewis, comb. nov.; Entadaobliqua (Burtt Davy) S.A. O'Donnell & G.P. Lewis, comb. nov.; Entadapraetermissa (J.H. Ross) S.A. O'Donnell & G.P. Lewis, comb. nov.; Entadarangei (Harms) S.A. O'Donnell & G.P. Lewis, comb. nov.; Entadarheedeisubsp.sinohimalensis (Grierson & D.G. Long) S.A. O'Donnell & G.P. Lewis, comb. nov.; Entadaschinziana (Dinter) S.A. O'Donnell & G.P. Lewis, comb. nov.; Entadawoodii (E. Phillips) S.A. O'Donnell & G.P. Lewis, comb. nov.; and Entadawoodiivar.pubescens (E. Phillips) S.A. O'Donnell & G.P. Lewis, comb. nov. We provide a revised circumscription of the genus Entada which now comprises 40 species distributed pantropically, with the greatest diversity of species in tropical Africa. We present a complete taxonomic synopsis, including a map showing the global distribution of the genus and photographs showing variation amongst species in habit, foliage, flowers and fruits. A short discussion about extrafloral nectaries, mainly observed in the Madagascan species, is presented.
Collapse
Affiliation(s)
- Shawn A. O’Donnell
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UKNorthumbria UniversityNewcastle upon TyneUnited Kingdom
| | - Jens J. Ringelberg
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| | - Gwilym P. Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UKRoyal Botanic GardensRichmondUnited Kingdom
| |
Collapse
|
16
|
Koenen EJM. On the taxonomic affinity of Albiziacarbonaria Britton (Leguminosae, Caesalpinioideae-mimosoid clade). PHYTOKEYS 2022; 205:363-370. [PMID: 36762015 PMCID: PMC9848996 DOI: 10.3897/phytokeys.205.82288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/04/2022] [Indexed: 05/08/2023]
Abstract
Recent phylogenomic analyses placed Albiziacarbonaria Britton as the sister-group of the two currently known species of Pseudosamanea Harms, clearly outside AlbiziasectionArthrosamanea (Britton & Rose) Barneby & J.W. Grimes where it has until now been included. Its morphological similarities to Pseudosamanea are discussed, including characteristics of the polyad, and it is concluded that the species is compatible with the generic description of that genus except for its much more finely divided leaves with smaller leaflets, and its smaller flowers and fruits. Since these are merely quantitative differences, the species can readily be accommodated in Pseudosamanea. The new combination Pseudosamaneacarbonaria (Britton) E.J.M. Koenen is made, and a diagnosis distinguishing it from the other two species of Pseudosamanea is presented.
Collapse
Affiliation(s)
- Erik J. M. Koenen
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Faculté des Sciences, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050 Bruxelles, BelgiumUniversité Libre de BruxellesBruxellesBelgium
| |
Collapse
|
17
|
Hughes CE, Ringelberg JJ, Lewis GP, Catalano SA. Disintegration of the genus Prosopis L. (Leguminosae, Caesalpinioideae, mimosoid clade). PHYTOKEYS 2022; 205:147-189. [PMID: 36762004 PMCID: PMC9849005 DOI: 10.3897/phytokeys.205.75379] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/18/2021] [Indexed: 05/10/2023]
Abstract
Robust evidence from phylogenomic analyses of 997 nuclear genes has recently shown, beyond doubt, that the genus Prosopis is polyphyletic with three separate lineages, each with affinities to other genera of mimosoids: (i) Prosopisafricana is an isolated lineage placed in the grade of Plathymenia, Newtonia and Fillaeopsis that subtends the core mimosoid clade; (ii) the remaining Old World species of Prosopis form a clade that is sister to the Indo-Nepalese monospecific genus Indopiptadenia and (iii) New World Prosopis has the Namibian / Namaqualand monospecific endemic genus Xerocladia nested within it. This means that it is now clear that maintaining the unity of the genus Prosopis sensu Burkart (1976) is no longer tenable. These three distinct lineages of Prosopis species correspond directly to Burkart's (1976) sectional classification of the genus, to previously recognised genera and to the differences in types of armature that underpin Burkart's sections. Here, we address this non-monophyly by resurrecting three segregate genera - Anonychium, Neltuma and Strombocarpa and provide 57 new name combinations where necessary, while maintaining the morphologically distinctive and geographically isolated genera Xerocladia and Indopiptadenia. The genus Prosopis itself is reduced to just three species and an emended description is presented. The impacts of these name changes for a genus of such high ecological and human use importance are discussed. These impacts are mitigated by clear differences in armature which facilitate identification and by potential benefits from the deeper biological understanding brought about by recognition of these divergent lineages at generic rank. We provide an identification key to genera and present a map showing the distributions of the segregate genera, as well as drawings and photos illustrating variation in armature and fruits.
