1
|
Zhang L, Sun L, Wang L, Wang J, Wang D, Jiang J, Zhang J, Zhou Q. Mitochondrial division inhibitor (mdivi-1) inhibits proliferation and epithelial-mesenchymal transition via the NF-κB pathway in thyroid cancer cells. Toxicol In Vitro 2023; 88:105552. [PMID: 36621616 DOI: 10.1016/j.tiv.2023.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Excessively fragmented mitochondria have been reported in thyroid cancer (TC). Mitochondrial division inhibitor (mdivi-1), a putative inhibitor of dynamin-related protein 1 (Drp1), prevents mitochondrial fission and thereby restricts cell proliferation across several types of primary cancer. However, the role of mdivi-1 on TC has not been sufficiently studied. This research is intended to explore the therapeutic effect of mdivi-1 in TC cells. Results demonstrated that highly invasive TC cells displayed excessive mitochondrial fission with more fragmented mitochondria. Treatment with mdivi-1 inhibited mitochondrial fission in 8505C cells as indicated by transmission electron microscope (TEM). It also impaired the proliferation and increased apoptosis in 8505C and K1 cells as shown by plate cloning assay, cell viability assay, and apoptosis assay. Mdivi-1 treatment also attenuated migratory and invasive abilities in 8505C and K1 cells as shown by the transwell assay and the wound healing assay. And we noticed the same inhibition of mdivi-1 in cell migration and cell viability after the knockdown of Drp1 in 8505C cells. This demonstrated that mdivi-1 exerted an anti-tumor effect independently of Drp1 in 8505C cells. Moreover, mdivi-1 treatment reversed epithelial-mesenchymal transition (EMT) by inhibiting the NF-κB pathway in 8505C cells. The present findings demonstrate that mdivi-1 has a therapeutic role in thyroid carcinoma.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Lei Sun
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Lirong Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Juan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Dan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Jinhui Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
2
|
Cao Z, Zhang Z, Tang X, Liu R, Wu M, Wu J, Liu Z. Comprehensive analysis of tissue proteomics in patients with papillary thyroid microcarcinoma uncovers the underlying mechanism of lymph node metastasis and its significant sex disparities. Front Oncol 2022; 12:887977. [PMID: 36106120 PMCID: PMC9465038 DOI: 10.3389/fonc.2022.887977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background Lymph node metastasis (LNM) in papillary thyroid microcarcinoma (PTMC) is associated with an increased risk of recurrence and poor prognosis. Sex has been regarded as a critical risk factor for LNM. The present study aimed to investigate the molecular mechanisms underlying LNM and its significant sex disparities in PTMC development. Methods A direct data-independent acquisition (DIA) proteomics approach was used to identify differentially expressed proteins (DEPs) in PTMC tumorous tissues with or without LNM and from male and female patients with LNM. The functional annotation of DEPs was performed using bioinformatics methods. Furthermore, The Cancer Genome Atlas Thyroid Carcinoma (TCGA-THCA) dataset and immunohistochemistry (IHC) were used to validate selected DEPs. Results The proteomics profile in PTMC with LNM differed from that of PTMC without LNM. The metastasis-related DEPs were primarily enriched in categories associated with mitochondrial dysfunction and may promote tumor progression by activating oxidative phosphorylation and PI3K/AKT signaling pathways. Comparative analyses of these DEPs revealed downregulated expression of specific proteins with well-established links to tumor metastasis, such as SLC25A15, DIRAS2, PLA2R1, and MTARC1. Additionally, the proteomics profiles of male and female PTMC patients with LNM were dramatically distinguishable. An elevated level of ECM-associated proteins might be related to more LNM in male PTMC than in female PTMC patients. The upregulated expression levels of MMRN2 and NID2 correlated with sex disparities and showed a positive relationship with unfavorable variables, such as LNMs and poor prognosis. Conclusions The proteomics profiles of PTMC show significant differences associated with LNM and its sex disparities, which further expands our understanding of the functional networks and signaling pathways related to PTMC with LNM.
