1
|
Zhou Y, Song HM. Type I interferon pathway in pediatric systemic lupus erythematosus. World J Pediatr 2024; 20:653-668. [PMID: 38914753 PMCID: PMC11269505 DOI: 10.1007/s12519-024-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The role of type I interferon (IFN-I) signaling in systemic lupus erythematosus (SLE) has been well established. However, unanswered questions remain regarding the applicability of these findings to pediatric-onset SLE. The aim of this review is to provide an overview of the novel discoveries on IFN-I signaling in pediatric-onset SLE. DATA SOURCES A literature search was conducted in the PubMed database using the following keywords: "pediatric systemic lupus erythematosus" and "type I interferon". RESULTS IFN-I signaling is increased in pediatric SLE, largely due to the presence of plasmacytoid dendritic cells and pathways such as cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase 1 and Toll-like receptor (TLR)4/TLR9. Neutrophil extracellular traps and oxidative DNA damage further stimulate IFN-I production. Genetic variants in IFN-I-related genes, such as IFN-regulatory factor 5 and tyrosine kinase 2, are linked to SLE susceptibility in pediatric patients. In addition, type I interferonopathies, characterized by sustained IFN-I activation, can mimic SLE symptoms and are thus important to distinguish. Studies on interferonopathies also contribute to exploring the pathogenesis of SLE. Measuring IFN-I activation is crucial for SLE diagnosis and stratification. Both IFN-stimulated gene expression and serum IFN-α2 levels are common indicators. Flow cytometry markers such as CD169 and galectin-9 are promising alternatives. Anti-IFN therapies, such as sifalimumab and anifrolumab, show promise in adult patients with SLE, but their efficacy in pediatric patients requires further investigation. Janus kinase inhibitors are another treatment option for severe pediatric SLE patients. CONCLUSIONS This review presents an overview of the IFN-I pathway in pediatric SLE. Understanding the intricate relationship between IFN-I and pediatric SLE may help to identify potential diagnostic markers and targeted therapies, paving the way for improved patient care and outcomes.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Hong-Mei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
2
|
Tang N, Huang J, Chen C, Wu X, Xu H, Chen G, Xue H. Polymorphisms and haplotypes of IL2RA, IL10, IFNG, IRF5, and CCR2 are associated with Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in children. Pediatr Blood Cancer 2021; 68:e29097. [PMID: 34031980 DOI: 10.1002/pbc.29097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Cytokine storms are central to the development of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH). Previous studies have shown that single-nucleotide polymorphisms (SNPs) of cytokine genes may be associated with the development of EBV-HLH in children. As such, we investigated the association between susceptibility to EBV-HLH in children and SNPs and haplotypes of genes encoding interleukin-2 receptor subunit alpha (IL2RA), interleukin-10 (IL10), interferon gamma (IFNG), interferon regulatory factor 5 (IRF5), and C-C chemokine receptor 2 (CCR2). METHODS Sixty-six children with EBV-HLH and 58 healthy EBV-seropositive controls were enrolled in this study. SNPs of IL2RA rs2104286, rs12722489, and rs11594656; IL10 rs1800896, rs1800871, and rs1800872; IFNG rs2430561, IRF5 rs2004640, and CCR2 rs1799864 were assayed and genotyped using the SNaPshot technique. RESULTS Frequencies of the A allele of IL2RA rs2104286 and IL10 rs1800896, and C allele of IL-10 rs1800872 were significantly higher in the EBV-HLH group than in the control group. The AA genotype of IL2RA rs2104286 and IL10 rs1800896, and the CC genotype of IL10 rs1800872 might be associated with a significantly high risk of EBV-HLH. However, the frequencies of genotypes and alleles of IL2RA rs2104286, IL10 rs1800871, IFNG rs2430561, IRF5 rs2004640, and CCR2 rs1799864 were similar in both groups. Additionally, IL2RA AGT (rs2104286-rs12722489-rs11594656) and IL10 ACC (rs1800896-rs1800871-rs1800872) haplotypes were also associated with an increased risk of EBV-HLH. CONCLUSIONS SNPs of IL2RA rs2104286, IL10 rs1800896 and rs1800872 and the haplotypes of IL2RA AGT and IL10 ACC were highly associated with susceptibility to EBV-HLH in children.
Collapse
Affiliation(s)
- Nannan Tang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaojun Wu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Honggui Xu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guohua Chen
- Department of Pediatrics, Huizhou First Hospital, Huizhou, China
| | - Hongman Xue
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
3
|
Li D, Matta B, Song S, Nelson V, Diggins K, Simpfendorfer KR, Gregersen PK, Linsley P, Barnes BJ. IRF5 genetic risk variants drive myeloid-specific IRF5 hyperactivation and presymptomatic SLE. JCI Insight 2020; 5:124020. [PMID: 31877114 DOI: 10.1172/jci.insight.124020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic variants within or near the interferon regulatory factor 5 (IRF5) locus associate with systemic lupus erythematosus (SLE) across ancestral groups. The major IRF5-SLE risk haplotype is common across populations, yet immune functions for the risk haplotype are undefined. We characterized the global immune phenotype of healthy donors homozygous for the major risk and nonrisk haplotypes and identified cell lineage-specific alterations that mimic presymptomatic SLE. Contrary to previous studies in B lymphoblastoid cell lines and SLE immune cells, IRF5 genetic variants had little effect on IRF5 protein levels in healthy donors. Instead, we detected basal IRF5 hyperactivation in the myeloid compartment of risk donors that drives the SLE immune phenotype. Risk donors were anti-nuclear antibody positive with anti-Ro and -MPO specificity, had increased circulating plasma cells and plasmacytoid dendritic cells, and had enhanced spontaneous NETosis. The IRF5-SLE immune phenotype was conserved over time and probed mechanistically by ex vivo coculture, indicating that risk neutrophils are drivers of the global immune phenotype. RNA-Seq of risk neutrophils revealed increased IRF5 transcript expression, IFN pathway enrichment, and decreased expression of ROS pathway genes. Altogether, the data support that individuals carrying the IRF5-SLE risk haplotype are more susceptible to environmental/stochastic influences that trigger chronic immune activation, predisposing to the development of clinical SLE.