Collapse
Affiliation(s)
- Colin E. Hughes
- Department of Systematic & Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, SwitzerlandUniversity of ZürichZurichSwitzerland
| | - Jens J. Ringelberg
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UKUniversity of ZurichZurichSwitzerland
| | - Gwilym P. Lewis
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas – Fundación Miguel Lillo, Miguel Lillo 251, 4000 S. M. de Tucumán, ArgentinaAccelerated Taxonomy Department, Royal Botanic GardensRichmondUnited Kingdom
| | - Santiago A. Catalano
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 S. M. de Tucumán, ArgentinaConsejo Nacional de Investigaciones Cientificas y Tecnicas, Fundacion Miguel LilloS.M. de TucumanArgentina
| |
Collapse
|
18
|
Koenen EJM. Osodendron gen. nov. (Leguminosae, Caesalpinioideae), a new genus of mimosoid legumes of tropical Africa. PHYTOKEYS 2022; 205:453-470. [PMID: 36762017 PMCID: PMC9848988 DOI: 10.3897/phytokeys.205.82821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/25/2022] [Indexed: 05/17/2023]
Abstract
The genus Osodendron is here newly described to accommodate three species and one subspecies of African mimosoid legumes. These taxa have previously been included by several authors in Albizia, Cathormion and/or Samanea, but they have been shown to be phylogenetically unrelated to any of these, being instead the sister-group of the recently described Neotropical genus Robrichia, which is similar in vegetative morphology and especially its very similar indumentum, but is decidedly different in pod morphology. A taxonomic treatment of the three species in the genus is presented, with species descriptions, photographs, distribution maps and an identification key. The type species Osodendronaltissimum (Hook. f.) E.J.M. Koenen occurs in swamp and riverine rainforest and gallery forests, with the typical subsp. altissimum widespread across tropical Africa, while Osodendronaltissimumsubsp.busiraensis (G.C.C. Gilbert) E.J.M. Koenen is only known from the Busira river catchment in the western part of the Democratic Republic of Congo. Of the other two species, Osodendrondinklagei (Harms) E.J.M. Koenen is a common tree of rainforest and the forest-savannah transition including semi-deciduous and secondary forest as well as gallery forest and is restricted to Upper Guinea and the similar, but vegetatively more variable Osodendronleptophyllum (Harms) E.J.M. Koenen occupies comparable vegetation types in Lower Guinea and extends marginally into the Sudanian and Zambezian savannahs in gallery forest.
Collapse
Affiliation(s)
- Erik J. M. Koenen
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Faculté des Sciences, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050 Brussels, BelgiumUniversité Libre de BruxellesBruxellesBelgium
| |
Collapse
|
19
|
Vinicius Batista Soares M, Mathieu Koenen EJ, Ricardo Vieira Iganci J, Morim MP. A new generic circumscription of Hydrochorea (Leguminosae, Caesalpinioideae, mimosoid clade) with an amphi-Atlantic distribution. PHYTOKEYS 2022; 205:401-437. [PMID: 36762006 PMCID: PMC9849043 DOI: 10.3897/phytokeys.205.82775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/23/2022] [Indexed: 05/03/2023]
Abstract
Hydrochorea and Balizia were established to accommodate four and three species, respectively, that were previously included in different ingoid genera, based primarily on differences in fruit morphology. Both genera have Amazonia as their centre of diversity, extending to Central America and the Brazilian Atlantic Rainforest. Previous phylogenetic evidence showed Balizia to be paraphyletic with respect to Hydrochorea, and species of Hydrochorea and Balizia were placed in a large unresolved polytomy with species of Jupunba. Here we present a new phylogenomic analysis based on 560 exons, from which 686 orthologous alignments were derived for gene tree inference. This analysis confirms a paraphyletic Balizia in relation to Hydrochorea, together with two African species formerly placed in Albizia nested within the clade. Jupunbamacradenia was resolved as sister to the clade combining those taxa. However, quartet support is low for several of the branches at the base of the clade combining the genera Jupunba, Balizia and Hydrochorea, suggesting that rapid initial divergence in this group led to extensive incomplete lineage sorting and consequently poor phylogenetic resolution. Because of these phylogenomic complexities, we decided to use morphology as the main guide to consider Hydrochorea as a distinct genus from Jupunba, and Balizia as a new synonym for Hydrochorea. The taxonomic treatment includes the study of collections from various herbaria and fieldwork expeditions. We present a re-circumscribed Hydrochorea accommodating a total of 10 species, including six new combinations, five new synonyms, one new taxonomic status, two corrections of nomenclature category for lectotypes, and a second step lectotype and three new lectotypes. A new species from the Brazilian Amazon is described and illustrated. An identification key for all species of Hydrochorea is presented, together with comments and illustrations.
