1
|
Goane L, Carrizo BN, Ruiz MJ, Bachmann GE, Milla FH, Segura DF, Kuzmich D, Walse S, Vera MT. Behavioural and Electrophysiological Response of Anastrepha fraterculus (Diptera: Tephritidae) to a γ-Lactone Synthetic Semiochemical. INSECTS 2023; 14:206. [PMID: 36835775 PMCID: PMC9958615 DOI: 10.3390/insects14020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Attractants are a powerful tool for pest management. The lack of specific attractants for the South American fruit fly, Anastrepha fraterculus, a complex of cryptic species of great economic importance in South America, makes it difficult to monitor the pest in the field. The γ-lactone male sex and aggregation pheromones of several Anastrepha species, naturally released in a 7:3 epianastrephin to anastrephin ratio, and a structurally related naturally occurring γ-lactone ((±)-trans-tetrahydroactinidiolide) with gem-dimethyl groups (dimethyl) at C(4), were evaluated as potential attractants of this species. Different age and mating conditions of A. fraterculus males and females were evaluated during electroantennography (EAG) and field cage experiments in which polymeric lures were deployed to contain 100 mg of attractant. Epianastrephin and dimethyl were EAG+ for all fly conditions, with epianastrephin eliciting the highest response for both sexes and immature flies showing greater responsiveness than mature flies. In the field cage experiments, immature flies were only attracted to leks; virgin females were attracted to leks, dimethyl, and both epianastrephin-anastrephin formulations (95 and 70 wt.% epianastrephin); mature-mated males were attracted to leks, dimethyl and 70 wt.% epianastrephin; and mature-mated females were only attracted to leks. Our bioassays showed a promising performance of the analog dimethyl since it elicited the same response as epianastrephin, requires fewer steps to synthesize, and contains one less chiral center than the natural pheromones. The attraction to leks was recorded for all mating conditions and ages of flies and suggests that air-borne volatiles of calling males contain cues that could act as sensory traps. The addition of any of these compounds in the synthetic attractants may result in a greater attraction and thus deserves further evaluation. Dose-response experiments will provide additional information to move a step forward and validate the results obtained in open-field conditions.
Collapse
Affiliation(s)
- Lucía Goane
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | | | - María Josefina Ruiz
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Guillermo E. Bachmann
- Instituto de Genética “EA Favret”, INTA, GV-IABIMO, CONICET, Partido de Hurlingham B1686, Argentina
| | - Fabian H. Milla
- Instituto de Genética “EA Favret”, INTA, GV-IABIMO, CONICET, Partido de Hurlingham B1686, Argentina
| | - Diego F. Segura
- Instituto de Genética “EA Favret”, INTA, GV-IABIMO, CONICET, Partido de Hurlingham B1686, Argentina
| | - Dan Kuzmich
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA 93648, USA
| | - Spencer Walse
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA 93648, USA
| | - María Teresa Vera
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| |
Collapse
|
2
|
Belliard SA, Bachmann GE, Fernández PC, Hurtado J, Vera MT, Segura DF. Identification of host plant volatile stimulants of Anastrepha fraterculus male courtship behavior. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.943260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In some tephritid fruit flies, exposure to volatile compounds from host plants increases male sexual success. This phenomenon has been used to boost sterile males’ sexual competitiveness in the framework of the sterile insect technique (SIT). Previous studies revealed that males of Anastrepha fraterculus (Diptera: Tephritidae) exposed to volatiles from guava (Psidium guajava) fruit (GF) and guava essential oil (GEO) exhibit intensified courtship behavior and have greater copulatory success relative to unexposed males. Similar results were achieved in these flies through exposure to moradillo (Schinus polygama) essential oil or lemon (Citrus limon) essential oil. To identify the responsible compounds involved in these effects, we compared the volatile chemical profiles of GF, GEO, moradillo essential oil, and lemon essential oil. We selected five candidate compounds: (E)-β-ocimene, (Z)-β-ocimene, limonene, β-caryophyllene, and α-humulene. Using the electroantennographic detection (EAD) technique, we verified that males are able to detect all the candidate compounds and built dose-response curves between 0.01 and 100 μg/μl for each compound. We confirmed a stimulating effect on the courtship behavior of males for (E/Z)-β-ocimene and (R)-limonene, whereas β-caryophyllene and α-Humulene did not affect male courtship behavior. For those compounds that sexually stimulated males, we found a dose-dependent effect. Males’ behavioral response to the semiochemicals was maximum when (R)-limonene was combined with (E/Z)-β-ocimene, but the response was reduced when β-caryophyllene and α-humulene were included, which suggests some sort of negative interaction between them. Our results may contribute to the ongoing development of the SIT in this species.