Collapse
Affiliation(s)
- Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zejian Zhang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jianqiang Wu, ; Ziwen Liu,
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jianqiang Wu, ; Ziwen Liu,
| |
Collapse
|
3
|
Ju SH, Lee SE, Kang YE, Shong M. Development of Metabolic Synthetic Lethality and Its Implications for Thyroid Cancer. Endocrinol Metab (Seoul) 2022; 37:53-61. [PMID: 35255601 PMCID: PMC8901971 DOI: 10.3803/enm.2022.1402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer therapies targeting genetic alterations are a topic of great interest in the field of thyroid cancer, which frequently harbors mutations in the RAS, RAF, and RET genes. Unfortunately, U.S. Food and Drug Administration-approved BRAF inhibitors have relatively low therapeutic efficacy against BRAF-mutant thyroid cancer; in addition, the cancer often acquires drug resistance, which prevents effective treatment. Recent advances in genomics and transcriptomics are leading to a more complete picture of the range of mutations, both driver and messenger, present in thyroid cancer. Furthermore, our understanding of cancer suggests that oncogenic mutations drive tumorigenesis and induce rewiring of cancer cell metabolism, which promotes survival of mutated cells. Synthetic lethality (SL) is a method of neutralizing mutated genes that were previously considered untargetable by traditional genotype-targeted treatments. Because these metabolic events are specific to cancer cells, we have the opportunity to develop new therapies that target tumor cells specifically without affecting healthy tissue. Here, we describe developments in metabolism-based cancer therapy, focusing on the concept of metabolic SL in thyroid cancer. Finally, we discuss the essential implications of metabolic reprogramming and its role in the future direction of SL for thyroid cancer.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Seong Eun Lee
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Minho Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| |
Collapse
|
4
|
Baek HS, Jeong CH, Ha J, Bae JS, Kim JS, Lim DJ, Kim CM. Cost-Effectiveness Analysis of Active Surveillance Compared to Early Surgery in Small Papillary Thyroid Cancer: A Systemic Review. Cancer Manag Res 2021; 13:6721-6730. [PMID: 34471385 PMCID: PMC8405161 DOI: 10.2147/cmar.s317627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Papillary thyroid microcarcinoma (PTMC) has indolent features and low mortality. Recently, active surveillance (AS) instead of early surgery (ES) has been introduced as one treatment option but economical preference has not been established. The study objective was to systemically review the literature relating to cost-effectiveness of AS compared to ES for PTMC. Keywords were selected through PICO (Population, Intervention, Comparison, and Outcomes) tools. The search was conducted using PubMed, Cochrane, EMBASE, and Elsevier databases. Papers that had irrelevant titles were written in foreign languages, or had no original results were excluded. Out of the 62 papers extracted, five relevant to the subject matter of this study were identified. Three papers made their own decision models and proceeded with cost-effectiveness analysis (CEA), but the remaining two simply compared costs rather than cost-effectiveness. In terms of cost-effectiveness, three papers preferred AS, one preferred ES, and one preferred neither. The major differences in the CEA might arise from variations in each country’s medical insurance system, the utility score systems, and decision models used. In subgroup analysis, two papers preferred AS to ES for patients at a younger age at diagnosis in terms of cost-effectiveness as well as tumor biological characteristics. Although AS has been generally more cost-effective than ES in previous publications, younger age at diagnosis could be one factor contributing to preference for ES. The CEA of prospective cohorts based on the decision model and utility score for thyroid cancer should be undertaken to confirm the cost-effectiveness of AS.