Collapse
Affiliation(s)
- Marcos Vinicius Batista Soares
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, Bloco IV, Prédio 43433, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - João Ricardo Vieira Iganci
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, Bloco IV, Prédio 43433, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Faculté des Sciences, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Marli Pires Morim
- Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Travessa Andre Dreyfus s/n, 96010-900, Capão do Leão, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Hughes CE, Ringelberg JJ, Luckow M, Jiménez JLC. Mezcala - a new segregate genus of mimosoid legume (Leguminosae, Caesalpinioideae, mimosoid clade) narrowly endemic to the Balsas Depression in Mexico. PHYTOKEYS 2022; 205:191-201. [PMID: 36762018 PMCID: PMC9849040 DOI: 10.3897/phytokeys.205.78297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 05/21/2023]
Abstract
Recent results have demonstrated that the genus Desmanthus is non-monophyletic because the genus Kanaloa is nested within it, with a single species, Desmanthusbalsensis placed as sister to the clade comprising Kanaloa plus the remaining species of Desmanthus. Here we transfer D.balsensis to a new segregate genus Mezcala, discuss the morphological features supporting this new genus, present a key to distinguish Mezcala from closely related genera in the Leucaena subclade, and provide a distribution map of M.balsensis.
Collapse
Affiliation(s)
- Colin E Hughes
- Department of Systematic & Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland University of Zürich Zurich Switzerland
| | - Jens J Ringelberg
- Department of Systematic & Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland University of Zürich Zurich Switzerland
| | - Melissa Luckow
- School of Integrative Plant Science, Plant Biology Section, Cornell University, 215 Garden Avenue, Roberts Hall 260, Ithaca, NY 14853, USA Cornell University Ithaca United States of America
| | - José Luis Contreras Jiménez
- Facultad de Arquitectura, Benemérita Universidad Autónoma de Puebla, 4 Sur 104, Col. Centro, CP 72000, Puebla, Mexico Benemérita Universidad Autónoma de Puebla Puebla Mexico
| |
Collapse
|
21
|
Terra V, Ringelberg JJ, Maslin B, Koenen EJM, Ebinger J, Seigler D, Hughes CE. Dilemmas in generic delimitation of Senegalia and allies (Caesalpinioideae, mimosoid clade): how to reconcile phylogenomic evidence with morphology and taxonomy? PHYTOKEYS 2022; 205:261-278. [PMID: 36762013 PMCID: PMC9849036 DOI: 10.3897/phytokeys.205.79378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/06/2022] [Indexed: 05/10/2023]
Abstract
Senegalia comprises 219 species distributed in tropical and subtropical regions of North and South America, Africa, Asia and Australia. Two sections are currently recognised within Senegalia and these are most readily distinguished by the differences in disposition of their cauline prickles, i.e. sect. Senegalia with prickles at or near leaf nodes and sect. Monacanthea with mostly internodal prickles. Previous phylogenetic studies, based primarily on small numbers of plastid DNA loci, found Senegalia to be monophyletic with two large subclades corresponding to the sections. Here, we present new phylogenomic evidence from 997 single-copy nuclear gene sequences for a small, but representative set of species. These new analyses show that Senegalia is non-monophyletic, but instead, forms a grade that is paraphyletic with respect to the remainder of the ingoid clade (i.e. Ingeae + Acacia s.s. + Acaciella), comprising two well-supported subclades most likely representing the same clades as found in previous phylogenetic studies of the genus and, interspersed between these, a third, moderately supported clade, comprising the genera Mariosousa, Pseudosenegalia and Parasenegalia. In marked contrast to the nuclear phylogeny, the two Senegalia clades are sister groups in the plastid phylogeny, based on analyses of 72 chloroplast genes, rendering the genus monophyletic, based on plastid data alone. We discuss this new evidence that Senegalia is non-monophyletic in relation to the marked cytonuclear discordance, high gene tree conflict and lack of resolution across this senegalioid grade and review the consistency of the key morphological characters distinguishing the two sections of Senegalia. We conclude that it is likely