Collapse
|
3
|
Park SJ, Pandey G, Castro-Vargas C, Oakeshott JG, Taylor PW, Mendez V. Cuticular Chemistry of the Queensland Fruit Fly Bactrocera tryoni (Froggatt). Molecules 2020; 25:E4185. [PMID: 32932681 PMCID: PMC7571174 DOI: 10.3390/molecules25184185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
The cuticular layer of the insect exoskeleton contains diverse compounds that serve important biological functions, including the maintenance of homeostasis by protecting against water loss, protection from injury, pathogens and insecticides, and communication. Bactrocera tryoni (Froggatt) is the most destructive pest of fruit production in Australia, yet there are no published accounts of this species' cuticular chemistry. We here provide a comprehensive description of B. tryoni cuticular chemistry. We used gas chromatography-mass spectrometry to identify and characterize compounds in hexane extracts of B. tryoni adults reared from larvae in naturally infested fruits. The compounds found included spiroacetals, aliphatic amides, saturated/unsaturated and methyl branched C12 to C20 chain esters and C29 to C33 normal and methyl-branched alkanes. The spiroacetals and esters were found to be specific to mature females, while the amides were found in both sexes. Normal and methyl-branched alkanes were qualitatively the same in all age and sex groups but some of the alkanes differed in amounts (as estimated from internal standard-normalized peak areas) between mature males and females, as well as between mature and immature flies. This study provides essential foundations for studies investigating the functions of cuticular chemistry in this economically important species.
Collapse
Affiliation(s)
- Soo J. Park
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Gunjan Pandey
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Black Mountain, Acton, ACT 2601, Australia
| | - Cynthia Castro-Vargas
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Black Mountain, Acton, ACT 2601, Australia
| | - John G. Oakeshott
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Black Mountain, Acton, ACT 2601, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Vivian Mendez
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
4
|
Perspectives of Biological Analysis in Latin America Using Multi and Comprehensive Two-Dimensional Gas Chromatography: A Mini-review. Chromatographia 2020. [DOI: 10.1007/s10337-020-03910-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Roriz AKP, Japyassú HF, Cáceres C, Vera MT, Joachim-Bravo IS. Pheromone emission patterns and courtship sequences across distinct populations within Anastrepha fraterculus (Diptera-Tephritidae) cryptic species complex. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:408-417. [PMID: 30488810 DOI: 10.1017/s0007485318000846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sexual behavioural isolation can result from sexual selection and represents a relevant factor associated with the speciation process. We analysed the pheromone emission pattern and the courtship of males of five different populations of the Anastrepha fraterculus cryptic complex: Brazil (Vacaria, Tucumán and Piracicaba), Colombia and Peru. The time of pheromone emission was recorded in each population every 30 min during the day. The behavioural sequences of courting were video recorded and analysed using EthoSeq software. Males from different populations have showed different period of pheromone emission - Vacaria, Piracicaba and Tucumán executed calling only during the morning, Colombia only in the afternoon and Peru during both periods. The general frequencies of the courtship units of the males were distinct among the populations. Three groups were formed in the classification from the function of 14 behavioural routines: Vacaria, Piracicaba and Tucumán formed a single group (Brazil-1), while Colombia and Peru formed two distinct groups. In the probabilistic trees generated, the behavioural units that most contributed to the occurrence of copulation were distinct among the three groups formed: Brazil-1 (Contact, Alignment and Arrowhead-1); Colombia (Flying, Mobile, Contact and Alignment); Peru (Flying, Arrowhead-1 and Calling). Our results indicated differences in sexual behaviour that may explain the behavioural isolation found between the distinct groups in addition with the temporal isolation found between the Brazil-1 and Colombia populations. The evolutionary implications for the A. fraterculus cryptic species complex are discussed.