Collapse
Affiliation(s)
- Dan Li
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Bharati Matta
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Su Song
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Victoria Nelson
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Kirsten Diggins
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Kim R Simpfendorfer
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Peter Linsley
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Betsy J Barnes
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
4
|
Lim SS, Kan H, Pobiner BF, Bao G, Drenkard C. Patient perceptions and preferences of biologic therapies in SLE. Lupus Sci Med 2019; 6:e000322. [PMID: 31478010 PMCID: PMC6703291 DOI: 10.1136/lupus-2019-000322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/30/2019] [Accepted: 06/29/2019] [Indexed: 11/15/2022]
Abstract
Objective To evaluate patient perceptions of biologic therapies from a large, population-based cohort of patients with SLE with significant numbers of blacks and whites and across the full spectrum of socioeconomic strata and disease severity. Methods This was a cross-sectional study of validated patients with SLE enrolled in the Georgians Organized Against Lupus Cohort between September 2014 and August 2015. The survey instrument was developed ad hoc by the authors and contained an introduction on biologics. Results A total of 676 participants were on average 48.4 years old with 15.9 years of disease; 93.2% were female and 80.6% were black; 34.2% had private health insurance and 9.8% had no insurance; and 26.8% and 27.5% had Medicare or Medicaid, respectively. Of all respondents, 30.8% had heard of biologics, with a significant difference between blacks and whites (25.2% vs 53.4%, respectively). There were no significant differences, however, between blacks and whites with respect to ever having been on biologics (7.6% and 11.5%, respectively) or where they got their information about biologics. Out of 202 individuals who had heard of biologics, 102 (51.3%) were familiar with potential benefits or side effects, and most (n=129, 66.5%) had a neutral perception to risks associated with biologic use. There was no perception of biologics working differently between races/ethnicities. More (n=76, 62.8%) blacks preferred intravenous over subcutaneous modalities compared with whites (n=12, 37.5%) but were not as willing to pay as much out of pocket for it. Individuals with Medicare were significantly more likely to have been on biologics. Conclusions There are important similarities and differences between blacks and whites with lupus with respect to their perceptions of biologic therapies and their impact. There are opportunities to increase patient exposure to information about biologics and improve their understanding in order for them to make the best informed decision possible.
Collapse
Affiliation(s)
- S Sam Lim
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Epidemiology, Emory University School of Public Health, Atlanta, Georgia, USA
| | - Hong Kan
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Bonnie F Pobiner
- GlaxoSmithKline USA, Research Triangle Park, North Carolina, USA
| | - Gaobin Bao
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cristina Drenkard
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Epidemiology, Emory University School of Public Health, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Wang J, Huang A, Yuan Z, Su L, Xu W. Association of IRF5 rs2004640 polymorphism and systemic lupus erythematosus: A meta‐analysis. Int J Rheum Dis 2019; 22:1598-1606. [PMID: 31347288 DOI: 10.1111/1756-185x.13654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Jia‐Min Wang
- Department of Evidence‐Based Medicine, School of Public Health Southwest Medical University Luzhou Sichuan China
| | - An‐Fang Huang
- Department of Rheumatology and Immunology Affiliated Hospital of Southwest Medical University Luzhou Sichuan China
| | - Zhi‐Chao Yuan
- Department of Evidence‐Based Medicine, School of Public Health Southwest Medical University Luzhou Sichuan China
| | - Lin‐Chong Su
- Department of Rheumatology and Immunology Minda Hospital of Hubei Minzu University Enshi Hubei China
| | - Wang‐Dong Xu
- Department of Evidence‐Based Medicine, School of Public Health Southwest Medical University Luzhou Sichuan China
| |
Collapse
|
6
|
Bae SC, Lee YH. Association between the interferon regulatory factor 5 rs2004640 functional polymorphism and systemic lupus erythematosus: an updated meta-analysis. Lupus 2019; 28:740-747. [PMID: 31018759 DOI: 10.1177/0961203319844014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of this study is to determine whether the functional interferon regulatory factor 5 ( IRF5) polymorphism rs2004640 is associated with susceptibility to systemic lupus erythematosus (SLE) in multiple ethnic populations. METHODS A meta-analysis was conducted on the T allele of the IRF5 rs2004640 polymorphism in all study participants as well as each ethnic population. RESULTS Twenty research articles that included 28 comparative studies of 20,892 patients and 24,930 controls were included in the meta-analysis. The Asian population had a much lower prevalence of the T allele than any other study population at 28%, and the European population had the highest prevalence of the T allele at 52%. Meta-analysis showed an association between the IRF5 rs2004640 polymorphism and SLE in all participants (odds ratio = 1.472, 95% confidence interval = 1.370-1.582, p < 0.001). Analysis after stratification by ethnicity indicated that the IRF5 rs2004640 T allele is significantly associated with SLE in Europeans, Asians, Latin Americans and Arabs. CONCLUSIONS This meta-analysis confirms that the IRF5 rs2004640 polymorphism is associated with SLE susceptibility in different ethnic groups, and that its prevalence is ethnicity dependent.
Collapse
Affiliation(s)
- S C Bae
- 1 Department of Rheumatology, Department of Internal Medicine, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Y H Lee
- 2 Department of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Genetic Versus Non-genetic Drivers of SLE: Implications of IRF5 Dysregulation in Both Roads Leading to SLE. Curr Rheumatol Rep 2019; 21:2. [PMID: 30645688 DOI: 10.1007/s11926-019-0803-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is characterized by a breakdown of immune tolerance, resulting in inflammation and tissue destruction. While the primary causes of SLE are still obscure, the disorder is highly heritable. Genetic risk variants, on their own, are rarely causal or fully explain disease pathogenesis. We discuss the possibility that IRF5, a SLE susceptibility gene, has both genetic and non-genetic contributions to disease pathogenesis. RECENT FINDINGS Genetic variants within and around IRF5 robustly associate with SLE risk. In SLE blood cells, IRF5 risk variants associate with elevated IRF5 expression and IFN production. Whether the observed increase in expression is due to risk variants or other disease-associated factors is not clear. Data from Irf5-/- mice backcrossed to multiple models of murine lupus support that IRF5's role in disease pathogenesis is non-genetic. Studies of IRF5 expression and function in genotyped healthy donors will address the question of whether IRF5 dysregulation in SLE is driven by genetic or non-genetic factors.