that Senegalia will need to be split into two (or possibly more) genera: a re-circumscribed Senegalia s.s. that corresponds to the existing Senegaliasect.Senegalia plus the S.ataxacantha group (Senegaliasect.Monacanthea s.s.; future studies may show that this group warrants generic status) and a new genus corresponding to the remainder of sect. Monacanthea (here designated as Senegaliasect.Monacanthea p.p.). However, re-delimiting Senegalia now would be premature given that the key morphological characters are not fully congruent with the two sections and pending denser phylogenetic sampling of taxa. A judiciously selected list of critical taxa is presented to facilitate future phylogenomic studies. Finally, we discuss the identity of Albizialeonardii, which is also placed in this senegalioid grade in these new phylogenomic analyses and place it in synonymy with Parasenegaliavogeliana.
Collapse
Affiliation(s)
- Vanessa Terra
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Rodovia LMG 746, Km01, s/n, Bloco 1A, sala 413, 38500-000, Monte Carmelo, Minas Gerais, BrazilUniversidade Federal de UberlândiaMonte CarmeloBrazil
| | - Jens J. Ringelberg
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| | - Bruce Maslin
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, PO Box 104, WA, 6983, AustraliaWestern Australian HerbariumBentley Delivery CentreAustralia
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
- Emeritus Professor of Botany, Eastern Illinois University, Charleston, IL 61920, USAUniversité Libre de BruxellesBruxellesBelgium
| | - John Ebinger
- Department of Plant Biology, University of Illinois, Urbana, Illinois 61801, USAEastern Illinois UniversityCharlestonUnited States of America
| | - David Seigler
- Present address: Evolutionary Biology & Ecology, Université Libre de Bruxelles, Faculté des Sciences, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050 Bruxelles, BelgiumUniversity of IllinoisUrbanaUnited States of America
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| |
Collapse
|
22
|
Brown GK, Aju J, Bayly MJ, Murphy DJ, McLay TGB. Phylogeny and classification of the Australasian and Indomalayan mimosoid legumes Archidendron and Archidendropsis (Leguminosae, subfamily Caesalpinioideae, mimosoid clade). PHYTOKEYS 2022; 205:299-333. [PMID: 36762019 PMCID: PMC9848999 DOI: 10.3897/phytokeys.205.79381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/29/2022] [Indexed: 05/05/2023]
Abstract
The morphologically variable genus Archidendron is the second largest mimosoid legume genus from the Indomalayan-Australasian region, yet it has not been well represented in phylogenetic studies. Phylogenies that have included multiple representatives of Archidendron suggest it may not be monophyletic, and the same applies to Archidendropsis, another understudied genus of the Archidendron clade. The most comprehensive phylogeny of Archidendron and Archidendropsis to date is presented, based on four nuclear markers (ITS, ETS, SHMT and RBPCO). Exemplars from all genera of the wider Archidendron clade are sampled, including representatives of all series within Archidendron and the two subgenera of Archidendropsis. Our results confirm that Archidendron and Archidendropsis are not monophyletic. Within Archidendron, only one series (ser. Ptenopae) is resolved as monophyletic and species of Archidendron are divided into two primarily geographic lineages. One clade is distributed in western Malesia and mainland Asia and includes most representatives of series Clypeariae, while the other is mostly restricted to eastern Malesia and Australia and includes representatives of the seven other series plus two samples of series Clypeariae. No taxonomic changes are made for Archidendron due to the high level of topological uncertainty and the lack of discrete macromorphological characters separating these two lineages. Each of the two subgenera of Archidendropsis is monophyletic but they are not closely related. A new genus endemic to Queensland (Australia), Heliodendron Gill.K. Br. & Bayly, gen. nov., is described for the former Archidendropsissubg.Basaltica, and combinations for its three species are proposed: Heliodendronbasalticum (F. Muell.) Gill.K. Br. & Bayly, comb. nov., Heliodendronthozetianum (F. Muell.) Gill.K. Br. & Bayly, comb. nov., and Heliodendronxanthoxylon (C.T. White & W.D. Francis) Gill.K. Br. & Bayly, comb. nov.
