1
|
Chen J, Zeng Q, Wang X, Xu R, Wang W, Huang Y, Sun Q, Yuan W, Wang P, Chen D, Tong P, Jin H. Aberrant methylation and expression of TNXB promote chondrocyte apoptosis and extracullar matrix degradation in hemophilic arthropathy via AKT signaling. eLife 2024; 13:RP93087. [PMID: 38819423 PMCID: PMC11142640 DOI: 10.7554/elife.93087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Recurrent joint bleeding in hemophilia patients frequently causes hemophilic arthropathy (HA). Drastic degradation of cartilage is a major characteristic of HA, but its pathological mechanisms has not yet been clarified. In HA cartilages, we found server matrix degradation and increased expression of DNA methyltransferase proteins. We thus performed genome-wide DNA methylation analysis on human HA (N=5) and osteoarthritis (OA) (N=5) articular cartilages, and identified 1228 differentially methylated regions (DMRs) associated with HA. Functional enrichment analyses revealed the association between DMR genes (DMGs) and extracellular matrix (ECM) organization. Among these DMGs, Tenascin XB (TNXB) expression was down-regulated in human and mouse HA cartilages. The loss of Tnxb in F8-/- mouse cartilage provided a disease-promoting role in HA by augmenting cartilage degeneration and subchondral bone loss. Tnxb knockdown also promoted chondrocyte apoptosis and inhibited phosphorylation of AKT. Importantly, AKT agonist showed chondroprotective effects following Tnxb knockdown. Together, our findings indicate that exposure of cartilage to blood leads to alterations in DNA methylation, which is functionally related to ECM homeostasis, and further demonstrate a critical role of TNXB in HA cartilage degeneration by activating AKT signaling. These mechanistic insights allow development of potentially new strategies for HA cartilage protection.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qinghe Zeng
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xu Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Rui Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Weidong Wang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuliang Huang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qi Sun
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Peijian Tong
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| |
Collapse
|
2
|
Fu L, Yu J, Chen Z, Gao F, Zhang Z, Fu J, Feng W, Hong P, Jin J. Shared genetic factors and causal association between chronic hepatitis C infection and diffuse large B cell lymphoma. Infect Agent Cancer 2024; 19:15. [PMID: 38654358 DOI: 10.1186/s13027-024-00577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Epidemiological research and systematic meta-analyses indicate a higher risk of B-cell lymphomas in patients with chronic hepatitis C virus (HCV) compared to non-infected individuals. However, the genetic links between HCV and these lymphomas remain under-researched. METHODS Mendelian randomization analysis was employed to explore the association between chronic hepatitis C (CHC) and B-cell lymphomas as well as chronic lymphocytic leukemia (CLL). Approximate Bayes Factor (ABF) localization analysis was conducted to find shared genetic variants that might connect CHC with B-cell lymphomas and chronic lymphocytic leukemia (CLL). Furthermore, The Variant Effect Predictor (VEP) was utilized to annotate the functional effects of the identified genetic variants. RESULTS Mendelian randomization revealed a significant association between CHC and increased diffuse large B cell lymphoma (DLBCL) risk (OR: 1.34; 95% CI: 1.01-1.78; P = 0.0397). Subsequent colocalization analysis pinpointed two noteworthy variants, rs17208853 (chr6:32408583) and rs482759 (chr6:32227240) between these two traits. The annotation of these variants through the VEP revealed their respective associations with the butyrophilin-like protein 2 (BTNL2) and notch receptor 4 (NOTCH4) genes, along with the long non-coding RNA (lncRNA) TSBP1-AS1. CONCLUSION This research provides a refined genetic understanding of the CHC-DLBCL connection, opening avenues for targeted therapeutic research and intervention.
