1
|
Cheng R, Luo A, Orr M, Ge D, Hou Z, Qu Y, Guo B, Zhang F, Sha Z, Zhao Z, Wang M, Shi X, Han H, Zhou Q, Li Y, Liu X, Shao C, Zhang A, Zhou X, Zhu C. Cryptic diversity begets challenges and opportunities in biodiversity research. Integr Zool 2025; 20:33-49. [PMID: 38263700 DOI: 10.1111/1749-4877.12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
How many species of life are there on Earth? This is a question that we want to know but cannot yet answer. Some scholars speculate that the number of species may reach 2.2 billion when considering cryptic diversity and that each morphology-based insect species may contain an average of 3.1 cryptic species. With nearly two million described species, such high estimates of cryptic diversity would suggest that cryptic species are widespread. The development of molecular species delimitation has led to the discovery of a large number of cryptic species, and cryptic biodiversity has gradually entered our field of vision and attracted more attention. This paper introduces the concept of cryptic species, how they evolve, and methods by which they may be discovered and confirmed, and provides theoretical and methodological guidance for the study of hidden species. A workflow of how to confirm cryptic species is provided. In addition, the importance and reliability of multi-evidence-based integrated taxonomy are reaffirmed as a way to better standardize decision-making processes. Special focus on cryptic diversity and increased funding for taxonomy is needed to ensure that cryptic species in hyperdiverse groups are discoverable and described. An increased focus on cryptic species in the future will naturally arise as more difficult groups are studied, and thereby, we may finally better understand the rules governing the evolution and maintenance of cryptic biodiversity.
Collapse
Affiliation(s)
- Rui Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Michael Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhong'e Hou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhongli Sha
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zhe Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mingqiang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoyu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongxiang Han
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingsong Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuanning Li
- Institute of Oceanography, Shandong University, Qingdao, China
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Chen Shao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Aibing Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing, China
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences/International College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Gomulski LM, Vera MT, Lanzavecchia SB, Piccinno R, Fiorenza G, De Luca D, Carrizo BN, Bouvet JPR, Viana VA, Cárceres C, Enkerlin W, Malacrida AR, Gasperi G. Molecular Markers for Analyses of Genetic Diversity within the Anastrepha fraterculus Complex with Emphasis on Argentine Populations. INSECTS 2024; 15:748. [PMID: 39452323 PMCID: PMC11508799 DOI: 10.3390/insects15100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The South American fruit fly Anastrepha fraterculus (Wiedmann) has a vast range extending from northern Mexico, through Central America, to South America where it is an extremely polyphagous pest of wild and cultivated fruits. It is a complex of cryptic species currently composed of eight recognised morphotypes: "Mexican", "Venezuelan", "Andean", "Peruvian", "Ecuadorian", and the three Brazilian morphotypes "Brazilian-1", "Brazilian-2", and "Brazilian-3". Molecular markers that can identify the member species of the complex are crucial for the implementation of effective pest control measures, such as the sterile insect technique. The object of this study was to evaluate the use of the internal transcribed spacer 2 (ITS2) sequence for discriminating several members of the A. fraterculus cryptic species complex (Mexican, Peruvian, and Brazilian-1) and a related species, Anastrepha schultzi Blanchard. The analysis highlighted significant genetic differentiation between the evaluated morphotypes, allowed their discrimination within the A. fraterculus cryptic species complex, and provided new insights into their genetic relationships. The ITS2 marker provides a basis for the development of taxonomic keys for the discrimination of the cryptic taxa within the A. fraterculus cryptic species complex. ITS2 also represents an important marker for the poorly studied species A. schultzi.
Collapse
Affiliation(s)
- Ludvik M. Gomulski
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (L.M.G.); (R.P.); (G.F.); (D.D.L.); (A.R.M.)
| | - María Teresa Vera
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, Tucumán T4100, Argentina;
| | - Silvia B. Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA), Buenos Aires B1713, Argentina;
| | - Riccardo Piccinno
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (L.M.G.); (R.P.); (G.F.); (D.D.L.); (A.R.M.)
| | - Giulia Fiorenza
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (L.M.G.); (R.P.); (G.F.); (D.D.L.); (A.R.M.)
| | - Daniel De Luca
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (L.M.G.); (R.P.); (G.F.); (D.D.L.); (A.R.M.)
| | - Beatriz N. Carrizo
- Estación Experimental Agrícola Famaillá, Instituto Nacional de Tecnología Agropecuaria (INTA), Tucumán T4132, Argentina;
| | - Juan Pedro R. Bouvet
- Grupo de Protección Vegetal, EEA Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Entre Ríos E3200, Argentina; (J.P.R.B.); (V.A.V.)
| | - Valeria A. Viana
- Grupo de Protección Vegetal, EEA Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Entre Ríos E3200, Argentina; (J.P.R.B.); (V.A.V.)
| | - Carlos Cárceres
- Insect Pest Control Section, Joint FAO/IAEA Centre, 1400 Vienna, Austria; (C.C.); (W.E.)
| | - Walther Enkerlin
- Insect Pest Control Section, Joint FAO/IAEA Centre, 1400 Vienna, Austria; (C.C.); (W.E.)
| | - Anna R. Malacrida
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (L.M.G.); (R.P.); (G.F.); (D.D.L.); (A.R.M.)
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (L.M.G.); (R.P.); (G.F.); (D.D.L.); (A.R.M.)
| |
Collapse
|
3
|
Zimowska GJ, Xavier N, Qadri M, Handler AM. A transposon-based genetic marker for conspecific identity within the Bactrocera dorsalis species complex. Sci Rep 2024; 14:1924. [PMID: 38253542 PMCID: PMC10803768 DOI: 10.1038/s41598-023-51068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Here we describe a molecular approach to assess conspecific identity that relies on the comparison of an evolved mutated transposable element sequence and its genomic insertion site in individuals from closely related species. This was explored with the IFP2 piggyBac transposon, originally discovered in Trichoplusia ni as a 2472 bp functional element, that was subsequently found as mutated elements in seven species within the Bactrocera dorsalis species complex. In a B. dorsalis [Hendel] strain collected in Kahuku, Hawaii, a degenerate 2420 bp piggyBac sequence (pBacBd-Kah) having ~ 94.5% sequence identity to IFP2 was isolated, and it was reasoned that common species, or strains within species, should share the same evolved element and its precise genomic insertion site. To test this assumption, PCR using primers to pBacBd-Kah and adjacent genomic sequences was used to isolate and compare homologous sequences in strains of four sibling species within the complex. Three of these taxa, B. papayae, B. philippinensis, and B. invadens, were previously synonymized with B. dorsalis, and found to share nearly identical pBacBd-Kah homologous elements (> 99% nucleotide identity) within the identical insertion site consistent with conspecific species. The fourth species tested, B. carambolae, considered to be a closely related yet independent species sympatric with B. dorsalis, also shared the pBacBd-Kah sequence and insertion site in one strain from Suriname, while another divergent pBacBd-Kah derivative, closer in identity to IFP2, was found in individuals from French Guiana, Bangladesh and Malaysia. This data, along with the absence of pBacBd-Kah in distantly related Bactrocera, indicates that mutated descendants of piggyBac, as well as other invasive mobile elements, could be reliable genomic markers for common species identity.