Collapse
|
8
|
Abstract
Interferon regulatory factor 5 (IRF5) has been demonstrated as a key transcription factor of the immune system, playing important roles in modulating inflammatory immune responses in numerous cell types including dendritic cells, macrophages, and B cells. As well as driving the expression of type I interferon in antiviral responses, IRF5 is also crucial for driving macrophages toward a proinflammatory phenotype by regulating cytokine and chemokine expression and modulating B-cell maturity and antibody production. This review highlights the functional importance of IRF5 in a disease setting, by discussing polymorphic mutations at the human Irf5 locus that lead to susceptibility to systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. In concordance with this, we also discuss lessons in IRF5 functionality learned from murine in vivo models of autoimmune disease and inflammation and hypothesize that modulation of IRF5 activity and expression could provide potential therapeutic benefits in the clinic.
Collapse
Affiliation(s)
- Hayley L Eames
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| | - Alastair L Corbin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
9
|
Tang L, Wan P, Wang Y, Pan J, Wang Y, Chen B. Genetic association and interaction between the IRF5 and TYK2 genes and systemic lupus erythematosus in the Han Chinese population. Inflamm Res 2015; 64:817-24. [DOI: 10.1007/s00011-015-0865-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/17/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022] Open
|
10
|
Li Y, Chen S, Li P, Wu Z, Li J, Liu B, Zhang F, Li Y. Association of the IRF5 rs2070197 polymorphism with systemic lupus erythematosus: a meta-analysis. Clin Rheumatol 2015; 34:1495-501. [PMID: 26233721 DOI: 10.1007/s10067-015-3036-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/16/2015] [Accepted: 07/22/2015] [Indexed: 02/08/2023]
Abstract
The aim of this study was to explore whether the interferon regulatory factor 5 (IRF5) gene rs2070197 polymorphism was associated with systemic lupus erythematosus (SLE) in multiple ethic populations. A meta-analysis was conducted on the C allele of the IRF5 rs2070197 polymorphism. A total of 7 published case-control studies with 12 comparisons involving 8171 SLE patients and 8904 controls were available for this meta-analysis. This meta-analysis demonstrated the IRF5 rs2070197 polymorphism conferred susceptibility to SLE in all subjects (odds ratio (OR) = 2.128, 95 % confidence interval (CI): 1.856-2.441, P < 0.001) without inter-study heterogeneity. The IRF5 rs2070197 polymorphism was identified as risk factors for SLE in Caucasian populations (OR 1.82, 95 % CI 1.70-1.96), but it had no effects (monomorphic) in Asians. Large-scale multicenter epidemiological studies in selected populations with other risk factors were urgently required.
Collapse
Affiliation(s)
- Yuan Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Genome-wide association studies have identified more than 50 robust loci associated with systemic lupus erythematosus (SLE) susceptibility, and follow-up studies help reveal candidate causative genetic variants and their biological relevance contributing to the development of SLE. Epigenetic modulation is emerging as an important mechanism for understanding how the implicated genes interact with environmental factors. We review recent progress toward identifying causative variants of SLE-associated loci and epigenetic impact on lupus, especially genetic-epigenetic interactions that modulate expression levels of SLE susceptibility genes. RECENT FINDINGS A few SLE-risk loci have been refined to localize likely causative variants responsible for the observed genome-wide association study signals. Few of such variants disrupt coding sequences resulting in gain or loss of function for the encoded protein, whereas most fall in noncoding regions with potential to regulate gene expression through alterations in transcriptional activity, splicing, mRNA stability and epigenetic modifications. Multiple key pathways related to the SLE pathogenesis have been indicated by the identified genetic risk factors, including type I interferon signaling pathway that can also be regulated by epigenetic changes occurred in SLE. SUMMARY These findings provide novel insights into the disease pathogenesis and promise better diagnostic accuracy and new therapeutic targets for patient management.
Collapse
Affiliation(s)
- Yun Deng
- Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | |
Collapse
|
12
|
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder that has a broad spectrum of effects on the majority of organs, including the kidneys. Approximately 40-70% of patients with SLE will develop lupus nephritis. Renal assault during SLE is initiated by genes that breach immune tolerance and promote autoantibody production. These genes might act in concert with other genetic factors that augment innate immune signalling and IFN-I production, which in turn can generate an influx of effector leucocytes, inflammatory mediators and autoantibodies into end organs, such as the kidneys. The presence of cognate antigens in the glomerular matrix, together with intrinsic molecular abnormalities in resident renal cells, might further accentuate disease progression. This Review discusses the genetic insights and molecular mechanisms for key pathogenic contributors in SLE and lupus nephritis. We have categorized the genes identified in human studies of SLE into one of four pathogenic events that lead to lupus nephritis. We selected these categories on the basis of the cell types in which these genes are expressed, and the emerging paradigms of SLE pathogenesis arising from murine models. Deciphering the molecular basis of SLE and/or lupus nephritis in each patient will help physicians to tailor specific therapies.
Collapse
|
13
|
Vaughn SE, Foley C, Lu X, Patel ZH, Zoller EE, Magnusen AF, Williams AH, Ziegler JT, Comeau ME, Marion MC, Glenn SB, Adler A, Shen N, Nath S, Stevens AM, Freedman BI, Tsao BP, Jacob CO, Kamen DL, Brown EE, Gilkeson GS, Alarcón GS, Reveille JD, Anaya JM, James JA, Moser KL, Criswell LA, Vilá LM, Alarcón-Riquelme ME, Petri M, Scofield RH, Kimberly RP, Ramsey-Goldman R, Binjoo Y, Choi J, Bae SC, Boackle SA, Vyse TJ, Guthridge JM, Namjou B, Gaffney PM, Langefeld CD, Kaufman KM, Kelly JA, Harley ITW, Harley JB, Kottyan LC. Lupus risk variants in the PXK locus alter B-cell receptor internalization. Front Genet 2015; 5:450. [PMID: 25620976 PMCID: PMC4288052 DOI: 10.3389/fgene.2014.00450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/09/2014] [Indexed: 01/17/2023] Open
Abstract
Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3′ UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10−10, OR 0.81 (0.75–0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity.