Collapse
Affiliation(s)
- Leihua Fu
- Department of Hematology, Shaoxing People's Hospital, 312000, Shaoxing City, Zhejiang Province, China.
| | - Jieni Yu
- Department of Hematology, Shaoxing People's Hospital, 312000, Shaoxing City, Zhejiang Province, China
| | - Zhe Chen
- Department of Hematology, Shaoxing People's Hospital, 312000, Shaoxing City, Zhejiang Province, China
| | - Feidan Gao
- Department of Hematology, Shaoxing People's Hospital, 312000, Shaoxing City, Zhejiang Province, China
| | - Zhijian Zhang
- Department of Hematology, Shaoxing People's Hospital, 312000, Shaoxing City, Zhejiang Province, China
| | - Jiaping Fu
- Department of Hematology, Shaoxing People's Hospital, 312000, Shaoxing City, Zhejiang Province, China
| | - Weiying Feng
- Department of Hematology, Shaoxing People's Hospital, 312000, Shaoxing City, Zhejiang Province, China
| | - Pan Hong
- Department of Hematology, Shaoxing People's Hospital, 312000, Shaoxing City, Zhejiang Province, China
| | - Jing Jin
- Department of Hematology, Shaoxing People's Hospital, 312000, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
3
|
Fan W, Li Z, Wang Y, Zhang C, Liu H, Wang D, Bai Y, Luo S, Li Y, Qin Q, Chen W, Yong L, Zhen Q, Yu Y, Ge H, Mao Y, Cao L, Zhang R, Hu X, Yu Y, Li B, Sun L. Imputation of the major histocompatibility complex region identifies major independent variants associated with bullous pemphigoid and dermatomyositis in Han Chinese. J Dermatol 2022; 49:998-1004. [PMID: 35751838 DOI: 10.1111/1346-8138.16499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/29/2022] [Accepted: 06/05/2022] [Indexed: 11/27/2022]
Abstract
As autoimmune skin diseases, both bullous pemphigoid (BP) and dermatomyositis (DM) show significant associations with the major histocompatibility complex (MHC) region. In fact, the coexistence of BP and DM has been previously reported. Therefore, we hypothesized that there may be a potential genetic correlation between BP and DM. Based on data for 312 BP patients, 128 DM patients, and 6793 healthy control subjects, in the MHC region, we imputed single-nucleotide polymorphisms (SNP), insertions and deletions (INDEL), and copy number variations (CNV) using the 1KGP phase 3 dataset and amino acids (AA) and SNP using a Han-MHC reference database. An association study revealed the most significant SNP associated with BP, namely, rs580921 (p = 1.06E-08, odds ratio [OR] = 1.61, 95% confidence interval [CI] = 1.37-1.90), which is located in the C6orf10 gene, and the most significant classic human leukocyte antigen (HLA) allele associated with DM, namely, HLA-DPB1*1701 (p = 6.56E-10, OR = 3.61, 95% CI = 2.40-5.42). Further stepwise regression analyses with rs580921 identified a threonine at position 163 of the HLA-B gene as a new independent disease-associated AA, and HLA-DPB1*1701 indicated that no loci were significant. Three-dimensional ribbon models revealed that the HLA-B AA position 163 (p = 3.93E-07, OR = 1.64, 95% CI = 1.35-1.98) located in the α2 domain of the HLA-B molecule was involved in the process of specific antigen presentation. The calculations showed that there was no significant genetic correlation between BP and DM. Our study identified three significant loci in the MHC region, proving that the HLA region was significantly correlated with BP and DM separately. Our research highlights the key role of the MHC region in disease susceptibility.