Collapse
Affiliation(s)
- Grazyna J Zimowska
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Nirmala Xavier
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Masroor Qadri
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Alfred M Handler
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
4
|
Congrains C, Dupuis JR, Rodriguez EJ, Norrbom AL, Steck G, Sutton B, Nolazco N, de Brito RA, Geib SM. Phylogenomic analysis provides diagnostic tools for the identification of Anastrepha fraterculus (Diptera: Tephritidae) species complex. Evol Appl 2023; 16:1598-1618. [PMID: 37752958 PMCID: PMC10519418 DOI: 10.1111/eva.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Insect pests cause tremendous impact to agriculture worldwide. Species identification is crucial for implementing appropriate measures of pest control but can be challenging in closely related species. True fruit flies of the genus Anastrepha Schiner (Diptera: Tephritidae) include some of the most serious agricultural pests in the Americas, with the Anastrepha fraterculus (Wiedemann) complex being one of the most important due to its extreme polyphagy and wide distribution across most of the New World tropics and subtropics. The eight morphotypes described for this complex as well as other closely related species are classified in the fraterculus species group, whose evolutionary relationships are unresolved due to incomplete lineage sorting and introgression. We performed multifaceted phylogenomic approaches using thousands of genes to unravel the evolutionary relationships within the A. fraterculus complex to provide a baseline for molecular diagnosis of these pests. We used a methodology that accommodates variable sources of data (transcriptome, genome, and whole-genome shotgun sequencing) and developed a tool to align and filter orthologs, generating reliable datasets for phylogenetic studies. We inferred 3031 gene trees that displayed high levels of discordance. Nevertheless, the topologies of the inferred coalescent species trees were consistent across methods and datasets, except for one lineage in the A. fraterculus complex. Furthermore, network analysis indicated introgression across lineages in the fraterculus group. We present a robust phylogeny of the group that provides insights into the intricate patterns of evolution of the A. fraterculus complex supporting the hypothesis that this complex is an assemblage of closely related cryptic lineages that have evolved under interspecific gene flow. Despite this complex evolutionary scenario, our subsampling analysis revealed that a set of as few as 80 loci has a similar phylogenetic resolution as the genome-scale dataset, offering a foundation to develop more efficient diagnostic tools in this species group.
Collapse
Affiliation(s)
- Carlos Congrains
- U.S. Department of Agriculture‐Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research UnitHiloHawaiiUSA
- Department of Plant and Environmental Protection ServicesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Julian R. Dupuis
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Erick J. Rodriguez
- Division of Plant Industry, Florida Department of Agriculture and Consumer ServicesGainesvilleFloridaUSA
| | - Allen L. Norrbom
- Systematic Entomology LabUSDA, ARS c/o Smithsonian InstitutionWashington DCUSA
| | - Gary Steck
- Division of Plant Industry, Florida Department of Agriculture and Consumer ServicesGainesvilleFloridaUSA
| | - Bruce Sutton
- Department of Entomology (Research Associate), National Museum of Natural HistorySmithsonian InstitutionGainesvilleFloridaUSA
| | - Norma Nolazco
- Centro de Diagnóstico de Sanidad Vegetal, Servicio Nacional de Sanidad AgrariaPeru
| | - Reinaldo A. de Brito
- Departamento de Genética e EvoluçãoUniversidade Federal de São CarlosSão CarlosSão PauloBrazil
| | - Scott M. Geib
- U.S. Department of Agriculture‐Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research UnitHiloHawaiiUSA
| |
Collapse
|
5
|
Fasih SM, Ali A, Mabood T, Ullah A, Hanif M, Ahmad W. Fruit Fly Detection and Classification in IoT Setup. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS – ICCSA 2023 WORKSHOPS 2023:593-607. [DOI: 10.1007/978-3-031-37117-2_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Shi W, Ye H, Roderick G, Cao J, Kerdelhué C, Han P. Role of Genes in Regulating Host Plants Expansion in Tephritid Fruit Flies (Diptera) and Potential for RNAi-Based Control. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:10. [PMID: 35983691 PMCID: PMC9389179 DOI: 10.1093/jisesa/ieac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Host plant expansion is an important survival strategy for tephritids as they expand their range. Successful host expansion requires tephritids to adapt to the chemical and nonchemical properties of a novel host fruit, such as fruit color, phenology, and phytochemicals. These plant properties trigger a series of processes in tephritids, with each process having its own genetic basis, which means that various genes are involved in regulating host plant expansion by tephritids. This review summarizes current knowledge on the categories and roles of genes involved in host plant expansion in several important tephritid species, including genes related to chemoreception (olfactory and gustation), vision, digestion, detoxification, development, ribosomal and energy metabolism. Chemoreception- and detoxification- and digestion-related genes are stimulated by volatile chemicals and secondary chemicals of different hosts, respectively, which are involved in the regulation of nervous signal transduction that triggers behavioral, physical, and chemical responses to the novel host fruit. Vision-, nerve-, and development-related genes and metabolism-associated genes are activated in response to nonchemical stimuli from different hosts, such as color and phenology, to regulate a comprehensive adaptation of the extending host for tephritids. The chemical and nonchemical signals of hosts activate ribosomal and energy-related genes that result in the basic regulation of many processes of host expansion, including detoxification and development. These genes do not regulate novel host use individually, but multiple genes regulate multilevel adaptation to novel host fruits via multiple mechanisms. These genes may also be potential target genes for RNAi-based control of tephritid pests.
Collapse
Affiliation(s)
- Wei Shi
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Hui Ye
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - George Roderick
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Jun Cao
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Carole Kerdelhué
- INRAE, CBGP (INRAE, CIRAD, RD, Montpellier Supagro, University Montpellier), Montpellier, France
| | - Peng Han
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Selivon D, Perondini ALP, Hernández-Ortiz V, doVal FC, Camacho A, Gomes FR, Prezotto LF. Genetical, Morphological, Behavioral, and Ecological Traits Support the Existence of Three Brazilian Species of the Anastrepha fraterculus Complex of Cryptic Species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.836608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the Neotropical genus Anastrepha, the nominal species Anastrepha fraterculus is widely distributed from Mexico through northern Argentina. Currently it is believed to comprises a complex of at least eight cryptic species—known as the Anastrepha fraterculus complex (AF complex)—three of which occur in Brazil: A. sp.1 aff. fraterculus, A. sp.2 aff. fraterculus, and A. sp.3 aff. fraterculus. In this study, we present the results of a broad integrated analysis of multiple biological attributes in samples of the three species collected in sympatric areas. Analyses of the mitotic chromosomes confirm that all of them differ in sex chromosomes, and that the relative frequency of the distinct karyotypes is associated with variation in altitude. In these sympatric areas, a single female hybrid karyotype was detected within a significant sample of individuals. Population samples were analyzed for the ribosomal transcribed spacer ITS1, confirming that the three species have specific sequence types. Observations of reproductive behavior under laboratory conditions revealed that A. sp.1 and A. sp.2 mate early in the morning, while A. sp.3 mates in the middle of the day. A bimodal distribution of mating time was observed in the laboratory for hybrids, obtained between A. sp.1 and A. sp.3. In a mating choice experiment, most of the mating pairs were homospecific. In addition, through a list of the most frequent hosts associated with geographical occurrence, a bioclimatic model of their potential distribution was generated. The set of data allowed for the construction of explanatory hypothesis about the observed geographical pattern and the differential use of host fruits. Morphometric analyses of wings clearly demonstrated differences among the three species, for both males and females. Based on a wing image of the A. fraterculus (Wiedemann, 1830) type specimen, the morphometric analysis indicated that the type specimen would correspond to a male of A. sp.2 aff. fraterculus. The information provided by this report is not only useful for taxonomic purposes, but also reveals aspects to be considered in any reconstruction of an evolutionary scenario of the Anastrepha fraterculus complex.