Collapse
Affiliation(s)
- Samuel E Vaughn
- Immunology Graduate Program and Medical Scientist Training Program, University of Cincinnati College of Medicine Cincinnati, OH, USA ; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | | | - Xiaoming Lu
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Zubin H Patel
- Immunology Graduate Program and Medical Scientist Training Program, University of Cincinnati College of Medicine Cincinnati, OH, USA ; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Erin E Zoller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Albert F Magnusen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Adrienne H Williams
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Julie T Ziegler
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Mary E Comeau
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Miranda C Marion
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Stuart B Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Nan Shen
- Immunology Graduate Program and Medical Scientist Training Program, University of Cincinnati College of Medicine Cincinnati, OH, USA ; Joint Molecular Rheumatology Laboratory of the Institute of Health Sciences and Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, and Chinese Academy of Sciences Shanghai, China
| | - Swapan Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Anne M Stevens
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute Seattle, WA, USA ; Division of Rheumatology, Department of Pediatrics, University of Washington Seattle, WA, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Betty P Tsao
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Chaim O Jacob
- Department of Medicine, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Diane L Kamen
- Division of Rheumatology, Medical University of South Carolina Charleston, SC, USA
| | - Elizabeth E Brown
- Department of Epidemiology, University of Alabama at Birmingham Birmingham, AL, USA ; Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| | - Gary S Gilkeson
- Division of Rheumatology, Medical University of South Carolina Charleston, SC, USA
| | - Graciela S Alarcón
- Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| | - John D Reveille
- Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Juan-Manuel Anaya
- Center for Autoimmune Disease Research, Universidad del Rosario Bogota, Colombia
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA ; Department of Medicine, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| | - Kathy L Moser
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Lindsey A Criswell
- Rosalind Russell/Ephraim P Engleman Rheumatology Research Research Center, Department of Medicine, University of California, San Francisco San Francisco, CA, USA
| | - Luis M Vilá
- Division of Rheumatology, Department of Medicine, University of Puerto Rico Medical Sciences Campus San Juan, PR, USA
| | - Marta E Alarcón-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA ; Center for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucia Granada, Spain
| | - Michelle Petri
- Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA ; Department of Medicine, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA ; United States Department of Veterans Affairs Medical Center Oklahoma City, OK, USA
| | - Robert P Kimberly
- Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Young Binjoo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases Seoul, Korea
| | - Jeongim Choi
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases Seoul, Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases Seoul, Korea
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado School of Medicine Aurora, CO, USA
| | - Timothy J Vyse
- Divisions of Genetics and Molecular Medicine and Immunology, King's College London London, UK
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Carl D Langefeld
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; United States Department of Veterans Affairs Medical Center Cincinnati, OH, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Isaac T W Harley
- Immunology Graduate Program and Medical Scientist Training Program, University of Cincinnati College of Medicine Cincinnati, OH, USA ; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; United States Department of Veterans Affairs Medical Center Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; United States Department of Veterans Affairs Medical Center Cincinnati, OH, USA
| |
Collapse
|
14
|
Kottyan LC, Zoller EE, Bene J, Lu X, Kelly JA, Rupert AM, Lessard CJ, Vaughn SE, Marion M, Weirauch MT, Namjou B, Adler A, Rasmussen A, Glenn S, Montgomery CG, Hirschfield GM, Xie G, Coltescu C, Amos C, Li H, Ice JA, Nath SK, Mariette X, Bowman S, Rischmueller M, Lester S, Brun JG, Gøransson LG, Harboe E, Omdal R, Cunninghame-Graham DS, Vyse T, Miceli-Richard C, Brennan MT, Lessard JA, Wahren-Herlenius M, Kvarnström M, Illei GG, Witte T, Jonsson R, Eriksson P, Nordmark G, Ng WF, Anaya JM, Rhodus NL, Segal BM, Merrill JT, James JA, Guthridge JM, Scofield RH, Alarcon-Riquelme M, Bae SC, Boackle SA, Criswell LA, Gilkeson G, Kamen DL, Jacob CO, Kimberly R, Brown E, Edberg J, Alarcón GS, Reveille JD, Vilá LM, Petri M, Ramsey-Goldman R, Freedman BI, Niewold T, Stevens AM, Tsao BP, Ying J, Mayes MD, Gorlova OY, Wakeland W, Radstake T, Martin E, Martin J, Siminovitch K, Moser Sivils KL, Gaffney PM, Langefeld CD, Harley JB, Kaufman KM. The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum Mol Genet 2014; 24:582-96. [PMID: 25205108 DOI: 10.1093/hmg/ddu455] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5-TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5-TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10(-49); OR = 1.38-1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10(-27)-10(-32), OR = 1.7-1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5-TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5-TNPO3.
Collapse
Affiliation(s)
- Leah C Kottyan
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Erin E Zoller
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and
| | - Jessica Bene
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and
| | - Xiaoming Lu
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Andrew M Rupert
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher J Lessard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA Department of Pathology and
| | - Samuel E Vaughn
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and
| | - Miranda Marion
- Department of Biostatistical Sciences and Center for Public Health Genomics and
| | - Matthew T Weirauch
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bahram Namjou
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Stuart Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Courtney G Montgomery
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Gang Xie
- Mount Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | | | - Chris Amos
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - He Li
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA Department of Pathology and
| | - John A Ice
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xavier Mariette
- Department of Rheumatology, Hôpitaux Universitaires Paris-Sud, INSERM U1012, Le Kremlin Bicêtre, France
| | - Simon Bowman
- Rheumatology Department, University Hospital Birmingham, Birmingham, UK
| | | | | | - Sue Lester
- The Queen Elizabeth Hospital, Adelaide, Australia The University of Adelaide, Adelaide, Australia
| | - Johan G Brun
- Institute of Internal Medicine, University of Bergen, Bergen, Norway Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Lasse G Gøransson
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Erna Harboe
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | | | - Tim Vyse
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Corinne Miceli-Richard
- Department of Rheumatology, Hôpitaux Universitaires Paris-Sud, INSERM U1012, Le Kremlin Bicêtre, France