Collapse
Affiliation(s)
- A K P Roriz
- Universidade Federal da Bahia, Instituto de Biologia, Barão do Jeremoabo s/n, Campus Universitário de Ondina,40170-290, Salvador, BA,Brazil
| | - H F Japyassú
- Universidade Federal da Bahia, Instituto de Biologia, Barão do Jeremoabo s/n, Campus Universitário de Ondina,40170-290, Salvador, BA,Brazil
| | - C Cáceres
- Insect Pest Control Laboratory,Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,POBox 100, Seibersdorf,Austria
| | - M Teresa Vera
- Cátedra Terapéutica Vegetal, Departamento de Sanidad Vegetal, Facultad de Agronomía y Zootecnia, UNT,Avenida Kirchner 1900 - (4000) San Miguel de Tucumán, Tucumán,Argentina
| | - I S Joachim-Bravo
- Universidade Federal da Bahia, Instituto de Biologia, Barão do Jeremoabo s/n, Campus Universitário de Ondina,40170-290, Salvador, BA,Brazil
| |
Collapse
|
6
|
Vaníčková L, Nagy R, Pompeiano A, Kalinová B. Epicuticular chemistry reinforces the new taxonomic classification of the Bactrocera dorsalis species complex (Diptera: Tephritidae, Dacinae). PLoS One 2017; 12:e0184102. [PMID: 28873446 PMCID: PMC5584755 DOI: 10.1371/journal.pone.0184102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022] Open
Abstract
Bactrocera invadens Drew, Tsuruta & White, Bactrocera papayae Drew & Hancock, and Bactrocera philippinensis Drew & Hancock, key pest species within the Bactrocera dorsalis species complex, have been recently synonymized under the name Bactrocera dorsalis (Hendel). The closely related Bactrocera carambolae Drew & Hancock remains as a discrete taxonomic entity. Although the synonymizations have been accepted by most researchers, debate about the species limits remains. Because of the economic importance of this group of taxa, any new information available to support or deny the synonymizations is valuable. We investigated the chemical epicuticle composition of males and females of B. dorsalis, B. invadens, B. papayae, B. philippinensis, and B. carambolae by means of one- and two-dimensional gas chromatography-mass spectrometry, followed by multiple factor analyses and principal component analysis. Clear segregation of complex cuticule profiles of both B. carambolae sexes from B. dorsalis (Hendel) was observed. In addition to cuticular hydrocarbons, abundant complex mixtures of sex-specific oxygenated lipids (three fatty acids and 22 fatty acid esters) with so far unknown function were identified in epicuticle extracts from females of all species. The data obtained supports both taxonomic synonymization of B. invadens, B. papayae, and B. philippinensis with B. dorsalis, as well as the exclusion of B. carambolae from B. dorsalis.
Collapse
Affiliation(s)
- Lucie Vaníčková
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| | - Radka Nagy
- Laboratory of Infochemicals, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Antonio Pompeiano
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Blanka Kalinová
- Laboratory of Infochemicals, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Isaza JP, Alzate JF, Canal NA. Complete mitochondrial genome of the Andean morphotype of Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae). MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:210-211. [PMID: 33473771 PMCID: PMC7800796 DOI: 10.1080/23802359.2017.1307706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The South America fruit fly Anastrepha fraterculus s.l. is an important pest of fruits in Latin America and it is really a complex with at least eight cryptic species. In this work, we report the complete mitochondrial genome for the Andean morphotype of A. fraterculus. The mitochondrial genome is 16,739 nucleotides in size; includes 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. Phylogenetic analysis was performed using all the protein-coding genes with other 19 species from Tephritidae.