Collapse
|
8
|
Including climate change to predict the global suitable area of an invasive pest: Bactrocera correcta (Diptera: Tephritidae). Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Chakravarty S, Mahalle RM, Srivastava CP. Phenotypic variability in the Old World bollworm,
Helicoverpa armigera
(Hübner) populations in India. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Snehel Chakravarty
- Department of Entomology and Agricultural Zoology Institute of Agricultural Sciences Banaras Hindu University Varanasi India
| | - Rashmi M. Mahalle
- Department of Entomology and Agricultural Zoology Institute of Agricultural Sciences Banaras Hindu University Varanasi India
| | - Chandra P. Srivastava
- Department of Entomology and Agricultural Zoology Institute of Agricultural Sciences Banaras Hindu University Varanasi India
| |
Collapse
|
10
|
Wang J, Chen Y, Hou X, Wang Y, Zhou L, Chen X. An intelligent identification system combining image and DNA sequence methods for fruit flies with economic importance (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2021; 77:3382-3395. [PMID: 33786962 DOI: 10.1002/ps.6383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Images and DNA sequences are two important methods for identifying fruit fly species. In addition, the identification of insect species complexes is highly problematic when attempting to utilize automatic identification methods in an actual environment. We integrated the image and DNA sequence identification methods into a single system for the first time and explored an open interactive multi-image comparison function for solving the problem of species complexes. The Automated Fruit Fly Identification System 1.0 (AFIS1.0) was updated to AFIS2.0 by employing different models and developing the system under a novel framework. RESULTS AFIS2.0 was developed using 83 species belonging to eight genera in the Tephritidae, which includes most pests of this family. The system applies the Mask Region Convolutional Neural Network (Mask R-CNN) and discriminative deep metric learning (AlexNet based) methods for image identification, integrates Blast+ for DNA sequence comparison and specific weighting for the fusion result. At the species level, the best classification success rate for wing images (as the Top 1 species in the species list of outcomes) reached 90%, and the average classification success rate for wing, thorax, and abdomen images (as the Top 5 species in the species list of outcomes) was 94%. CONCLUSION AFIS2.0 is more accurate and convenient than AFIS1.0 and can be beneficial for users with or without specific expertise regarding Tephritidae. It also provides a more compact and fluent computer system for fruit fly identification, and can be easily applied in practice. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiangning Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yingying Chen
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xinwen Hou
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Libing Zhou
- Yunnan Entry-Exit Inspections and Quarantine Bureau, Kunming, China
| | - Xiaolin Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Congrains C, Zucchi RA, de Brito RA. Phylogenomic approach reveals strong signatures of introgression in the rapid diversification of neotropical true fruit flies (Anastrepha: Tephritidae). Mol Phylogenet Evol 2021; 162:107200. [PMID: 33984467 DOI: 10.1016/j.ympev.2021.107200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 01/30/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
New sequencing techniques have allowed us to explore the variation on thousands of genes and elucidate evolutionary relationships of lineages even in complex scenarios, such as when there is rapid diversification. That seems to be the case of species in the genus Anastrepha, which shows great species diversity that has been divided into 21 species groups, several of which show wide geographical distribution. The fraterculus group has several economically important species and it is also an outstanding model for speciation studies, since it includes several lineages that have diverged recently possibly in the presence of interspecific gene flow. Our main goal is to test whether we can infer phylogenetic relationships of recently diverged taxa with gene flow, such as what is expected for the fraterculus group and determine whether certain genes remain informative even in this complex scenario. An analysis of thousands of orthologous genes derived from transcriptome datasets of 10 different lineages across the genus, including some of the economically most important pests, revealed signals of incomplete lineage sorting, vestiges of ancestral introgression between more distant lineages and ongoing gene flow between closely related lineages. Though these patterns affect the phylogenetic signal, the phylogenomic inferences consistently show that the morphologically identified species here investigated are in different evolutionary lineages, with the sole exception involving Brazilian lineages of A. fraterculus, which has been suggested to be a complex assembly of cryptic species. A tree space analysis suggested that genes with greater phylogenetic resolution have evolved under similar selection pressures and are more resilient to intraspecific gene flow, which would make it more likely that these genomic regions may be useful for identifying fraterculus group lineages. Our findings help establish relationships among the most important Anastrepha species groups, as well as bring further data to indicate that the diversification of fraterculus group lineages, and even other lineages in the genus Anastrepha, has been strongly influenced by interspecific gene flow.
Collapse
Affiliation(s)
- Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - Roberto A Zucchi
- Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ, Universidade de São Paulo - USP, Piracicaba, SP, Brazil
| | - Reinaldo A de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
12
|
Odour Cues from Fruit Arils of Artocarpus heterophyllus Attract both Sexes of Oriental Fruit Flies. J Chem Ecol 2021; 47:552-563. [PMID: 33844147 DOI: 10.1007/s10886-021-01269-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
The Oriental fruit fly, Bactrocera dorsalis (Hendel) is an economically devastating pest of fruit crops across the globe with stringent quarantine restrictions to limit its further spread. The current management programs increasingly depend on male annihilation but trapping female flies is equally important to reduce fruit damage. Considering the importance of kairomones in courtship and oviposition site selection behavior of B. dorsalis, the aim of this work was to isolate and identify potential cues from the volatiles of arils of jackfruit, Artocarpus heterophyllus. Using olfactometer assays and gas-chromatography linked to electroantennographic detection, attraction of both female and male B. dorsalis to specific jackfruit volatiles was demonstrated. Ethyl 3-methylbutanoate, ethyl hexanoate, pentyl butanote, 2-methylbutyl 3-methylbutanoate, 2-methylpropyl hexanoate, (Z)-3-hexenyl 3-methylbutanoate and dodecanal were found to attract female B. dorsalis specifically. Butyl acetate, 2 phenylethanol and pentyl 3-methylbutanoate elicited attraction in male B. dorsalis only. Synthetic blends of these compounds were found to attract female and male B. dorsalis in laboratory as well as field conditions. Using specific cues common to each set, a blend of methyl 3-methylbutanoate, butyl acetate, 3-methylbutyl acetate and hexyl acetate attracted both sexes of B dorsalis. This study demonstrates the use of kairomone-based lures for sex-specific as well as bisexual attraction for the first time.
Collapse
|
13
|
Zhang Y, De Meyer M, Virgilio M, Feng S, Badji K, Li Z. Phylogenomic resolution of the Ceratitis FARQ complex (Diptera: Tephritidae). Mol Phylogenet Evol 2021; 161:107160. [PMID: 33794396 DOI: 10.1016/j.ympev.2021.107160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
The Ceratitis FARQ complex (formerly FAR complex) includes four frugivorous tephritids, Ceratitis fasciventris, C. anonae, C. rosa and C. quilicii, the latter two causing important agricultural losses in Africa. Although FARQ species can be identified on the basis of subtle morphological differences, they cannot be resolved as monophyletic when trying phylogenetic tree reconstructions based on mitochondrial or nuclear gene fragments except for microsatellites. In this study, we used mitogenome and genome-wide SNPs to investigate the phylogenetic relationship within the complex as well as between all four Ceratitis subgenera. The analysis of 13 species supported the monophyly of the Ceratitis subgenera Ceratitis, Ceratalaspis, Pardalaspis, and recovered Pterandrus as paraphyletic but could not properly resolve species within the FARQ complex. Conversely, gene and species tree reconstructions based on 785,484 genome-wide SNPs could consistently resolve the FARQ taxa and provide insights into their phylogenetic relationships. Gene flow was detected by TreeMix analysis from C. quilicii to C. fasciventris, suggesting the existence of introgression events in the FARQ complex. Our results suggest that genome-wide SNPs represent a suitable tool for the molecular diagnosis of FARQ species and could possibly be used to develop rapid diagnostic methods or to trace the origins of intercepted samples.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Marc De Meyer
- Royal Museum for Central Africa, Invertebrates Section and JEMU, Tervuren B3080, Belgium.