Collapse
Affiliation(s)
- Wencheng Fan
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Zhuo Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yirui Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Chang Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Hao Liu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Daiyue Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yuanming Bai
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Sihan Luo
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yuanyuan Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qin Qin
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Liang Yong
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qi Zhen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yafen Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yiwen Mao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Lu Cao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Ruixue Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xia Hu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yanxia Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Bao Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,The Comprehensive Lab, College of Basic Medicine, Anhui Medical University, Hefei, China
| | - Liangdan Sun
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
4
|
Tseng CC, Lin YZ, Lin CH, Hwang DY, Li RN, Tsai WC, Ou TT, Wu CC, Lin YC, Sung WY, Chen KY, Chang SJ, Yen JH. Genetic and epigenetic alterations of cyclic AMP response element modulator in rheumatoid arthritis. Eur J Clin Invest 2022; 52:e13715. [PMID: 34783021 DOI: 10.1111/eci.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Genetic and epigenetic factors are strongly associated with the autoimmune disease rheumatoid arthritis (RA). Cyclic AMP response element modulator (CREM), a gene related to immune system regulation, has been implicated in various immune-mediated inflammatory processes, although it remains unknown whether CREM is involved in RA. METHODS This study enrolled 278 RA patients and 262 controls. Three variants [rs12765063, rs17499247, rs1213386] were identified through linkage disequilibrium and expression quantitative trait locus analysis, and CREM transcript abundance was determined by quantitative real-time polymerase chain reaction. The identified variants were genotyped using the TaqMan Allelic Discrimination assay, and CREM promoter methylation was assessed by bisulphite sequencing. Differences between groups and correlations between variables were assessed with Student's t-tests and Pearson's correlation coefficients. Associations between phenotypes and genotypes were evaluated with logistic regression. RESULTS Rheumatoid arthritis patients exhibited increased CREM expression (p < .0001), which was decreased by methotrexate (p = .0223) and biologics (p = .0001), but could not be attributed to CREM variants. Interestingly, rs17499247 displayed a significant association with serositis (p = .0377), and rs1213386 increased the risk of lymphadenopathy (p = .0398). Furthermore, seven CpG sites showed decreased methylation in RA (p = .0477~ p < .0001). CONCLUSIONS Collectively, our results indicate that CREM hypomethylation and CREM upregulation occur in RA and that CREM variants are involved in the development of serositis and lymphadenopathy in RA. This study highlights the novel roles of CREM in RA pathophysiology.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuan-Zhao Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hui Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Chih Lin
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Humanities and Education, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuan-Yu Chen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Epigenome association study for DNA methylation biomarkers in buccal and monocyte cells for female rheumatoid arthritis. Sci Rep 2021; 11:23789. [PMID: 34893669 PMCID: PMC8664902 DOI: 10.1038/s41598-021-03170-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Genetics (i.e., mutations) has been assumed to be the major factor in rheumatoid arthritis (RA) etiology, but accounts for a minority of the variance in disease risk for RA. In contrast to genetics, the environment can have dramatic impacts on epigenetics that associate with disease etiology. The current study used buccal cells and purified blood monocytes from two different clinical cohorts involving Caucasian or African American female populations with or without arthritis. The differential DNA methylation regions (DMRs) between the control and RA populations were identified with an epigenome-wide association study. The DMRs (i.e., epimutations) identified in the buccal cells and monocytes were found to be distinct. The DMR associated genes were identified and many have previously been shown to be associated with arthritis. Observations demonstrate DNA methylation epimutation RA biomarkers are cell type specific and similar findings were observed with the two racial background populations. Rheumatoid arthritis susceptibility epigenetic diagnosis appears feasible and may improve the clinical management of RA and allowpreventative medicine considerations.
Collapse
|
6
|
Wei S, Tao J, Xu J, Chen X, Wang Z, Zhang N, Zuo L, Jia Z, Chen H, Sun H, Yan Y, Zhang M, Lv H, Kong F, Duan L, Ma Y, Liao M, Xu L, Feng R, Liu G, Project TEWAS, Jiang Y. Ten Years of EWAS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100727. [PMID: 34382344 PMCID: PMC8529436 DOI: 10.1002/advs.202100727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Epigenome-wide association study (EWAS) has been applied to analyze DNA methylation variation in complex diseases for a decade, and epigenome as a research target has gradually become a hot topic of current studies. The DNA methylation microarrays, next-generation, and third-generation sequencing technologies have prepared a high-quality platform for EWAS. Here, the progress of EWAS research is reviewed, its contributions to clinical applications, and mainly describe the achievements of four typical diseases. Finally, the challenges encountered by EWAS and make bold predictions for its future development are presented.