Collapse
Affiliation(s)
- Juan P Isaza
- Grupo de parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria SIU, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Grupo de parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria SIU, Universidad de Antioquia, Medellín, Colombia
| | - Nelson A Canal
- Universidad del Tolima, Facultad de Ingenieria Agronómica, Barrio Santa Helena Parte Alta, Ibagué, Tolima, Colombia
| |
Collapse
|
8
|
Schutze MK, Virgilio M, Norrbom A, Clarke AR. Tephritid Integrative Taxonomy: Where We Are Now, with a Focus on the Resolution of Three Tropical Fruit Fly Species Complexes. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:147-164. [PMID: 27813666 DOI: 10.1146/annurev-ento-031616-035518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurate species delimitation underpins good taxonomy. Formalization of integrative taxonomy in the past decade has provided a framework for using multidisciplinary data to make species delimitation hypotheses more rigorous. We address the current state of integrative taxonomy by using as a case study an international project targeted at resolving three important tephritid species complexes: Bactrocera dorsalis complex, Anastrepha fraterculus complex, and Ceratitis FAR (C. fasciventris, C. anonae, C. rosa) complex. The integrative taxonomic approach has helped deliver significant advances in resolving these complexes: It has been used to identify some taxa as belonging to the same biological species as well as to confirm hidden cryptic diversity under a single taxonomic name. Nevertheless, the general application of integrative taxonomy has not been without issue, revealing challenges that must be considered when undertaking an integrative taxonomy project. Scrutiny of this international case study provides a unique opportunity to document lessons learned for the benefit of not only tephritid taxonomists, but also the wider taxonomic community.
Collapse
Affiliation(s)
- Mark K Schutze
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, 4001 Queensland, Australia;
| | - Massimiliano Virgilio
- Department of Biology, Royal Museum for Central Africa, B3080 Tervuren, Belgium
- Joint Experimental Molecular Unit, Royal Museum for Central Africa, B3080 Tervuren, Belgium ;
| | - Allen Norrbom
- Systematic Entomology Laboratory, United States Department of Agriculture, c/o National Museum of Natural History, Washington, DC 20560;
| | - Anthony R Clarke
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, 4001 Queensland, Australia;
- Plant Biosecurity Cooperative Research Centre, University of Canberra, Bruce, Australian Capital Territory 2617, Australia;
| |
Collapse
|
9
|
Gariou-Papalexiou A, Giardini MC, Augustinos AA, Drosopoulou E, Lanzavecchia SB, Cladera JL, Caceres C, Bourtzis K, Mavragani-Tsipidou P, Zacharopoulou A. Cytogenetic Analysis of the South American Fruit Fly Anastrepha fraterculus (Diptera:Tephritidae) Species Complex: Construction of Detailed Photographic Polytene Chromosome Maps of the Argentinian Af. sp.1 Member. PLoS One 2016; 11:e0157192. [PMID: 27362546 PMCID: PMC4928812 DOI: 10.1371/journal.pone.0157192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 01/28/2023] Open
Abstract
Genetic and cytogenetic studies constitute a significant basis for understanding the biology of insect pests and the design and the construction of genetic tools for biological control strategies. Anastrepha fraterculus is an important pest of the Tephritidae family. It is distributed from southern Texas through eastern Mexico, Central America and South America causing significant crop damage and economic losses. Currently it is considered as a species complex; until now seven members have been described based on multidisciplinary approaches. Here we report the cytogenetic analysis of an Argentinian population characterized as Af. sp.1 member of the Anastrepha fraterculus species complex. The mitotic karyotype and the first detailed photographic maps of the salivary gland polytene chromosomes are presented. The mitotic metaphase complement consists of six (6) pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes that correspond to the five autosomes of the mitotic karyotype and a heterochromatic network corresponding to the sex chromosomes. Comparison of the polytene chromosome maps between this species and Anastrepha ludens shows significant similarity. The polytene maps presented here are suitable for cytogenetic studies that could shed light on the species limits within this species complex and support the development of genetic tools for sterile insect technique (SIT) applications.