| | - Michael T Brennan
- Department of Oral Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | | | | | | | - Gabor G Illei
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | | | - Roland Jonsson
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway Broegelmann Research Laboratory, The Gade Institute, University of Bergen, Bergen, Norway
| | - Per Eriksson
- Department of Rheumatology, Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Gunnel Nordmark
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Wan-Fai Ng
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogotá, Colombia
| | - Nelson L Rhodus
- Department of Oral Surgery, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | - Barbara M Segal
- Division of Rheumatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Joan T Merrill
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA Division of Veterans Affairs Medical Center, Oklahoma City, OK, USA Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marta Alarcon-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA de Genómica e Investigación Oncológica (GENYO), Pfizer-Universidad de Granada-Junta de Andalucia, Granada, Spain
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lindsey A Criswell
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, University of California San Francisco, San Francisco, CA, USA
| | - Gary Gilkeson
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Diane L Kamen
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Chaim O Jacob
- Divison of Gastrointestinal and Liver Diseases, Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth Brown
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Graciela S Alarcón
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Reveille
- Division of Rheumatology and Clinical Immunogenetics, The Univeristy of Texas Health Science Center at Houston, Houston, TX, USA
| | - Luis M Vilá
- University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins, Baltimore, MD, USA
| | | | | | - Timothy Niewold
- Division of Rheumatology and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Anne M Stevens
- University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Betty P Tsao
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jun Ying
- MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Maureen D Mayes
- MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Olga Y Gorlova
- MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Ward Wakeland
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Timothy Radstake
- Department of Rheumatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Ezequiel Martin
- Instituto de Parasitología y Biomedicina López Neyra Avda, Granada, Spain and
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López Neyra Avda, Granada, Spain and
| | - Katherine Siminovitch
- Mount Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, ON, Canada Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kathy L Moser Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences and Center for Public Health Genomics and
| | - John B Harley
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Kenneth M Kaufman
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
15
|
Genome-wide association study combined with biological context can reveal more disease-related SNPs altering microRNA target seed sites. BMC Genomics 2014; 15:669. [PMID: 25106527 PMCID: PMC4246476 DOI: 10.1186/1471-2164-15-669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022] Open
Abstract
Background Emerging studies demonstrate that single nucleotide polymorphisms (SNPs) resided in the microRNA recognition element seed sites (MRESSs) in 3′UTR of mRNAs are putative biomarkers for human diseases and cancers. However, exhaustively experimental validation for the causality of MRESS SNPs is impractical. Therefore bioinformatics have been introduced to predict causal MRESS SNPs. Genome-wide association study (GWAS) provides a way to detect susceptibility of millions of SNPs simultaneously by taking linkage disequilibrium (LD) into account, but the multiple-testing corrections implemented to suppress false positive rate always sacrificed the sensitivity. In our study, we proposed a method to identify candidate causal MRESS SNPs from 12 GWAS datasets without performing multiple-testing corrections. Alternatively, we used biological context to ensure credibility of the selected SNPs. Results In 11 out of the 12 GWAS datasets, MRESS SNPs were over-represented in SNPs with p-value ≤ 0.05 (odds ratio (OR) ranged from 1.1 to 2.4). Moreover, host genes of susceptible MRESS SNPs in each of the 11 GWAS dataset shared biological context with reported causal genes. There were 286 MRESS SNPs identified by our method, while only 13 SNPs were identified by multiple-testing corrections with a given threshold of 1 × 10−5, which is a common cutoff used in GWAS. 27 out of the 286 candidate SNPs have been reported to be deleterious while only 2 out of 13 multiple-testing corrected SNPs were documented in PubMed. MicroRNA-mRNA interactions affected by the 286 candidate SNPs were likely to present negatively correlated expression. These SNPs introduced greater alternation of binding free energy than other MRESS SNPs, especially when grouping by haplotypes (4210 vs. 4105 cal/mol by mean, 9781 vs. 8521 cal/mol by mean, respectively). Conclusions MRESS SNPs are promising disease biomarkers in multiple GWAS datasets. The method of integrating GWAS p-value and biological context is stable and effective for selecting candidate causal MRESS SNPs, it reduces the loss of sensitivity compared to multiple-testing corrections. The 286 candidate causal MRESS SNPs provide researchers a credible source to initialize their design of experimental validations in the future. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-669) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Chung SA, Brown EE, Williams AH, Ramos PS, Berthier CC, Bhangale T, Alarcon-Riquelme ME, Behrens TW, Criswell LA, Graham DC, Demirci FY, Edberg JC, Gaffney PM, Harley JB, Jacob CO, Kamboh MI, Kelly JA, Manzi S, Moser-Sivils KL, Russell LP, Petri M, Tsao BP, Vyse TJ, Zidovetzki R, Kretzler M, Kimberly RP, Freedman BI, Graham RR, Langefeld CD. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J Am Soc Nephrol 2014; 25:2859-70. [PMID: 24925725 DOI: 10.1681/asn.2013050446] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Lupus nephritis is a manifestation of SLE resulting from glomerular immune complex deposition and inflammation. Lupus nephritis demonstrates familial aggregation and accounts for significant morbidity and mortality. We completed a meta-analysis of three genome-wide association studies of SLE to identify lupus nephritis-predisposing loci. Through genotyping and imputation, >1.6 million markers were assessed in 2000 unrelated women of European descent with SLE (588 patients with lupus nephritis and 1412 patients with lupus without nephritis). Tests of association were computed using logistic regression adjusting for population substructure. The strongest evidence for association was observed outside the MHC and included markers localized to 4q11-q13 (PDGFRA, GSX2; P=4.5×10(-7)), 16p12 (SLC5A11; P=5.1×10(-7)), 6p22 (ID4; P=7.4×10(-7)), and 8q24.12 (HAS2, SNTB1; P=1.1×10(-6)). Both HLA-DR2 and HLA-DR3, two well established lupus susceptibility loci, showed evidence of association with lupus nephritis (P=0.06 and P=3.7×10(-5), respectively). Within the class I region, rs9263871 (C6orf15-HCG22) had the strongest evidence of association with lupus nephritis independent of HLA-DR2 and HLA-DR3 (P=8.5×10(-6)). Consistent with a functional role in lupus nephritis, intra-renal mRNA levels of PDGFRA and associated pathway members showed significant enrichment in patients with lupus nephritis (n=32) compared with controls (n=15). Results from this large-scale genome-wide investigation of lupus nephritis provide evidence of multiple biologically relevant lupus nephritis susceptibility loci.