| | - Massimiliano Virgilio
- Royal Museum for Central Africa, Invertebrates Section and JEMU, Tervuren B3080, Belgium.
| | - Shiqian Feng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Kemo Badji
- Crop Protection Directorate, Dakar, Senegal.
| | - Zhihong Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Avtzis DN, Markoudi V, Mizerakis V, Devalez J, Nakas G, Poulakakis N, Petanidou T. The Aegean Archipelago as cradle: divergence of the glaphyrid genus Pygopleurus and phylogeography of P. foina. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1884622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dimitrios N. Avtzis
- Forest Research Institute, Hellenic Agricultural Organization Demeter, Vassilika, Thessaloniki GR-57006, Greece
| | - Vasiliki Markoudi
- Forest Research Institute, Hellenic Agricultural Organization Demeter, Vassilika, Thessaloniki GR-57006, Greece
| | - Vangelis Mizerakis
- Aquatic Systems Biology, Technical University of Munich, Mühlenweg 22, Freising D-85354, Germany
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, Mytilene GR-81100, Greece
| | - Jelle Devalez
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, Mytilene GR-81100, Greece
| | - Georgios Nakas
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, Mytilene GR-81100, Greece
| | - Nikolaos Poulakakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio GR-71409, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Vassilika Vouton, Irakleio GR-71110, Greece
| | - Theodora Petanidou
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, Mytilene GR-81100, Greece
| |
Collapse
|
15
|
Andreani A, Giangaspero A, Marangi M, Barlaam A, Ponzetta MP, Roy L, Belcari A, Sacchetti P. Asia and Europe: So Distant So Close? The Case of Lipoptena fortisetosa in Italy. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:661-668. [PMID: 33412770 PMCID: PMC7806436 DOI: 10.3347/kjp.2020.58.6.661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/13/2020] [Indexed: 01/17/2023]
Abstract
In Europe, 5 Lipoptena species have been recorded, including Lipoptena fortisetosa. This species, native to Asian countries, was described as a parasite of sika deer and its appearance in Europe dates back to more than 50 years ago. Lipoptena fortisetosa has been recently reported in Italy, sharing its hosts with Lipoptena cervi. A morpho-molecular approach was developed to determine the phylogenetic interrelationship of Italian and Asian CO1 haplotypes sequenced from Lipoptena fly individuals collected in Italy, and their DNA sequences were compared with conspecifics available in GenBank; morphological key-characters (terminalia) of L. fortisetosa were compared with the original description. Two haplotypes were recorded from Italy and assigned to L. cervi and L. fortisetosa, respectively. The latter was part of the monophyletic clade L. fortisetosa, along with 2 Central European and 2 Korean haplotypes (100% identical to one of the Korean haplotypes); moreover, Italian L. fortisetosa female terminalia were consistent with the original description of Asian individuals. Pending more in-depth investigations, this study provides a first answer to the hypothesis of the recent colonization of Italy by L. fortisetosa from Asia as we did not detect any obvious and stable morphological and molecular differences in specimens from the 2 geographical areas. The presence of the sika deer in Europe was retraced and the possible route traveled by the parasite from Asia and the eco-biological factors that may have enhanced its settlement are discussed.
Collapse
Affiliation(s)
- Annalisa Andreani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| | - Annunziata Giangaspero
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Marianna Marangi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Alessandra Barlaam
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Maria Paola Ponzetta
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| | - Lise Roy
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul, Valéry Montpellier 3, Montpellier, France
| | - Antonio Belcari
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| | - Patrizia Sacchetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| |
Collapse
|
16
|
Giardini MC, Nieves M, Scannapieco AC, Conte CA, Milla FH, Schapovaloff ME, Frissolo MS, Remis MI, Cladera JL, Lanzavecchia SB. Geographic distribution of sex chromosome polymorphism in Anastrepha fraterculus sp. 1 from Argentina. BMC Genet 2020; 21:149. [PMID: 33339514 PMCID: PMC7747450 DOI: 10.1186/s12863-020-00944-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Anastrepha fraterculus is recognized as a quarantine pest in several American countries. This fruit fly species is native to the American continent and distributed throughout tropical and subtropical regions. It has been reported as a complex of cryptic species, and at least eight morphotypes have been described. Only one entity of this complex, formerly named Anastrepha fraterculus sp. 1, is present in Argentina. Previous cytogenetic studies on this morphotype described the presence of sex chromosome variation identified by chromosomal size and staining patterns. In this work, we expanded the cytological study of this morphotype by analyzing laboratory strains and wild populations to provide information about the frequency and geographic distribution of these sex chromosome variants. We analyzed the mitotic metaphases of individuals from four laboratory strains and five wild populations from the main fruit-producing areas of Argentina, including the northwest (Tucumán and La Rioja), northeast (Entre Ríos and Misiones), and center (Buenos Aires) of the country. RESULTS In wild samples, we observed a high frequency of X1X1 (0.94) and X1Y5 (0.93) karyomorphs, whereas X1X2 and X1Y6 were exclusively found at a low frequency in Buenos Aires (0.07 and 0.13, respectively), Entre Ríos (0.16 and 0.14, respectively) and Tucumán (0.03 and 0.04, respectively). X2X2 and X2Y5 karyomorphs were not found in wild populations but were detected at a low frequency in laboratory strains. In fact, karyomorph frequencies differed between wild populations and laboratory strains. No significant differences among A. fraterculus wild populations were evidenced in either karyotypic or chromosomal frequencies. However, a significant correlation was observed between Y5 chromosomal frequency and latitude. CONCLUSIONS We discuss the importance of cytogenetics to understand the possible route of invasion and dispersion of this pest in Argentina and the evolutionary forces acting under laboratory conditions, possibly driving changes in the chromosomal frequencies. Our findings provide deep and integral genetic knowledge of this species, which has become of relevance to the characterization and selection of valuable A. fraterculus sp. 1 strains for mass rearing production and SIT implementation.
Collapse
Affiliation(s)
- María Cecilia Giardini
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
| | - Mariela Nieves
- Grupo de Investigación en Biología Evolutiva, Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Carla Scannapieco
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia Alejandra Conte
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
| | - Fabián Horacio Milla
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
| | - María Elena Schapovaloff
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Estación Experimental Agropecuaria Montecarlo, Instituto Nacional de Tecnología Agropecuaria (INTA), Misiones, Argentina
| | - Maria Soledad Frissolo
- Subprograma La Rioja, Programa Nacional de Control y Erradicación de Moscas de los Frutos (PROCEM), La Rioja, Argentina
| | - María Isabel Remis
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Genética de la Estructura Poblacional, Departamento de Ecología, Genética y Evolución,IEGEBA (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Luis Cladera
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
| | - Silvia Beatriz Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
17
|
Van der Heyden H, Fortier AM, Savage J. A HRM Assay for Rapid Identification of Members of the Seedcorn Maggot Complex (Delia florilega and D. platura) (Diptera: Anthomyiidae) and Evidence of Variation in Temporal Patterns of Larval Occurrence. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2920-2930. [PMID: 33080027 DOI: 10.1093/jee/toaa230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The seedcorn maggot Delia platura (Meigen), and the bean seed maggot Delia florilega (Zetterstedt) can cause considerable feeding damage to a wide range of cultivated crops. The recent discovery of two distinct genetic lines of D. platura, each with a unique distribution pattern overlapping only in eastern Canada, suggests the presence of a new cryptic species for the group. The reliable identification of the three species/lines in the seedcorn maggot complex is crucial to our understanding of their distribution, phenology, and respective contribution to crop damage as well as to the development of specific integrated pest management approaches. As these taxa are morphologically indistinguishable in the immature stages, we developed a high-resolution melting PCR (HRM) assay using primers amplifying a variable 96-bp PCR product in the CO1 mitochondrial gene for rapid and economical identification of specimens. The three species/lines exhibited distinguishable melting profiles based on their different Tm values (between 0.4 and 0.9°C) and identification results based on HRM and DNA sequencing were congruent for all specimens in the validation data set (n = 100). We then used the new, highly sensitive HRM assay to identify survey specimens from the seedcorn maggot complex collected in Quebec, Canada, between 2017 and 2019. Progress curves developed to document the temporal occurrence patterns of each species/lines indicate differences between taxa, with the N-line (BOLD:AAA3453) of D. platura appearing approximately 17 d before D. florilega (BOLD:ACR4394) and the H-line (BOLD:AAG2511) of D. platura.