Collapse
Affiliation(s)
| | - María Cecilia Giardini
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Antonios A. Augustinos
- Biology Department, University of Patras, Patras, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Silvia B. Lanzavecchia
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Jorge L. Cladera
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Carlos Caceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
10
|
Hendrichs J, Vera MT, De Meyer M, Clarke AR. Resolving cryptic species complexes of major tephritid pests. Zookeys 2015; 540:5-39. [PMID: 26798252 PMCID: PMC4714062 DOI: 10.3897/zookeys.540.9656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/06/2015] [Indexed: 11/12/2022] Open
Abstract
An FAO/IAEA Co-ordinated Research Project (CRP) on "Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade" was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex - Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex - Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, Bactrocera papayae, Bactrocera philippinensis and Bactrocera invadens, the latter three species were synonymized with Bactrocera dorsalis. Of the five target pest taxa studied, only Bactrocera dorsalis and Bactrocera carambolae remain as scientifically valid names. Molecular and pheromone markers are now available to distinguish Bactrocera dorsalis from Bactrocera carambolae. Ceratitis FAR Complex (Ceratitis fasciventris, Ceratitis anonae, Ceratitis rosa) - Morphology, morphometry, genetic, genomic, pheromone, cuticular hydrocarbon, ecology, behaviour, and developmental physiology data provide evidence for the existence of five different entities within this fruit fly complex from the African region. These are currently recognised as Ceratitis anonae, Ceratitis fasciventris (F1 and F2), Ceratitis rosa and a new species related to Ceratitis rosa (R2). The biological limits within Ceratitis fasciventris (i.e. F1 and F2) are not fully resolved. Microsatellites markers and morphological identification tools for the adult males of the five different FAR entities were developed based on male leg structures. Zeugodacus cucurbitae (formerly Bactrocera (Zeugodacus) cucurbitae) - Genetic variability was studied among melon fly populations throughout its geographic range in Africa and the Asia/Pacific region and found to be limited. Cross-mating studies indicated no incompatibility or sexual isolation. Host preference and genetic studies showed no evidence for the existence of host races. It was concluded that the melon fly does not represent a cryptic species complex, neither with regard to geographic distribution nor to host range. Nevertheless, the higher taxonomic classification under which this species had been placed, by the time the CRP was started, was found to be paraphyletic; as a result the subgenus Zeugodacus was elevated to genus level.
Collapse
Affiliation(s)
- Jorge Hendrichs
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - M. Teresa Vera
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán; Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marc De Meyer
- Royal Museum for Central Africa, Invertebrates Unit, Leuvensesteenweg 13, B3080 Tervuren, Belgium
| | - Anthony R. Clarke
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, QLD 4001, Australia
| |
Collapse
|
11
|
Vaníčková L, Hernández-Ortiz V, Bravo ISJ, Dias V, Roriz AKP, Laumann RA, Mendonça ADL, Paranhos BAJ, do Nascimento RR. Current knowledge of the species complex Anastrepha fraterculus (Diptera, Tephritidae) in Brazil. Zookeys 2015:211-37. [PMID: 26798261 PMCID: PMC4714071 DOI: 10.3897/zookeys.540.9791] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/20/2015] [Indexed: 11/12/2022] Open
Abstract
The study of the species complex Anastrephafraterculus (Af complex) in Brazil is especially important in a taxonomical, evolutionary and pest management context, because there are evidences that some of them may occur in sympatry. In this review, we analyzed the main results supporting evidences that three cryptic species occur in Brazil. The taxonomical and phylogenetic relationships based on eggshell morphology, adult morphometrics, as well as cytotaxonomy and genetic differentiations are discussed. We also review available information on sexual behavior including acoustic communication of males during courtship and sexual incompatibility; and chemical signals involved in the communication between sexes, with a special focus on sex pheromones. We examined the role of long- and short-range pheromones (male-produced volatiles and cuticular hydrocarbons, respectively), their implications in sexual isolation, and their possible use for chemotaxonomic differentiation of the putative species of the Af complex.