Collapse
Affiliation(s)
- Sharon A Chung
- Division of Rheumatology, Rosalind Russell-Ephraim P. Engleman Medical Research Center for Arthritis, University of California, San Francisco, California
| | - Elizabeth E Brown
- Department of Epidemiology, University of Alabama, Birmingham, Alabama; Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama, Birmingham, Alabama
| | - Adrienne H Williams
- Department of Biostatistical Sciences, Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Celine C Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Marta E Alarcon-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma; Human DNA Variability Area, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, Granada, Spain
| | - Timothy W Behrens
- Immunology Tissue Growth and Repair Human Genetics Group, Genentech Inc., South San Francisco, California
| | - Lindsey A Criswell
- Division of Rheumatology, Rosalind Russell-Ephraim P. Engleman Medical Research Center for Arthritis, University of California, San Francisco, California
| | - Deborah Cunninghame Graham
- Divisions of Genetics and Molecular Medicine and Immunology, Infection, and Inflammatory Disease, Kings College, London, United Kingdom
| | - F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jeffrey C Edberg
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama, Birmingham, Alabama
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - John B Harley
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma; Division of Rheumatology, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; US Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Chaim O Jacob
- Department of Medicine, University of Southern California, Los Angeles, California
| | - M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Susan Manzi
- Department of Medicine, West Penn Allegheny Health System, University of Pittsburgh, Pittsburgh, Pennsylvania; Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Kathy L Moser-Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma; College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Laurie P Russell
- Department of Biostatistical Sciences, Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michelle Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Betty P Tsao
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, California
| | - Tim J Vyse
- Divisions of Genetics and Molecular Medicine and Immunology, Infection, and Inflammatory Disease, Kings College, London, United Kingdom
| | - Raphael Zidovetzki
- Department of Cell Biology and Neuroscience, University of California, Riverside, California; and
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Robert P Kimberly
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama, Birmingham, Alabama
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Robert R Graham
- Immunology Tissue Growth and Repair Human Genetics Group, Genentech Inc., South San Francisco, California
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina;
| | | |
Collapse
|
17
|
B cell transcription factors: Potential new therapeutic targets for SLE. Clin Immunol 2014; 152:140-51. [DOI: 10.1016/j.clim.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
|
18
|
AlFadhli S, Jahabani I. Association of interferon regulatory factor 5 (IRF5) markers with an increased risk of lupus and overlapping autoimmunity in a Kuwaiti population. Ann Hum Biol 2014; 41:531-9. [DOI: 10.3109/03014460.2014.899623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Márquez A, Cénit MC, Cordero-Coma M, Ortego-Centeno N, Adán A, Fonollosa A, Díaz Valle D, Pato E, Blanco R, Cañal J, Díaz-Llopis M, de Ramón E, del Rio MJ, García Serrano JL, Artaraz J, Martín-Villa JM, Llorenç V, Gorroño-Echebarría MB, Martín J. Two functional variants of IRF5 influence the development of macular edema in patients with non-anterior uveitis. PLoS One 2013; 8:e76777. [PMID: 24116155 PMCID: PMC3792064 DOI: 10.1371/journal.pone.0076777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/27/2013] [Indexed: 01/01/2023] Open
Abstract
Objective Interferon (IFN) signaling plays a crucial role in autoimmunity. Genetic variation in interferon regulatory factor 5 (IRF5), a major regulator of the type I interferon induction, has been associated with risk of developing several autoimmune diseases. In the current study we aimed to evaluate whether three sets of correlated IRF5 genetic variants, independently associated with SLE and with different functional roles, are involved in uveitis susceptibility and its clinical subphenotypes. Methods Three IRF5 polymorphisms, rs2004640, rs2070197 and rs10954213, representative of each group, were genotyped using TaqMan® allelic discrimination assays in a total of 263 non-anterior uveitis patients and 724 healthy controls of Spanish origin. Results A clear association between two of the three analyzed genetic variants, rs2004640 and rs10954213, and the absence of macular edema was observed in the case/control analysis (PFDR=5.07E-03, OR=1.48, CI 95%=1.14-1.92 and PFDR=3.37E-03, OR=1.54, CI 95%=1.19-2.01, respectively). Consistently, the subphenotype analysis accordingly with the presence/absence of this clinical condition also reached statistical significance (rs2004640: P=0.037, OR=0.69, CI 95%=0.48-0.98; rs10954213: P=0.030, OR=0.67, CI 95%=0.47-0.96), thus suggesting that both IRF5 genetic variants are specifically associated with the lack of macular edema in uveitis patients. Conclusion Our results clearly showed for the first time that two functional genetic variants of IRF5 may play a role in the development of macular edema in non-anterior uveitis patients. Identifying genetic markers for macular edema could lead to the possibility of developing novel treatments or preventive therapies.
Collapse
Affiliation(s)
- Ana Márquez
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Granada, Spain
- * E-mail:
| | - María Carmen Cénit
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Granada, Spain
| | | | | | - Alfredo Adán
- Ophthalmology Department, Hospital Clínic, Barcelona, Spain
| | | | - David Díaz Valle
- Ophthalmology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Esperanza Pato
- Rheumatology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Ricardo Blanco
- Rheumatology Department, Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain
| | - Joaquín Cañal
- Ophthalmology Department, Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain
| | | | - Enrique de Ramón
- Internal Medicine Department, Hospital Carlos Haya, Málaga, Spain
| | | | | | - Joseba Artaraz
- Ophthalmology Department, Hospital de Cruces, Bilbao, Spain
| | | | - Víctor Llorenç
- Ophthalmology Department, Hospital Clínic, Barcelona, Spain
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Granada, Spain
| |
Collapse
|
20
|
Alonso-Perez E, Fernandez-Poceiro R, Lalonde E, Kwan T, Calaza M, Gomez-Reino JJ, Majewski J, Gonzalez A. Identification of three new cis-regulatory IRF5 polymorphisms: in vitro studies. Arthritis Res Ther 2013; 15:R82. [PMID: 23941291 PMCID: PMC3978921 DOI: 10.1186/ar4262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 08/13/2013] [Indexed: 01/18/2023] Open
Abstract
Background Polymorphisms in the interferon regulatory factor 5 (IRF5) gene are associated with susceptibility to systemic lupus erythematosus, rheumatoid arthritis and other diseases through independent risk and protective haplotypes. Several functional polymorphisms are already known, but they do not account for the protective haplotypes that are tagged by the minor allele of rs729302. Methods Polymorphisms in linkage disequilibrium (LD) with rs729302 or particularly associated with IRF5 expression were selected for functional screening, which involved electrophoretic mobility shift assays (EMSAs) and reporter gene assays. Results A total of 54 single-nucleotide polymorphisms in the 5' region of IRF5 were genotyped. Twenty-four of them were selected for functional screening because of their high LD with rs729302 or protective haplotypes. In addition, two polymorphisms were selected for their prominent association with IRF5 expression. Seven of these twenty-six polymorphisms showed reproducible allele differences in EMSA. The seven were subsequently analyzed in gene reporter assays, and three of them showed significant differences between their two alleles: rs729302, rs13245639 and rs11269962. Haplotypes including the cis-regulatory polymorphisms correlated very well with IRF5 mRNA expression in an analysis based on previous data. Conclusion We have found that three polymorphisms in LD with the protective haplotypes of IRF5 have differential allele effects in EMSA and in reporter gene assays. Identification of these cis-regulatory polymorphisms will allow more accurate analysis of transcriptional regulation of IRF5 expression, more powerful genetic association studies and deeper insight into the role of IRF5 in disease susceptibility.