Collapse
Affiliation(s)
- Han-Sang Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chai-Ho Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Republic of Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ja-Seong Bae
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-Soo Kim
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Jun Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul-Min Kim
- Department of Family Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Association between Circulating Fibroblast Growth Factor 21 and Aggressiveness in Thyroid Cancer. Cancers (Basel) 2019; 11:cancers11081154. [PMID: 31408968 PMCID: PMC6721537 DOI: 10.3390/cancers11081154] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/13/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays important roles in regulating glucose, lipid, and energy metabolism; however, its effects in tumors remain poorly understood. To understand the role of FGF21 in regulating tumor aggressiveness in thyroid cancer, serum levels of FGF21 were measured in healthy subjects and patients with papillary thyroid cancer (PTC), and expression levels of FGF21, FGF receptors (FGFRs), and β-klotho (KLB) were investigated in human thyroid tissues. The cell viability, migrating cells, and invading cells were measured in PTC cells after treatment with recombinant FGF21. Higher serum levels of FGF21 were found in patients with thyroid cancer than in control participants, and were significantly associated with body mass index (BMI), fasting glucose levels, triglyceride levels, tumor stage, lymphovascular invasion, and recurrence. Serum FGF21 levels were positively correlated with the BMI in patients with PTC, and significantly associated with recurrence. Recombinant FGF21 led to tumor aggressiveness via activation of the FGFR signaling axis and epithelial-to-mesenchymal transition (EMT) signaling in PTC cells, and AZD4547, an FGFR tyrosine kinase inhibitor, attenuated the effects of FGF21. Hence, FGF21 may be a new biomarker for predicting tumor progression, and targeting FGFR may be a novel therapy for the treatment of obese patients with PTC.
Collapse
|
6
|
Wei W, Hardin H, Luo QY. Targeting autophagy in thyroid cancers. Endocr Relat Cancer 2019; 26:R181-R194. [PMID: 30667364 DOI: 10.1530/erc-18-0502] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Thyroid cancer is one of the most common endocrine malignancies. Although the prognosis for the majority of thyroid cancers is relatively good, patients with metastatic, radioiodine-refractory or anaplastic thyroid cancers have an unfavorable outcome. With the gradual understanding of the oncogenic events in thyroid cancers, molecularly targeted therapy using tyrosine kinase inhibitors (TKIs) is greatly changing the therapeutic landscape of radioiodine-refractory differentiated thyroid cancers (RR-DTCs), but intrinsic and acquired drug resistance, as well as adverse effects, may limit their clinical efficacy and use. In this setting, development of synergistic treatment options is of clinical significance, which may enhance the therapeutic effect of current TKIs and further overcome the resultant drug resistance. Autophagy is a critical cellular process involved not only in protecting cells and organisms from stressors but also in the maintenance and development of various kinds of cancers. Substantial studies have explored the complex role of autophagy in thyroid cancers. Specifically, autophagy plays important roles in mediating the drug resistance of small-molecular therapeutics, in regulating the dedifferentiation process of thyroid cancers and also in affecting the treatment outcome of radioiodine therapy. Exploring how autophagy intertwines in the development and dedifferentiation process of thyroid cancers is essential, which will enable a more profound understanding of the physiopathology of thyroid cancers. More importantly, these advances may fuel future development of autophagy-targeted therapeutic strategies for patients with thyroid cancers. Herein, we summarize the most recent evidence uncovering the role of autophagy in thyroid cancers and highlight future research perspectives in this regard.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
7
|
Barabutis N, Schally AV, Siejka A. P53, GHRH, inflammation and cancer. EBioMedicine 2018; 37:557-562. [PMID: 30344124 PMCID: PMC6284454 DOI: 10.1016/j.ebiom.2018.10.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
P53 is a transcription factor very often mutated in malignancies. It functions towards the regulation of important cellular activities, such as cell cycle, senescence and apoptosis. Since inflammation and cancer are strongly associated through common pathways, P53 can suppress inflammation in a plethora of human tissues. Growth Hormone - Releasing Hormone is a hypothalamic peptide with a great capacity to affect the complex networks of cellular regulation via GHRH - specific receptors. GHRH antagonistic and agonistic analogs have been developed for clinical applications, including treatment of benign prostatic hyperplasia, breast, prostate and lung cancers, diabetes and neurodegenerative diseases. The epicenter of the current manuscript is the protective role of P53 against inflammation and cancer and emphasizes the p53 – mediated beneficial effects of GHRH antagonists in various human diseases. Inflammation is tightly associated with cancer. GHRH antagonists induce P53 expression. P53 exerts a protective effect against cancer and inflammation.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| | - Andrew V Schally
- Department of Pathology and Divisions of Hematology/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33156, USA; Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33156, USA
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Poland
| |
Collapse
|