Collapse
Affiliation(s)
- Lucie Vaníčková
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, 57072-970, Maceió, AL, Brazil
| | - Vicente Hernández-Ortiz
- Instituto de Ecología A.C., Red de Interacciones Multitróficas. Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Iara Sordi Joachim Bravo
- Universidade Federal da Bahia, Instituto de Biologia, Departamento da Biologia Geral. R. Barão do Geremoabo s/n, Campus Universitário de Ondina, 40170-290, Salvador, BA, Brazil
| | - Vanessa Dias
- University of Florida, Gainesville, FL 32611, United States
| | - Alzira Kelly Passos Roriz
- Universidade Federal da Bahia, Instituto de Biologia, Departamento da Biologia Geral. R. Barão do Geremoabo s/n, Campus Universitário de Ondina, 40170-290, Salvador, BA, Brazil
| | - Raul Alberto Laumann
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnologia, Parque Estação Biológica W5 Norte / Final Asa Norte, 70770917, Brasília, DF, Brazil
| | - Adriana de Lima Mendonça
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, 57072-970, Maceió, AL, Brazil
| | | | - Ruth Rufino do Nascimento
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, 57072-970, Maceió, AL, Brazil
| |
Collapse
|
12
|
Juárez ML, Devescovi F, Břízová R, Bachmann G, Segura DF, Kalinová B, Fernández P, Ruiz MJ, Yang J, Teal PEA, Cáceres C, Vreysen MJB, Hendrichs J, Vera MT. Evaluating mating compatibility within fruit fly cryptic species complexes and the potential role of sex pheromones in pre-mating isolation. Zookeys 2015:125-55. [PMID: 26798257 PMCID: PMC4714067 DOI: 10.3897/zookeys.540.6133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/13/2015] [Indexed: 11/23/2022] Open
Abstract
The study of sexual behavior and the identification of the signals involved in mate recognition between con-specifics are key components that can shed some light, as part of an integrative taxonomic approach, in delimitating species within species complexes. In the Tephritidae family several species complexes have received particular attention as they include important agricultural pests such as the Ceratitisfasciventris (Bezzi), Ceratitisanonae (Graham) and Ceratitisrosa Karsch (FAR) complex, the Bactroceradorsalis (Hendel) complex and the Anastrephafraterculus (Wiedemann) complex. Here the value and usefulness of a methodology that uses walk-in field cages with host trees to assess, under semi-natural conditions, mating compatibility within these complexes is reviewed, and the same methodology to study the role of chemical communication in pre-mating isolation among Anastrephafraterculus populations is used. Results showed that under the same experimental conditions it was possible to distinguish an entire range of different outcomes: from full mating compatibility among some populations to complete assortative mating among others. The effectiveness of the methodology in contributing to defining species limits was shown in two species complexes: Anastrephafraterculus and Bactroceradorsalis, and in the case of the latter the synonymization of several established species was published. We conclude that walk-in field cages constitute a powerful tool to measure mating compatibility, which is also useful to determine the role of chemical signals in species recognition. Overall, this experimental approach provides a good source of information about reproductive boundaries to delimit species. However, it needs to be applied as part of an integrative taxonomic approach that simultaneously assesses cytogenetic, molecular, physiological and morphological traits in order to reach more robust species delimitations.
Collapse
Affiliation(s)
- M Laura Juárez
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Francisco Devescovi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Radka Břízová
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Guillermo Bachmann
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Diego F Segura
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Blanka Kalinová
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Patricia Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - M Josefina Ruiz
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | - Carlos Cáceres
- Insect Pest Control Laboratory (IPCL), Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory (IPCL), Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jorge Hendrichs
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - M Teresa Vera
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|