Collapse
Affiliation(s)
- Siyu Wei
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Junxian Tao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Jing Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Xingyu Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhaoyang Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Lijiao Zuo
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhe Jia
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Haiyan Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongmei Sun
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yubo Yan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Mingming Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongchao Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Fanwu Kong
- The EWAS ProjectHarbinChina
- Department of NephrologyThe Second Affiliated HospitalHarbin Medical UniversityHarbin150001China
| | - Lian Duan
- The EWAS ProjectHarbinChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ye Ma
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Mingzhi Liao
- The EWAS ProjectHarbinChina
- College of Life SciencesNorthwest A&F UniversityYanglingShanxi712100China
| | - Liangde Xu
- The EWAS ProjectHarbinChina
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Rennan Feng
- The EWAS ProjectHarbinChina
- Department of Nutrition and Food HygienePublic Health CollegeHarbin Medical UniversityHarbin150081China
| | - Guiyou Liu
- The EWAS ProjectHarbinChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijing100069China
| | | | - Yongshuai Jiang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| |
Collapse
|
7
|
Qi Y, Zhang L, Yang X, Tang B, Xiao T. Genome-Wide DNA Methylation Profile in Whole Blood of Patients With Chronic Spontaneous Urticaria. Front Immunol 2021; 12:681714. [PMID: 34539625 PMCID: PMC8448194 DOI: 10.3389/fimmu.2021.681714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Chronic spontaneous urticaria (CSU) is a common autoimmune skin disease. Little is known about the role of epigenetics in the pathogenesis of CSU. This study aimed to investigate genome-wide DNA methylation profile in whole blood of patients with CSU. Patients and Methods Genome-wide DNA methylation levels in whole blood samples of 95 Chinese Han ethnicity adult CSU patients and 95 ethnicity-, age- and sex-matched healthy controls were analyzed using Illumina 850K methylation chip. The differentially methylated genes (DMGs) were screened out and then functionally annotated by the gene ontology and the Kyoto encyclopedia of genes and genomes databases. Results A total of 439 differentially methylated positions (DMPs) (p < 0.01 and |Δβ| ≥ 0.06) were identified with 380 hypomethylated and 59 hypermethylated. The average global DNA methylation levels of the 439 DMPs in the CSU patients were significantly lower than those in the healthy controls (p < 0.001). The distribution of the 439 DMPs was wide on chromosome 1 to 22 and chromosome X. Chromosome 6 embodied the largest number of DMPs (n = 51) and their annotated genes were predominantly related to autoimmunity. The 304 annotated DMGs were mainly enriched in autoimmune disease- and immune-related pathways. A total of 41 DMPs annotated to 28 DMGs were identified when p < 0.01 and |Δβ| ≥ 0.1. Of the 28 DMGs, HLA-DPB2, HLA-DRB1, PPP2R5C, and LTF were associated with autoimmunity. CSU cases with elevated total IgE, positive anti-thyroid peroxidase IgG autoantibodies, positive anti-thyroglobulin IgG autoantibodies, angioedema, UASday > 4, or recurrent CSU showed phenotype-specific DMPs as compared with cases with normal total IgE, negative anti-thyroid peroxidase IgG autoantibodies, negative anti-thyroglobulin IgG autoantibodies, no angioedema, UASday ≤ 4, or non-recurrent CSU respectively. Conclusion This study shows a distinct genome-wide DNA methylation profile in Chinese Han ethnicity adult CSU patients and indicates a role of epigenetics in the pathogenesis of CSU. The predominant enrichment of the CSU-associated DMGs in immunological pathways provides supportive evidence for the immunopathogenesis of CSU. Future research on the CSU-associated DMPs and DMGs will help discover potential therapeutic targets for CSU.