Collapse
Affiliation(s)
- Gillian K. Brown
- School of Biosciences, University of Melbourne, Parkville, Victoria, 3010, AustraliaUniversity of MelbourneParkvilleAustralia
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, 4066, AustraliaQueensland Herbarium, Department of Environment and ScienceToowongAustralia
| | - Javier Aju
- School of Biosciences, University of Melbourne, Parkville, Victoria, 3010, AustraliaUniversity of MelbourneParkvilleAustralia
- Departmento de Biología, Universidad del Valle de Guatemala, Guatemala, GuatemalaUniversidad del Valle de GuatemalaGuatemalaGuatemala
| | - Michael J. Bayly
- School of Biosciences, University of Melbourne, Parkville, Victoria, 3010, AustraliaUniversity of MelbourneParkvilleAustralia
| | - Daniel J. Murphy
- National Herbarium of Victoria, Royal Botanic Gardens Victoria, South Yarra, Victoria, 3141, AustraliaNational Herbarium of Victoria, Royal Botanic Gardens VictoriaSouth YarraAustralia
| | - Todd G. B. McLay
- School of Biosciences, University of Melbourne, Parkville, Victoria, 3010, AustraliaUniversity of MelbourneParkvilleAustralia
- National Herbarium of Victoria, Royal Botanic Gardens Victoria, South Yarra, Victoria, 3141, AustraliaNational Herbarium of Victoria, Royal Botanic Gardens VictoriaSouth YarraAustralia
| |
Collapse
|
23
|
Aviles Peraza G, Koenen EJM, Riina R, Hughes CE, Ringelberg JJ, Carnevali Fernández-Concha G, Ramírez Morillo IM, Can Itza LL, Tamayo-Cen I, Ramírez Prado JH, Cornejo X, Mattapha S, Duno de Stefano R. Re-establishment of the genus Pseudalbizzia (Leguminosae, Caesalpinioideae, mimosoid clade): the New World species formerly placed in Albizia. PHYTOKEYS 2022; 205:371-400. [PMID: 36762009 PMCID: PMC9849009 DOI: 10.3897/phytokeys.205.76821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/18/2022] [Indexed: 05/20/2023]
Abstract
Following recent mimosoid phylogenetic and phylogenomic studies demonstrating the non-monophyly of the genus Albizia, we present a new molecular phylogeny focused on the neotropical species in the genus, with much denser taxon sampling than previous studies. Our aims were to test the monophyly of the neotropical section Arthrosamanea, resolve species relationships, and gain insights into the evolution of fruit morphology. We perform a Bayesian phylogenetic analysis of sequences of nuclear internal and external transcribed spacer regions and trace the evolution of fruit dehiscence and lomentiform pods. Our results find further support for the non-monophyly of the genus Albizia, and confirm the previously proposed segregation of Hesperalbizia, Hydrochorea, Balizia and Pseudosamanea. All species that were sampled from section Arthrosamanea form a clade that is sister to a clade composed of Jupunba, Punjuba, Balizia and Hydrochorea. We find that lomentiform fruits are independently derived from indehiscent septate fruits in both Hydrochorea and section Arthrosamanea. Our results show that morphological adaptations to hydrochory, associated with shifts into seasonally flooded habitats, have occurred several times independently in different geographic areas and different lineages within the ingoid clade. This suggests that environmental conditions have likely played a key role in the evolution of fruit types in Albizia and related genera. We resurrect the name Pseudalbizzia to accommodate the species of section Arthrosamanea, except for two species that were not sampled here but have been shown in other studies to be more closely related to other ingoid genera and we restrict the name Albizia s.s. to the species from Africa, Madagascar, Asia, Australia, and the Pacific. Twenty-one new nomenclatural combinations in Pseudalbizzia are proposed, including 16 species and 5 infraspecific varietal names. In addition to the type species Pseudalbizziaberteroana, the genus has 17 species distributed across tropical regions of the Americas, including the Caribbean. Finally, a new infrageneric classification into five sections is proposed and a distribution map of the species of Pseudalbizzia is presented.