Collapse
|
21
|
The applied basic research of systemic lupus erythematosus based on the biological omics. Genes Immun 2013; 14:133-46. [PMID: 23446742 DOI: 10.1038/gene.2013.3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the production of autoantibodies directed against nuclear self-antigens and circulating immune complexes. This results in damages to various organs or systems, including skin, joints, kidneys and the central nervous system. Clinical manifestations of SLE could be diverse, including glomerulonephritis, dermatitis, thrombosis, vasculitis, seizures and arthritis. The complicated pathogenesis and varied clinical symptoms of SLE pose great challenges in the diagnosis and monitoring of this disease. Unfortunately, the etiological factors and pathogenesis of SLE are still not completely understood. It is noteworthy that recent advances in our understanding of the biological omics and emerging technologies have been providing new tools in the analyses of SLE, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics and so on. In this article, we summarize our current knowledge in this field for a better understanding of the pathogenesis, diagnosis and treatment for SLE.
Collapse
|
22
|
Liu HF, An XJ, Yang Y, Yang L, Li Y, Huang CZ, Tao J, Tu YT. Association of rs10954213 polymorphisms and haplotype diversity in interferon regulatory factor 5 with systemic lupus erythematosus: A meta-analysis. ACTA ACUST UNITED AC 2013; 33:15-21. [DOI: 10.1007/s11596-013-1064-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Indexed: 11/24/2022]
|
23
|
Deng FY, Lei SF, Zhang YH, Zhang ZL, Guo YF. Functional relevance for associations between genetic variants and systemic lupus erythematosus. PLoS One 2013; 8:e53037. [PMID: 23341919 PMCID: PMC3544818 DOI: 10.1371/journal.pone.0053037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/22/2012] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a serious prototype autoimmune disease characterized by chronic inflammation, auto-antibody production and multi-organ damage. Recent association studies have identified a long list of loci that were associated with SLE with relatively high statistical power. However, most of them only established the statistical associations of genetic markers and SLE at the DNA level without supporting evidence of functional relevance. Here, using publically available datasets, we performed integrative analyses (gene relationship across implicated loci analysis, differential gene expression analysis and functional annotation clustering analysis) and combined with expression quantitative trait loci (eQTLs) results to dissect functional mechanisms underlying the associations for SLE. We found that 14 SNPs, which were significantly associated with SLE in previous studies, have cis-regulation effects on four eQTL genes (HLA-DQA1, HLA-DQB1, HLA-DQB2, and IRF5) that were also differentially expressed in SLE-related cell groups. The functional evidence, taken together, suggested the functional mechanisms underlying the associations of 14 SNPs and SLE. The study may serve as an example of mining publically available datasets and results in validation of significant disease-association results. Utilization of public data resources for integrative analyses may provide novel insights into the molecular genetic mechanisms underlying human diseases.
Collapse
Affiliation(s)
- Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, Soochow University, Suzhou, Jiangsu, P. R. China
- Department of Epidemiology, School of Public Health, Soochow University, Suzhou, Jiangsu, P. R. China
- * E-mail:
| | - Yong-Hong Zhang
- Center for Genetic Epidemiology and Genomics, Soochow University, Suzhou, Jiangsu, P. R. China
- Department of Epidemiology, School of Public Health, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Zeng-Li Zhang
- Center for Genetic Epidemiology and Genomics, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yu-Fan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
24
|
Vaughn SE, Kottyan LC, Munroe ME, Harley JB. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J Leukoc Biol 2012; 92:577-91. [PMID: 22753952 DOI: 10.1189/jlb.0212095] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Over 50 genetic variants have been statistically associated with the development of SLE (or lupus). Each genetic association is a key component of a pathway to lupus pathogenesis, the majority of which requires further mechanistic studies to understand the functional changes to cellular physiology. Whereas their use in clinical practice has yet to be established, these genes guide efforts to develop more specific therapeutic approaches. The BCR signaling pathways are rich in lupus susceptibility genes and may well provide novel opportunities for the understanding and clinical treatment of this complex disease.
Collapse
Affiliation(s)
- Samuel E Vaughn
- Cincinnati Children’s Hosptial Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
25
|
Role of cytokines in systemic lupus erythematosus: recent progress from GWAS and sequencing. J Biomed Biotechnol 2012; 2012:798924. [PMID: 22654485 PMCID: PMC3359833 DOI: 10.1155/2012/798924] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder, known to have a strong genetic component. Concordance between monozygotic twins is approximately 30-40%, which is 8-20 times higher than that of dizygotic twins. In the last decade, genome-wide approaches to understanding SLE have yielded many candidate genes, which are important to understanding the pathophysiology of the disease and potential targets for pharmaceutical intervention. In this paper, we focus on the role of cytokines and examine how genome-wide association studies, copy number variation studies, and next-generation sequencing are being employed to understand the etiology of SLE. Prominent genes identified by these approaches include BLK, FCγR3B, and TREX1. Our goal is to present a brief overview of genomic approaches to SLE and to introduce some of the key discussion points pertinent to the field.
Collapse
|
26
|
Nordang GBN, Viken MK, Amundsen SS, Sanchez ES, Flatø B, Førre OT, Martin J, Kvien TK, Lie BA. Interferon regulatory factor 5 gene polymorphism confers risk to several rheumatic diseases and correlates with expression of alternative thymic transcripts. Rheumatology (Oxford) 2011; 51:619-26. [PMID: 22179739 DOI: 10.1093/rheumatology/ker364] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Polymorphisms in genes related to the IFN pathway were investigated for susceptibility to rheumatic diseases and correlation with gene expression in thymus. METHODS Forty-five polymorphisms were genotyped in Norwegian patients with RA (n = 518), JIA (n = 440), SLE (n = 154) and healthy controls (n = 756). Forty-two thymic samples were used for gene expression analysis. Six hundred and fifty SLE patients and 737 healthy controls from Spain were available for replication. RESULTS We found a novel association between interferon regulatory factor 5 (IRF5), rs2004640 and JIA, in particular with the polyarthritis RF-negative patients [odds ratio (OR) = 1.60; 95% confidence interval (CI) 1.17, 2.20; P = 0.003]. Also, we confirmed the associations between rs2004640 and SLE (OR = 1.95; 95% CI 1.50, 2.53; P = 3.75 × 10(-7)), which was further strengthened in a meta-analysis (OR = 1.44; 95% CI 1.36, 1.52; P = 2.11 × 10(-37)). Suggestive evidence of association between rs2004640 and RA was found in the Norwegian discovery cohort (OR = 1.19; 95% CI 1.02, 1.40; P = 0.029) and strengthened in a meta-analysis (OR = 1.11; 95% CI 1.05, 1.18; P = 0.00028). Expression levels of exon 1B IRF5 transcripts were dependent on the presence of the rs2004640 T risk allele in thymic tissue, while exon 1A transcript levels correlated with IRF5 promoter CGGGG-indel variants. CONCLUSION The IFN pathway gene, IRF5, is a common susceptibility factor for several rheumatic and autoimmune diseases, and risk variants are correlated with expression of alternative IRF5 transcripts in thymus implying a regulatory role.