Collapse
Affiliation(s)
- Yumeng Qi
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, China
| | - Liming Zhang
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, China
| | | | - Biao Tang
- Sinotech Genomics Co., Ltd, Shanghai, China
| | - Ting Xiao
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, China
| |
Collapse
|
8
|
Salviano-Silva A, Becker M, Augusto DG, Busch H, Adelman Cipolla G, Farias TDJ, Bumiller-Bini V, Calonga-Solís V, Munz M, Franke A, Wittig M, Camargo CM, Goebeler M, Hundt JE, Günther C, Gläser R, Hadaschik E, Pföhler C, Sárdy M, Van Beek N, Worm M, Zillikens D, Boldt ABW, Schmidt E, Petzl-Erler ML, Ibrahim S, Malheiros D. Genetic association and differential expression of HLAComplexGroup lncRNAs in pemphigus. J Autoimmun 2021; 123:102705. [PMID: 34325306 DOI: 10.1016/j.jaut.2021.102705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pemphigus is a group of bullous diseases characterized by acantholysis and skin blisters. As for other autoimmune diseases, the strongest genetic associations found so far for pemphigus foliaceus (PF) and vulgaris (PV) are with alleles of HLA genes. However, apart from protein-coding genes, the MHC region includes a set of poorly explored long non-coding RNA (lncRNA) genes, the HLA complex group (HCG). OBJECTIVES To investigate if HCG lncRNA alleles are associated with pemphigus susceptibility. METHODS AND RESULTS We analyzed SNPs in 13 HCG lncRNA genes, both in PV (Germany: 241 patients; 1,188 controls) and endemic PF (Brazil: 227 patients; 194 controls), applying multivariate logistic regression. We found 55 associations with PV (pcorr < 0.01) and nine with endemic PF (pcorr < 0.05), the majority located in TSBP1-AS1 (which includes HCG23) and HCG27 lncRNA genes, independently of HLA alleles previously associated with pemphigus. The association of TSBP1-AS1 rs3129949*A allele was further replicated in sporadic PF (p = 0.027, OR = 0.054; 75 patients and 150 controls, all from Germany). Next, we evaluated the expression levels of TSBP1-AS1, TSBP1, HCG23, and HCG27 in blood mononuclear cells of Brazilian patients and controls. HCG27 was upregulated in endemic PF (p = 0.035, log2 FC = 1.3), while TSBP1-AS1 was downregulated in PV (p = 0.029, log2 FC = -1.29). The same expression patterns were also seen in cultured keratinocytes stimulated with IgG antibodies from patients and controls from Germany. TSBP1 mRNA levels were also decreased in endemic PF blood cells (p = 0.042, log2 FC = -2.14). TSBP1-AS1 and HCG27 were also observed downregulated in CD19+ cells of endemic PF (p < 0.01, log2 FC = -0.226 and -0.46 respectively). CONCLUSIONS HCG lncRNAs are associated with susceptibility to pemphigus, being TSBP1-AS1 and HCG27 also differentially expressed in distinct cell populations. These results suggest a role for HCG lncRNAs in pemphigus autoimmunity.