Collapse
Affiliation(s)
- Gabriela Aviles Peraza
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A.C. (CICY), Calle 43 No. 130, Col. Chuburna de Hidalgo, 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
| | - Erik J. M. Koenen
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Av. F.D. Roosevelt, 50, CP 160/12, Brussels B-1050, BelgiumUniversité Libre de BruxellesBrusselsBelgium
| | - Ricarda Riina
- Real Jardín Botánico, CSIC. Plaza de Murillo, 2. Madrid 28014, SpainReal Jardín Botánico, RJB-CSICMadridSpain
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich CH-8008, SwitzerlandUniversity of ZurichZürichSwitzerland
| | - Jens J. Ringelberg
- Orchid Herbarium of Oakes Ames, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138, USAUniversity of ZurichZurichSwitzerland
| | - German Carnevali Fernández-Concha
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A.C. (CICY), Calle 43 No. 130, Col. Chuburna de Hidalgo, 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
- Unidad Biotecnología Centro de Investigación Científica de Yucatán, A.C. (CICY), Calle 43 No. 130, Col. Chuburna de Hidalgo, 97200, Mérida, Yucatán, MexicoHarvard University HerbariaCambridgeUnited States of America
| | - Ivón Mercedes Ramírez Morillo
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A.C. (CICY), Calle 43 No. 130, Col. Chuburna de Hidalgo, 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
| | - Lilia Lorena Can Itza
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A.C. (CICY), Calle 43 No. 130, Col. Chuburna de Hidalgo, 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
| | - Ivan Tamayo-Cen
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A.C. (CICY), Calle 43 No. 130, Col. Chuburna de Hidalgo, 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
| | - Jorge Humberto Ramírez Prado
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A.C. (CICY), Calle 43 No. 130, Col. Chuburna de Hidalgo, 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
| | - Xavier Cornejo
- Herbario GUAY, Facultad de Ciencias Naturales, Universidad de Guayaquil, Avenida Juan Tanca Marengo s/n y Avenida de las Aguas Casilla 09-01-10634, Guayaquil, EcuadorUniversidad de GuayaquilGuyaquilEcuador
| | - Sawai Mattapha
- Department of Biology, Faculty of Science, Udon Thani Rajabhat University, Udon, 41000 ThailandUdon Thani Rajabhat UniversityUdonThailand
| | - Rodrigo Duno de Stefano
- Herbarium CICY, Centro de Investigación Científica de Yucatán, A.C. (CICY), Calle 43 No. 130, Col. Chuburna de Hidalgo, 97200, Mérida, Yucatán, MexicoCentro de Investigación Científica de YucatánMéridaMexico
| |
Collapse
|
24
|
de Lima AG, de Paula-Souza J, Ringelberg JJ, Simon MF, de Queiroz LP, Borges LM, de F. Mansano V, Souza VC, Scalon VR. New segregates from the Neotropical genus Stryphnodendron (Leguminosae, Caesalpinioideae, mimosoid clade). PHYTOKEYS 2022; 205:203-237. [PMID: 36762003 PMCID: PMC9849044 DOI: 10.3897/phytokeys.205.82220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/18/2022] [Indexed: 05/08/2023]
Affiliation(s)
- Alexandre G. de Lima
- Escola Nacional de Botânica Tropical, Instituto de Pesquisas do Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 2040, 22460-030, Rio de Janeiro/RJ, BrazilInstituto de Pesquisas do Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
| | - Juliana de Paula-Souza
- Universidade Federal de Santa Catarina, Departamento de Botânica/ CCB. Rua Eng. Agronômico Andrei Cristian Ferreira 216, 88040-535, Florianópolis/SC, BrazilUniversidade Federal de Santa CatarinaFlorianópolisBrazil
| | - Jens J. Ringelberg
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| | - Marcelo F. Simon
- Empresa Brasileira de Pesquisa Agopecuária (Embrapa) Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Caixa Postal 02372, 70770-917, Brasília/DF, BrazilEmpresa Brasileira de Pesquisa AgopecuáriaBrasíliaBrazil
| | - Luciano P. de Queiroz
- Universidade Estadual de Feira de Santana, Depto. de Ciências Biológicas. Av. Transnordestina s.n., Novo Horizonte, 44036-900, Feira de Santana/BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Leonardo M. Borges