Collapse
Affiliation(s)
| | | | - Jade Savage
- Department of Biological Sciences, Bishop's University, Sherbrooke, QC, Canada
| |
Collapse
|
18
|
Dias VS, Hallman GJ, Cardoso AAS, Hurtado NV, Rivera C, Maxwell F, Cáceres-Barrios CE, Vreysen MJB, Myers SW. Relative Tolerance of Three Morphotypes of the Anastrepha fraterculus Complex (Diptera: Tephritidae) to Cold Phytosanitary Treatment. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1176-1182. [PMID: 32161970 PMCID: PMC7275689 DOI: 10.1093/jee/toaa027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 06/10/2023]
Abstract
The Anastrepha fraterculus (Wiedemann) complex is currently comprised of at least eight morphotypes, including several that are likely to be described as new species. It is critical to evaluate whether the morphotypes differ in tolerance to phytosanitary treatments. Temperatures from 0 to 3°C are used as a phytosanitary treatment for some commodities exported from the region and at risk of infestation by the A. fraterculus complex. Description of A. fraterculus morphotypes as new species could result in the annulation of phytosanitary treatment schedules for the new species. This study compared the relative cold tolerance of five populations from three morphotypes of the A. fraterculus complex: Andean, Peruvian, and Brazilian-1. Both a laboratory and wild strain of the Brazilian-1 morphotype were studied. Differences in mortality of third instars of the five A. fraterculus populations reared on nectarines were observed only with short treatment durations at temperatures ranging from 1.38 ± 0.04°C to 1.51 ± 0.08°C (mean ± SEM). Estimated times to achieve the LT99.99682 (probit 9) showed that Brazilian-1 wild, Brazilian-1 laboratory, and Cusco population were the most cold tolerant, followed by Andean and Peruvian, the least cold tolerant morphotype (i.e., Brazilian-1 wild = Brazilian-1 laboratory = Cusco population > Andean > Peruvian). These findings suggest that the current cold treatment schedules of 15 d at ≤ 1.11°C and 17 d at ≤ 1.67°C can be applied as cold treatments to any potential new species that may arise from the A. fraterculus complex.
Collapse
Affiliation(s)
- Vanessa S Dias
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | | | - Amanda A S Cardoso
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Nick V Hurtado
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Camilo Rivera
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Florence Maxwell
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Carlos E Cáceres-Barrios
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Scott W Myers
- USDA, APHIS, PPQ, Center for Plant Health Science and Technology, Otis Laboratory 1398 W. Truck Road., Buzzards Bay, MA
| |
Collapse
|
19
|
Bragard C, Dehnen‐Schmutz K, Di Serio F, Gonthier P, Jacques M, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Bali EM, Papadopoulos N, Papanastassiou S, Czwienczek E, MacLeod A. Pest categorisation of non‐EU Tephritidae. EFSA J 2020. [DOI: 10.2903/j.efsa.2020.5931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
20
|
Drosopoulou E, Syllas A, Goutakoli P, Zisiadis GA, Konstantinou T, Pangea D, Sentis G, van Sauers-Muller A, Wee SL, Augustinos AA, Zacharopoulou A, Bourtzis K. Τhe Complete Mitochondrial Genome of Bactrocera carambolae (Diptera: Tephritidae): Genome Description and Phylogenetic Implications. INSECTS 2019; 10:E429. [PMID: 31795125 PMCID: PMC6955806 DOI: 10.3390/insects10120429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023]
Abstract
Bactrocera carambolae is one of the approximately 100 sibling species of the Bactrocera dorsalis complex and considered to be very closely related to B. dorsalis. Due to their high morphological similarity and overlapping distribution, as well as to their economic impact and quarantine status, the development of reliable markers for species delimitation between the two taxa is of great importance. Here we present the complete mitochondrial genome of B. carambolae sourced from its native range in Malaysia and its invaded territory in Suriname. The mitogenome of B. carambolae presents the typical organization of an insect mitochondrion. Comparisons of the analyzed B. carambolae sequences to all available complete mitochondrial sequences of B. dorsalis revealed several species-specific polymorphic sites. Phylogenetic analysis based on Bactrocera mitogenomes supports that B. carambolae is a differentiated taxon though closely related to B. dorsalis. The present complete mitochondrial sequences of B. carambolae could be used, in the frame of Integrative Taxonomy, for species discrimination and resolution of the phylogenetic relationships within this taxonomically challenging complex, which would facilitate the application of species-specific population suppression strategies, such as the sterile insect technique.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Alexandros Syllas
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Panagiota Goutakoli
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Georgios-Alkis Zisiadis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Theodora Konstantinou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Dimitra Pangea
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - George Sentis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Alies van Sauers-Muller
- Consultant, retired from Ministry of Agriculture, Animal Husbandry and Fisheries, Carambola Fruit Fly Project, Damboentong 282, Tijgerkreek, Saramacca, Suriname;
| | - Suk-Ling Wee
- Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Antonios A. Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, A-1400 Vienna, Austria; (A.A.A.); (K.B.)
| | | | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, A-1400 Vienna, Austria; (A.A.A.); (K.B.)
| |
Collapse
|
21
|
Prezotto LF, Perondini AL, Hernández-Ortiz V, Frías D, Selivon D. What Can Integrated Analysis of Morphological and Genetic Data Still Reveal about the Anastrepha fraterculus (Diptera: Tephritidae) Cryptic Species Complex? INSECTS 2019; 10:insects10110408. [PMID: 31731690 PMCID: PMC6921064 DOI: 10.3390/insects10110408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
The South American fruit fly Anastrepha fraterculus (Wiedemann) is a complex of cryptic species, the so-called “Anastrepha fraterculus complex”, for which eight morphotypes are currently recognized. A previous analysis of ITS1 in samples of the Anastrepha fraterculus complex, while revealing high distinctiveness among samples from different localities of South America, Central America, and Mexico, no direct association was made between sequence type and morphotype. In the present report, a correlated analysis of morphometry and ITS1 data involved individuals belonging to the same population samples. Although showing a low level of intra-populational nucleotide variability, the ITS1 analysis indicated numerous inter-population sequence type variants. Morphotypes identified by morphometric analysis based on female wing shape were highly concordant with ITS1 genetic data. The correlation of genetic divergence and morphological differences among the tested samples gives strong evidence of a robust dataset, thereby indicating the existence of various taxonomic species within the A. fraterculus complex. However, the data revealed genetic and morphological variations in some regions, suggesting that further analysis is still required for some geographic regions.
Collapse
Affiliation(s)
- Leandro F. Prezotto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil; (L.F.P.)
| | - André L.P. Perondini
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil; (L.F.P.)
| | - Vicente Hernández-Ortiz
- Red de Interacciones Multitróficas, Instituto de Ecología A.C., Xalapa, Veracruz 91073, Mexico;
| | - Daniel Frías
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago 3311, Chile;
| | - Denise Selivon
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil; (L.F.P.)