Collapse
Affiliation(s)
- Amanda Salviano-Silva
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil; Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Danillo G Augusto
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gabriel Adelman Cipolla
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Ticiana D-J Farias
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Valéria Bumiller-Bini
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil; Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Verónica Calonga-Solís
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Matthias Munz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carolina M Camargo
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | - Claudia Günther
- Department of Dermatology, University Hospital, TU, Dresden, Germany
| | - Regine Gläser
- Department of Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Claudia Pföhler
- Saarland University Medical Center, Department of Dermatology, Homburg, Germany
| | - Miklós Sárdy
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Nina Van Beek
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Angelica B W Boldt
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Maria Luiza Petzl-Erler
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Danielle Malheiros
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
9
|
de la Calle-Fabregat C, Niemantsverdriet E, Cañete JD, Li T, van der Helm-van Mil AHM, Rodríguez-Ubreva J, Ballestar E. The DNA methylation Profile of Undifferentiated Arthritis Patients Anticipates their Subsequent Differentiation to Rheumatoid Arthritis. Arthritis Rheumatol 2021; 73:2229-2239. [PMID: 34105306 DOI: 10.1002/art.41885] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Undifferentiated arthritis (UA) is the term used to cover all the cases of arthritis that do not fit a specific diagnosis. A significant percentage of UA patients progress to rheumatoid arthritis (RA), others to a different definite rheumatic disease, and the rest undergo spontaneous remission. Therapeutic intervention in patients with UA can delay or halt disease progression and its long-term consequences. It is therefore of inherent interest to identify those UA patients with a high probability of progressing to RA who would benefit from early appropriate therapy. We hypothesized that alterations in the DNA methylation profiles of immune cells may inform on the genetically- or environmentally-determined status of patients and potentially discriminate between disease subtypes. METHODS In this study, we performed DNA methylation profiling of a UA patient cohort, in which progression into RA occurs for a significant proportion of the patients. RESULTS We find differential DNA methylation in UA patients compared to healthy controls. Most importantly, our analysis identifies a DNA methylation signature characteristic of those UA cases that differentiate to RA. We demonstrate that the methylome of peripheral mononuclear cells can be used to anticipate the evolution of UA to RA, and that this methylome is associated with a number of inflammatory pathways and transcription factors. Finally, we design a machine-learning strategy for DNA methylation-based classification that predicts the differentiation of UA patients towards RA. CONCLUSION DNA methylation profiling provides a good predictor of UA-to-RA progression to anticipate targeted treatments and improve clinical management.
Collapse
Affiliation(s)
| | - Ellis Niemantsverdriet
- Department of Rheumatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, the Netherlands
| | - Juan D Cañete
- Rheumatology Service, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | | | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| |
Collapse
|
10
|
Qiu W, Liu Y. DNA Methylation of the MHC Region in Rheumatoid Arthritis: Perspectives and Challenges. J Rheumatol 2020; 47:1597-1599. [PMID: 33139520 DOI: 10.3899/jrheum.191404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wenqing Qiu
- W. Qiu, MS, Y. Liu, PhD, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yun Liu
- W. Qiu, MS, Y. Liu, PhD, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Guo S, Xu L, Chang C, Zhang R, Jin Y, He D. Epigenetic Regulation Mediated by Methylation in the Pathogenesis and Precision Medicine of Rheumatoid Arthritis. Front Genet 2020; 11:811. [PMID: 32849810 PMCID: PMC7417338 DOI: 10.3389/fgene.2020.00811] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a complex disease triggered by the interaction between genetics and the environment, especially through the shared epitope (SE) and cell surface calreticulin (CSC) theory. However, the available evidence shows that genetic diversity and environmental exposure cannot explain all the clinical characteristics and heterogeneity of RA. In contrast, recent studies demonstrate that epigenetics play important roles in the pathogenesis of RA, especially DNA methylation and histone modification. DNA methylation and histone methylation are involved in innate and adaptive immune cell differentiation and migration, proliferation, apoptosis, and mesenchymal characteristics of fibroblast-like synoviocytes (FLS). Epigenetic-mediated regulation of immune-related genes and inflammation pathways explains the dynamic expression network of RA. In this review, we summarize the comprehensive evidence to show that methylation of DNA and histones is significantly involved in the pathogenesis of RA and could be applied as a promising biomarker in the disease progression and drug-response prediction. We also explain the advantages and challenges of the current epigenetics research in RA. In summary, epigenetic modules provide a possible interface through which genetic and environmental risk factors connect to contribute to the susceptibility and pathogenesis of RA. Additionally, epigenetic regulators provide promising drug targets to develop novel therapeutic drugs for RA. Finally, DNA methylation and histone modifications could be important features for providing a better RA subtype identification to accelerate personalized treatment and precision medicine.
Collapse
Affiliation(s)
- Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Lingxia Xu
- Department of Rheumatology, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- Department of Rheumatology, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yehua Jin
- Department of Rheumatology, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|