Collapse
Affiliation(s)
- Gry B N Nordang
- Department of Medical Genetics, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0407 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hu W, Ren H. A meta-analysis of the association of IRF5 polymorphism with systemic lupus erythematosus. Int J Immunogenet 2011; 38:411-7. [DOI: 10.1111/j.1744-313x.2011.01025.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Alonso-Perez E, Suarez-Gestal M, Calaza M, Kwan T, Majewski J, Gomez-Reino JJ, Gonzalez A. Cis-regulation of IRF5 expression is unable to fully account for systemic lupus erythematosus association: analysis of multiple experiments with lymphoblastoid cell lines. Arthritis Res Ther 2011; 13:R80. [PMID: 21627826 PMCID: PMC3218890 DOI: 10.1186/ar3343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/08/2011] [Accepted: 05/31/2011] [Indexed: 02/06/2023] Open
Abstract
Introduction Interferon regulatory factor 5 gene (IRF5) polymorphisms are strongly associated with several diseases, including systemic lupus erythematosus (SLE). The association includes risk and protective components. They could be due to combinations of functional polymorphisms and related to cis-regulation of IRF5 expression, but their mechanisms are still uncertain. We hypothesised that thorough testing of the relationships between IRF5 polymorphisms, expression data from multiple experiments and SLE-associated haplotypes might provide useful new information. Methods Expression data from four published microarray hybridisation experiments with lymphoblastoid cell lines (57 to 181 cell lines) were retrieved. Genotypes of 109 IRF5 polymorphisms, including four known functional polymorphisms, were considered. The best linear regression models accounting for the IRF5 expression data were selected by using a forward entry procedure. SLE-associated IRF5 haplotypes were correlated with the expression data and with the best cis-regulatory models. Results A large fraction of variability in IRF5 expression was accounted for by linear regression models with IRF5 polymorphisms, but at a different level in each expression data set. Also, the best models from each expression data set were different, although there was overlap between them. The SNP introducing an early polyadenylation signal, rs10954213, was included in the best models for two of the expression data sets and in good models for the other two data sets. The SLE risk haplotype was associated with high IRF5 expression in the four expression data sets. However, there was also a trend towards high IRF5 expression with some protective and neutral haplotypes, and the protective haplotypes were not associated with IRF5 expression. As a consequence, correlation between the cis-regulatory best models and SLE-associated haplotypes, regarding either the risk or protective component, was poor. Conclusions Our analysis indicates that although the SLE risk haplotype of IRF5 is associated with high expression of the gene, cis-regulation of IRF5 expression is not enough to fully account for IRF5 association with SLE susceptibility, which indicates the need to identify additional functional changes in this gene.
Collapse
Affiliation(s)
- Elisa Alonso-Perez
- Laboratorio Investigacion 10 and Rheumatology Unit, Instituto de Investigacion Sanitaria-Hospital Clinico Universitario de Santiago, Travesia Choupana sn, Santiago de Compostela E-15706, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol 2010; 6:683-92. [PMID: 21060334 DOI: 10.1038/nrrheum.2010.176] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our understanding of the genetic basis of systemic lupus erythematosus (SLE) has been rapidly advanced using large-scale, case-control, candidate gene studies as well as genome-wide association studies during the past 3 years. These techniques have identified more than 30 robust genetic associations with SLE including genetic variants of HLA and Fcγ receptor genes, IRF5, STAT4, PTPN22, TNFAIP3, BLK, BANK1, TNFSF4 and ITGAM. Most SLE-associated gene products participate in key pathogenic pathways, including Toll-like receptor and type I interferon signaling pathways, immune regulation pathways and those that control the clearance of immune complexes. Disease-associated loci that have not yet been demonstrated to have important functions in the immune system might provide new clues to the underlying molecular mechanisms that contribute to the pathogenesis or progression of SLE. Of note, genetic risk factors that are shared between SLE and other immune-related diseases highlight common pathways in the pathophysiology of these diseases, and might provide innovative molecular targets for therapeutic interventions.
Collapse
|
30
|
Delgado-Vega AM, Alarcón-Riquelme ME, Kozyrev SV. Genetic associations in type I interferon related pathways with autoimmunity. Arthritis Res Ther 2010; 12 Suppl 1:S2. [PMID: 20392289 PMCID: PMC2991775 DOI: 10.1186/ar2883] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type I interferons play an outstanding role in innate and adaptive immunity by enhancing functions of dendritic cells, inducing differentiation of monocytes, promoting immunoglobulin class switching in B cells and stimulating effector functions of T cells. The increased production of IFNα/β by plasmacytoid dendritic cells could be responsible for not only efficient antiviral defence, but it also may be a pathological factor in the development of various autoimmune disorders. The first evidence of a genetic link between type I interferons and autoimmune diseases was the observation that elevated IFNα activity is frequently detected in the sera of patients with systemic lupus erythematosus, and that this trait shows high heritability and familial aggregation in their first-degree healthy relatives. To date, a number of genes involved in interferon signalling have been associated with various autoimmune diseases. Patients with systemic lupus erythematosus, Sjögren's syndrome, dermatomyositis, psoriasis, and a fraction of patients with rheumatoid arthritis display a specific expression pattern of interferon-dependent genes in their leukocytes, termed the interferon signature. Here, in an attempt to understand the role of type I interferons in the pathogenesis of autoimmunity, we review the recent advances in the genetics of autoimmune diseases focusing on the association of genes involved in type I interferon pathways.
Collapse
Affiliation(s)
- Angélica M Delgado-Vega
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | | | | |
Collapse
|