- Correspondence: ; Tel.: +55-11-30917551
| |
Collapse
|
22
|
Fruit fly identification, population dynamics and fruit damage during fruiting seasons of sweet oranges in Rusitu Valley, Zimbabwe. Sci Rep 2019; 9:13578. [PMID: 31537891 PMCID: PMC6753090 DOI: 10.1038/s41598-019-50001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/30/2019] [Indexed: 11/28/2022] Open
Abstract
In 2003, the pest species Bactrocera dorsalis (Hendel) was reported for the first time in Kenya, Africa, and subsequently on many other African countries. In this work, 20 locations along the Rusitu Valley (Zimbabwe) were sampled in 2014 during the sweet oranges fruiting seasons, to verify the fruit fly taxonomy, invasion source, population dynamics, and fruit damage. The trapped fruit flies were identified using morphological traits and molecular techniques, as B. dorsalis. The haplotype network analysis revealed that Zimbabwe COI sequences were identical to other African B. dorsalis sequences. Fruit fly trappings per day varied during the year, although it remained always high. The same applies to fruit damage, most likely due to the permanent availability of cultivated and wild fruit varieties during the year. Rusitu Valley was invaded by B. dorsalis, most likely from neighbouring countries. Ten years after the first report in Kenya, the complete or near complete invasion of Africa has been achieved by B. dorsalis. In northern Africa the distribution is clearly limited by the Sahara desert. The large population size, the polyphagous nature of the species, and the continuous availability of suitable host fruit species during the year complicates the eradication of this species.
Collapse
|
23
|
Qin Y, Krosch MN, Schutze MK, Zhang Y, Wang X, Prabhakar CS, Susanto A, Hee AKW, Ekesi S, Badji K, Khan M, Wu J, Wang Q, Yan G, Zhu L, Zhao Z, Liu L, Clarke AR, Li Z. Population structure of a global agricultural invasive pest, Bactrocera dorsalis (Diptera: Tephritidae). Evol Appl 2018; 11:1990-2003. [PMID: 30459843 PMCID: PMC6231469 DOI: 10.1111/eva.12701] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/08/2018] [Accepted: 08/07/2018] [Indexed: 01/20/2023] Open
Abstract
Bactrocera dorsalis, the Oriental fruit fly, is one of the world's most destructive agricultural insect pests and a major impediment to international fresh commodity trade. The genetic structuring of the species across its entire geographic range has never been undertaken, because under a former taxonomy B. dorsalis was divided into four distinct taxonomic entities, each with their own, largely non-overlapping, distributions. Based on the extensive sampling of six a priori groups from 63 locations, genetic and geometric morphometric datasets were generated to detect macrogeographic population structure, and to determine prior and current invasion pathways of this species. Weak population structure and high genetic diversity were detected among Asian populations. Invasive populations in Africa and Hawaii are inferred to be the result of separate, single invasions from South Asia, while South Asia is also the likely source of other Asian populations. The current northward invasion of B. dorsalis into Central China is the result of multiple, repeated dispersal events, most likely related to fruit trade. Results are discussed in the context of global quarantine, trade, and management of this pest. The recent expansion of the fly into temperate China, with very few associated genetic changes, clearly demonstrates the threat posed by this pest to ecologically similar areas in Europe and North America.
Collapse
Affiliation(s)
- Yu‐jia Qin
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Matthew N. Krosch
- School of Earth, Environmental and Biological SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Mark K. Schutze
- School of Earth, Environmental and Biological SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Yue Zhang
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Xiao‐xue Wang
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Chandra S. Prabhakar
- School of Earth, Environmental and Biological SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
- Department of EntomologyBihar Agricultural UniversityBhagalpur BiharIndia
| | - Agus Susanto
- Faculty of AgriculturePadjadjaran UniversityJatinangorIndonesia
| | - Alvin K. W. Hee
- Department of Biology, Faculty of ScienceUniversiti Putra MalaysiaSelangorMalaysia
| | - Sunday Ekesi
- International Centre of Insect Physiology and EcologyNairobiKenya
| | - Kemo Badji
- Fruit Fly Control Project‐ECOWAS Responsable Composante Surveillance. Projet Lutte contre les Mouches des Fruits‐CEDEAO CRSABamakoMali
| | - Mahfuza Khan
- Insect Biotechnology DivisionInstitute of Food and Radiation BiologyAtomic Energy Research EstablishmentSavar, DhakaBangladesh
| | - Jia‐jiao Wu
- Guangdong Inspection and Quarantine Technology CenterGuangzhouChina
| | - Qiao‐ling Wang
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Ge Yan
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Li‐huan Zhu
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Zi‐hua Zhao
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Li‐jun Liu
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Anthony R. Clarke
- School of Earth, Environmental and Biological SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Zhi‐hong Li
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
24
|
Rull J, Tadeo E, Lasa R, Rodríguez CL, Altuzar-Molina A, Aluja M. Experimental hybridization and reproductive isolation between two sympatric species of tephritid fruit flies in the Anastrepha fraterculus species group. INSECT SCIENCE 2018; 25:1045-1055. [PMID: 28586142 DOI: 10.1111/1744-7917.12489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/18/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Among tephritid fruit flies, hybridization has been found to produce local adaptation and speciation, and in the case of pest species, induce behavioral and ecological alterations that can adversely impact efficient pest management. The fraterculus species group within Anastrepha (Diptera: Tephritidae), is a rapidly radiating aggregate, which includes cryptic species complexes, numerous sister species, and several pest species. Molecular studies have highlighted the possibility of introgression between A. fraterculus and A. obliqua. Reproductive isolation has been studied among morphotypes of the A. fraterculus species complex as a tool for species delimitation. Here we examined the existence and strength of prezygotic and postzygotic isolation between sympatric populations of two closely related species within the highly derived fraterculus group (A. fraterculus and A. obliqua), coexisting in nature. Although adults of both species showed a strong tendency for assortative mating, a small proportion of hybrid pairings in both directions were observed. We also observed asymmetric postzygotic isolation, with one hybrid cross displaying a strong reduction in fecundity and F1 egg fertility. Survival was greater for the progeny of homotypic and hybrid crosses in the maternal host. There was a marked female biased sex ratio distortion for both F1 hybrid adults. Hybridization between A. fraterculus and A. obliqua in nature may be difficult but possible; these two species display stronger reproductive isolation than all pairs of species previously examined in the A. fraterculus species complex. Asymmetric postzygotic isolation is suggestive of Wolbachia mediated cytoplasmic incompatibilities that may be exploited in area-wide pest management.
Collapse
Affiliation(s)
- Juan Rull
- PROIMI Biotecnología-CONICET, LIEMEN-División Control Biológico de Plagas, Tucumán, Argentina
| | - Eduardo Tadeo
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Rodrigo Lasa
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Christian L Rodríguez
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Alma Altuzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| |
Collapse
|
25
|
Díaz F, Luís A. Lima A, Nakamura AM, Fernandes F, Sobrinho I, de Brito RA. Evidence for Introgression Among Three Species of the Anastrepha fraterculus Group, a Radiating Species Complex of Fruit Flies. Front Genet 2018; 9:359. [PMID: 30250479 PMCID: PMC6139333 DOI: 10.3389/fgene.2018.00359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Introgression should no longer be considered as rare a phenomenon as once thought, since several studies have recently documented gene flow between closely related and radiating species. Here, we investigated evolutionary relationships among three closely related species of fruit flies of the Anastrepha fraterculus group (Anastrepha fraterculus, A. obliqua and A. sororcula). We sequenced a set of 20 genes and implemented a combined populational and phylogenetic inference with a model selection approach by an ABC framework in order to elucidate the demographic history of these species. The phylogenetic histories inferred from most genes showed a great deal of discordance and substantial shared polymorphic variation. The analysis of several population and speciation models reveal that this shared variation is better explained by introgression rather than convergence by parallel mutation or incomplete lineage sorting. Our results consistently showed these species evolving under an isolation with migration model experiencing a continuous and asymmetrical pattern of gene flow involving all species pairs, even though still showed a more closely related relationship between A. fraterculus and A. sororcula when compared with A. obliqua. This suggests that these species have been exchanging genes since they split from their common ancestor ∼2.6 MYA ago. We also found strong evidence for recent population expansion that appears to be consequence of anthropic activities affecting host crops of fruit flies. These findings point that the introgression here found may have been driven by genetic drift and not necessary by selection, which has implications for tracking and managing fruit flies.