- Universidade Federal de São Carlos, Departamento de Botânica, Rodovia Washington Luís, Km 235, 13565-905, São Carlos/SP, BrazilUniversidade Federal de São CarlosSão CarlosBrazil
| | - Vidal de F. Mansano
- Escola Nacional de Botânica Tropical, Instituto de Pesquisas do Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 2040, 22460-030, Rio de Janeiro/RJ, BrazilInstituto de Pesquisas do Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
| | - Vinicius C. Souza
- Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Av. Pádua Dias 11, C.P. 09, 13418-900, Piracicaba/SP, BrazilUniversidade de São PauloPiracicabaBrazil
| | - Viviane R. Scalon
- Universidade Federal de Ouro Preto, Herbário OUPR. Campus Morro do Cruzeiro s.n., 35400-000, Ouro Preto/MG, BrazilUniversidade Federal de Ouro PretoOuro PretoBrazil
| |
Collapse
|
25
|
Demeulenaere E, Schils T, Burleigh JG, Ringelberg JJ, Koenen EJM, Ickert-Bond SM. Phylogenomic assessment prompts recognition of the Serianthes clade and confirms the monophyly of Serianthes and its relationship with Falcataria and Wallaceodendron in the wider ingoid clade (Leguminosae, Caesalpinioideae). PHYTOKEYS 2022; 205:335-361. [PMID: 36762011 PMCID: PMC9849021 DOI: 10.3897/phytokeys.205.79144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
The Indo-Pacific legume genus Serianthes was recently placed in the Archidendron clade (sensu Koenen et al. 2020), a subclade of the mimosoid clade in subfamily Caesalpinioideae, which also includes Acacia, Archidendron, Archidendropsis, Falcataria, Pararchidendron, Paraserianthes and Wallaceodendron. Serianthes comprises ca. 18 species, five subspecies and two varieties that are characterised by bipinnately compound leaves with alternate sessile leaflets, branched axillary corymbiform panicles and woody indehiscent pods. Generic relationships, as well as species relationships within genera in the Archidendron clade, remain uncertain. While the sister relationship between Serianthes and the genus Falcataria is strongly supported by molecular data, the distinction between Serianthes and the monotypic genus Wallaceodendron has been questioned, based on their similar flower and fruit morphologies. We combined three gene-enriched hybrid capture DNA sequence datasets (generated from the 964 mimobaits v1 probe set, the expanded 997 mimobaits v2 probe set and the GoFlag angiosperm 408 probe set) and used their overlapping markers (77 loci of the target exonic and flanking regions) to test the monophyly of Serianthes and to investigate generic relationships within the Archidendron clade using 55 ingoid plus two outgroup taxa. We show that Serianthes is monophyletic, confirm the Serianthes + Falcataria sister relationship to Wallaceodendron and recognise this combined clade as the Serianthes clade within the Archidendron clade. We also evaluated the use of overlapping loci across datasets in combination with concordance analyses to test generic relationships and further investigate previously unresolved relationships across the wider ingoid clade. Concordance analysis revealed limited gene tree conflicts near the tips of the Archidendron clade, but increased discordance at the base of the clade, which could be attributed to rapid lineage divergence (radiation) and/or incomplete lineage sorting.
Collapse
Affiliation(s)
- Else Demeulenaere
- Center for Island Sustainability, University of Guam, UOG Station, Mangilao, 96923, Guam
| | - Tom Schils
- Center for Island Sustainability, University of Guam, UOG Station, Mangilao, 96923, Guam
| | - J. Gordon Burleigh
- Marine Laboratory, University of Guam, UOG Station, Mangilao, 96923, Guam
| | - Jens J. Ringelberg
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL 32611-8525, USA
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Stefanie M. Ickert-Bond
- Evolutionary Biology & Ecology, Free University of Brussels, Av. F.D. Roosevelt, 50, CP 160/12 - B-1050 Brussels, Belgium
| |
Collapse
|