Collapse
Affiliation(s)
- Fernando Díaz
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| | - André Luís A. Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Aline M. Nakamura
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fernanda Fernandes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Iderval Sobrinho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Reinaldo A. de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
26
|
Perry KD, Baker GJ, Powis KJ, Kent JK, Ward CM, Baxter SW. Cryptic Plutella species show deep divergence despite the capacity to hybridize. BMC Evol Biol 2018; 18:77. [PMID: 29843598 PMCID: PMC5975261 DOI: 10.1186/s12862-018-1183-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/17/2018] [Indexed: 12/30/2022] Open
Abstract
Background Understanding genomic and phenotypic diversity among cryptic pest taxa has important implications for the management of pests and diseases. The diamondback moth, Plutella xylostella L., has been intensively studied due to its ability to evolve insecticide resistance and status as the world’s most destructive pest of brassicaceous crops. The surprise discovery of a cryptic species endemic to Australia, Plutella australiana Landry & Hebert, raised questions regarding the distribution, ecological traits and pest status of the two species, the capacity for gene flow and whether specific management was required. Here, we collected Plutella from wild and cultivated brassicaceous plants from 75 locations throughout Australia and screened 1447 individuals to identify mtDNA lineages and Wolbachia infections. We genotyped genome-wide SNP markers using RADseq in coexisting populations of each species. In addition, we assessed reproductive compatibility in crossing experiments and insecticide susceptibility phenotypes using bioassays. Results The two Plutella species coexisted on wild brassicas and canola crops, but only 10% of Plutella individuals were P. australiana. This species was not found on commercial Brassica vegetable crops, which are routinely sprayed with insecticides. Bioassays found that P. australiana was 19-306 fold more susceptible to four commonly-used insecticides than P. xylostella. Laboratory crosses revealed that reproductive isolation was incomplete but directionally asymmetric between the species. However, genome-wide nuclear SNPs revealed striking differences in genetic diversity and strong population structure between coexisting wild populations of each species. Nuclear diversity was 1.5-fold higher in P. australiana, yet both species showed limited variation in mtDNA. Infection with a single Wolbachia subgroup B strain was fixed in P. australiana, suggesting that a selective sweep contributed to low mtDNA diversity, while a subgroup A strain infected just 1.5% of P. xylostella. Conclusions Despite sympatric distributions and the capacity to hybridize, strong genomic and phenotypic divergence exists between these Plutella species that is consistent with contrasting colonization histories and reproductive isolation after secondary contact. Although P. australiana is a potential pest of brassicaceous crops, it is of secondary importance to P. xylostella. Electronic supplementary material The online version of this article (10.1186/s12862-018-1183-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kym D Perry
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, 5005, Australia. .,South Australian Research and Development Institute, Adelaide, 5001, Australia.
| | - Gregory J Baker
- South Australian Research and Development Institute, Adelaide, 5001, Australia
| | - Kevin J Powis
- South Australian Research and Development Institute, Adelaide, 5001, Australia
| | - Joanne K Kent
- South Australian Research and Development Institute, Adelaide, 5001, Australia
| | - Christopher M Ward
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Simon W Baxter
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
27
|
Dupuis JR, Bremer FT, Kauwe A, San Jose M, Leblanc L, Rubinoff D, Geib SM. HiMAP: Robust phylogenomics from highly multiplexed amplicon sequencing. Mol Ecol Resour 2018; 18:1000-1019. [PMID: 29633537 DOI: 10.1111/1755-0998.12783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 01/22/2023]
Abstract
High-throughput sequencing has fundamentally changed how molecular phylogenetic data sets are assembled, and phylogenomic data sets commonly contain 50- to 100-fold more loci than those generated using traditional Sanger sequencing-based approaches. Here, we demonstrate a new approach for building phylogenomic data sets using single-tube, highly multiplexed amplicon sequencing, which we name HiMAP (highly multiplexed amplicon-based phylogenomics) and present bioinformatic pipelines for locus selection based on genomic and transcriptomic data resources and postsequencing consensus calling and alignment. This method is inexpensive and amenable to sequencing a large number (hundreds) of taxa simultaneously and requires minimal hands-on time at the bench (<1/2 day), and data analysis can be accomplished without the need for read mapping or assembly. We demonstrate this approach by sequencing 878 amplicons in single reactions for 82 species of tephritid fruit flies across seven genera (384 individuals), including some of the most economically important agricultural insect pests. The resulting filtered data set (>150,000-bp concatenated alignment, ~20% missing character sites across all individuals and amplicons) contained >40,000 phylogenetically informative characters, and although some discordance was observed between analyses, it provided unparalleled resolution of many phylogenetic relationships in this group. Most notably, we found high support for the generic status of Zeugodacus and the sister relationship between Dacus and Zeugodacus. We discuss HiMAP, with regard to its molecular and bioinformatic strengths, and the insight the resulting data set provides into relationships of this diverse insect group.
Collapse
Affiliation(s)
- Julian R Dupuis
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Forest T Bremer
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Angela Kauwe
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii
| | - Michael San Jose
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Luc Leblanc
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho
| | - Daniel Rubinoff
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Scott M Geib
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii
| |
Collapse
|
28
|
Doorenweerd C, Leblanc L, Norrbom AL, Jose MS, Rubinoff D. A global checklist of the 932 fruit fly species in the tribe Dacini (Diptera, Tephritidae). Zookeys 2018; 730:19-56. [PMID: 29416395 PMCID: PMC5799784 DOI: 10.3897/zookeys.730.21786] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
The correct application of the scientific names of species is neither easy nor trivial. Mistakes can lead to the wrong interpretation of research results or, when pest species are involved, inappropriate regulations and limits on trade, and possibly quarantine failures that permit the invasion of new pest species. Names are particularly challenging to manage when groups of organisms encompass a large number of species, when different workers employ different philosophical views, or when species are in a state of taxonomic flux. The fruit fly tribe Dacini is a species-rich taxon within Tephritidae and contains around a fifth of all known species in the family. About 10% of the 932 currently recognized species are pests of commercial fruits and vegetables, precipitating quarantines and trade embargos. Authoritative species lists consist largely of scattered regional treatments and outdated online resources. The checklist presented here is the first global overview of valid species names for the Dacini in almost two decades, and includes new lure records. By publishing this list both in paper and digitally, we aim to provide a resource for those studying fruit flies as well as researchers studying components of their impact on agriculture. The list is largely a consolidation of previous works, but following the results from recent phylogenetic work, we transfer one subgenus and eight species to different genera: members of the Bactrocera subgenus Javadacus Hardy, considered to belong to the Zeugodacus group of subgenera, are transferred to genus Zeugodacus; Bactrocera pseudocucurbitae White, 1999, stat. rev., is transferred back to Bactrocera from Zeugodacus; Zeugodacus arisanicus Shiraki, 1933, stat. rev., is transferred back to Zeugodacus from Bactrocera; and Z. brevipunctatus (David & Hancock, 2017), comb. n.; Z. javanensis (Perkins, 1938), comb. n.; Z. montanus (Hardy, 1983), comb. n.; Z. papuaensis (Malloch, 1939), comb. n.; Z. scutellarius (Bezzi, 1916), comb. n.; Z. semisurstyli (Drew & Romig, 2013), comb. n.; and Z. trilineatus (Hardy, 1955), comb. n. are transferred from Bactrocera to Zeugodacus.
Collapse
Affiliation(s)
- Camiel Doorenweerd
- University of Hawaii, Department of Plant and Environmental Protection Services, 3050 Maile Way, Honolulu, Hawaii, 96822-2231, USA
| | - Luc Leblanc
- University of Idaho, Department of Entomology, Plant Pathology and Nematology, 875 Perimeter Drive, MS2329, Moscow, Idaho, 83844-2329, USA
| | - Allen L. Norrbom
- Systematic Entomology Laboratory, ARS, USDA, c/o Smithsonian Institution, P.O. Box 37012, MRC 168, Washington, DC 20013-7012, USA
| | - Michael San Jose
- University of Hawaii, Department of Plant and Environmental Protection Services, 3050 Maile Way, Honolulu, Hawaii, 96822-2231, USA
| | - Daniel Rubinoff
- University of Hawaii, Department of Plant and Environmental Protection Services, 3050 Maile Way, Honolulu, Hawaii, 96822-2231, USA
| |
Collapse
|
29
|
Drosopoulou E, Pantelidou C, Gariou-Papalexiou A, Augustinos AA, Chartomatsidou T, Kyritsis GA, Bourtzis K, Mavragani-Tsipidou P, Zacharopoulou A. The chromosomes and the mitogenome of Ceratitis fasciventris (Diptera: Tephritidae): two genetic approaches towards the Ceratitis FAR species complex resolution. Sci Rep 2017; 7:4877. [PMID: 28687799 PMCID: PMC5501848 DOI: 10.1038/s41598-017-05132-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/25/2017] [Indexed: 11/29/2022] Open
Abstract
Ceratitis fasciventris is a serious agricultural pest of the Tephritidae family that belongs to the African Ceratitis FAR species complex. Species limits within the FAR complex are obscure and multidisciplinary approaches have attempted to resolve phylogenetic relationships among its members. These studies support the existence of at least three additional species in the complex, C. anonnae, C. rosa and C. quilicii, while they indicate the presence of two structured populations (F1 and F2) within the C. fasciventris species. In the present study we present the mitotic karyotype, polytene chromosome maps, in situ hybridization data and the complete mitochondrial genome sequence of an F2 population of C. fasciventris. This is the first polytene chromosome map and complete mitogenome of a member of the FAR complex and only the second reported for the Ceratitis genus. Both polytene chromosomes and mitochondrial sequence could provide valuable information and be used as reference for comparative analysis among the members of the complex towards the clarification of their phylogenetic relationships.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Christina Pantelidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Antonios A Augustinos
- Department of Biology, University of Patras, Patras, Greece.,Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Tatiana Chartomatsidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios A Kyritsis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
30
|
Dohino T, Hallman GJ, Grout TG, Clarke AR, Follett PA, Cugala DR, Minh Tu D, Murdita W, Hernandez E, Pereira R, Myers SW. Phytosanitary Treatments Against Bactrocera dorsalis (Diptera: Tephritidae): Current Situation and Future Prospects. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:67-79. [PMID: 28028169 DOI: 10.1093/jee/tow247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is arguably the most important tephritid attacking fruits after Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). In 2003 it was found in Africa and quickly spread to most of the sub-Saharan part of the continent, destroying fruits and creating regulatory barriers to their export. The insect is causing new nutritional and economic losses across Africa, as well as the losses it has caused for decades in infested areas of Asia, New Guinea, and Hawaii. This new panorama represents a challenge for fruit exportation from Africa. Phytosanitary treatments are required to export quarantined commodities out of infested areas to areas where the pest does not exist and could become established. This paper describes current phytosanitary treatments against B. dorsalis and their use throughout the world, the development of new treatments based on existing research, and recommendations for further research to provide phytosanitary solutions to the problem.
Collapse
Affiliation(s)
- Toshiyuki Dohino
- Yokohama Plant Protection Station, Ministry of Agriculture, Forestry, and Fisheries, Yokohama, Japan
| | - Guy J Hallman
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | | | - Anthony R Clarke
- School of Earth, Environmental, and Biological Sciences, Faculty of Science and Technology, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Peter A Follett
- USDA-ARS, Daniel K. Inouye U. S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Domingos R Cugala
- Faculty of Agronomy and Forest Engineering, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Duong Minh Tu
- Plant Quarantine Diagnostic Center, Plant Protection Department, Ministry of Agriculture and Rural Development, Hanoi, Viet Nam
| | - Wayan Murdita
- Pest Forecasting Institute, Ministry of Agriculture, Karawang, Indonesia
| | | | - Rui Pereira
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Scott W Myers
- USDA-APHIS Center for Plant Health Science and Technology, Otis Laboratory, Buzzards Bay, MA, USA
| |
Collapse
|
31
|
Schutze MK, Virgilio M, Norrbom A, Clarke AR. Tephritid Integrative Taxonomy: Where We Are Now, with a Focus on the Resolution of Three Tropical Fruit Fly Species Complexes. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:147-164. [PMID: 27813666 DOI: 10.1146/annurev-ento-031616-035518] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurate species delimitation underpins good taxonomy. Formalization of integrative taxonomy in the past decade has provided a framework for using multidisciplinary data to make species delimitation hypotheses more rigorous. We address the current state of integrative taxonomy by using as a case study an international project targeted at resolving three important tephritid species complexes: Bactrocera dorsalis complex, Anastrepha fraterculus complex, and Ceratitis FAR (C. fasciventris, C. anonae, C. rosa) complex. The integrative taxonomic approach has helped deliver significant advances in resolving these complexes: It has been used to identify some taxa as belonging to the same biological species as well as to confirm hidden cryptic diversity under a single taxonomic name. Nevertheless, the general application of integrative taxonomy has not been without issue, revealing challenges that must be considered when undertaking an integrative taxonomy project. Scrutiny of this international case study provides a unique opportunity to document lessons learned for the benefit of not only tephritid taxonomists, but also the wider taxonomic community.
Collapse
Affiliation(s)
- Mark K Schutze
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, 4001 Queensland, Australia;
| | - Massimiliano Virgilio
- Department of Biology, Royal Museum for Central Africa, B3080 Tervuren, Belgium
- Joint Experimental Molecular Unit, Royal Museum for Central Africa, B3080 Tervuren, Belgium ;
| | - Allen Norrbom
- Systematic Entomology Laboratory, United States Department of Agriculture, c/o National Museum of Natural History, Washington, DC 20560;
| | - Anthony R Clarke
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, 4001 Queensland, Australia;
- Plant Biosecurity Cooperative Research Centre, University of Canberra, Bruce, Australian Capital Territory 2617, Australia;
| |
Collapse
|
32
|
Ashfaq M, Hebert PDN. DNA barcodes for bio-surveillance: regulated and economically important arthropod plant pests. Genome 2016; 59:933-945. [PMID: 27753511 DOI: 10.1139/gen-2016-0024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa. Because of their importance as pests and disease vectors impacting global agriculture and forestry, DNA barcode results on these arthropods have significant implications for quarantine detection, regulation, and management. The current review discusses these implications in light of the presence of cryptic species in plant pests exposed by DNA barcoding.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada.,Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada.,Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|