1
|
Xu Q, Shi MF, Han YF, Liu MY, Liu XB, Ma XN, Feng W, Lin CS, Liu QP. Kunduan Yimu Decoction affected Th17/Treg balance through microRNA-124 to improve rheumatoid arthritis pathology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156129. [PMID: 39427523 DOI: 10.1016/j.phymed.2024.156129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune condition characterized by inflammation and the deterioration of joints. Current treatments often have side effects, highlighting the need for safer options. This study investigates the therapeutic effects of Kunduan Yimu Decoction (KDYMD) on RA, focusing on the role of miR-124 in regulating Th17/Treg differentiation. METHODS PBMCs from RA patients were analyzed before and after KDYMD treatment. RT-qPCR was used to measure the miR-124 expressions. Flow cytometry was used to assess the ratios of Th17 to Treg cells. ELISA was used to quantify the cytokine concentrations. The effects of KDYMD on JAK2/STAT3 signaling were evaluated by western blot analysis. A CIA mouse model was used to validate the in vivo effects of KDYMD. RESULTS MiR-124 expression was significantly upregulated in PBMCs of RA patients after KDYMD treatment. This upregulation was associated with increased Tip60 and Foxp3 expression and decreased RORγt expression. In the cytokine analysis, IL-1, IL-6, and IL-17A were decreased, and IL-10 and TGF- were increased after treatment. Flow cytometry showed a restoration of the Th17/Treg balance, with a decrease in Th17 and an increase in Treg cells. In vivo, KDYMD treatment ameliorated ankle swelling and arthritis index in CIA mice, comparable to methotrexate (MTX). In addition, KDYMD modulated JAK2/STAT3 signaling and enhanced anti-inflammatory responses. CONCLUSIONS KDYMD exerts significant anti-inflammatory effects in RA by upregulating miR-124, which in turn regulates Th17/Treg differentiation and modulates JAK2/STAT3 signaling. A novel mechanism involving miR-124 and immune cell balance suggests KDYMD could be a promising therapeutic agent for RA.
Collapse
Affiliation(s)
- Qiang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| | - Mei-Feng Shi
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Feng Han
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Min-Ying Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xiao-Bao Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xiao-Na Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Feng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang-Song Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| | - Qing-Ping Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Skalny AV, Aschner M, Tsatsakis A, Rocha JB, Santamaria A, Spandidos DA, Martins AC, Lu R, Korobeinikova TV, Chen W, Chang JS, Chao JC, Li C, Tinkov AA. Role of vitamins beyond vitamin D 3 in bone health and osteoporosis (Review). Int J Mol Med 2024; 53:9. [PMID: 38063255 PMCID: PMC10712697 DOI: 10.3892/ijmm.2023.5333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of the present review was to summarize the molecular mechanisms associated with the effects of the vitamins A, C, E and K, and group B vitamins on bone and their potential roles in the development of osteoporosis. Epidemiological findings have demonstrated an association between vitamin deficiency and a higher risk of developing osteoporosis; vitamins are positively related to bone health upon their intake at the physiological range. Excessive vitamin intake can also adversely affect bone formation, as clearly demonstrated for vitamin A. Vitamins E (tocopherols and tocotrienols), K2 (menaquinones 4 and 7) and C have also been shown to promote osteoblast development through bone morphogenetic protein (BMP)/Smad and Wnt/β‑catenin signaling, as well as the TGFβ/Smad pathway (α‑tocopherol). Vitamin A metabolite (all‑trans retinoic acid) exerts both inhibitory and stimulatory effects on BMP‑ and Wnt/β‑catenin‑mediated osteogenesis at the nanomolar and micromolar range, respectively. Certain vitamins significantly reduce receptor activator of nuclear factor kappa‑B ligand (RANKL) production and RANKL/RANK signaling, while increasing the level of osteoprotegerin (OPG), thus reducing the RANKL/OPG ratio and exerting anti‑osteoclastogenic effects. Ascorbic acid can both promote and inhibit RANKL signaling, being essential for osteoclastogenesis. Vitamin K2 has also been shown to prevent vascular calcification by activating matrix Gla protein through its carboxylation. Therefore, the maintenance of a physiological intake of vitamins should be considered as a nutritional strategy for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Division of Morphology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Joao B.T. Rocha
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Abel Santamaria
- Faculty of Science, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tatiana V. Korobeinikova
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jung-Su Chang
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Jane C.J. Chao
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Alexey A. Tinkov
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| |
Collapse
|
3
|
Saud Gany SL, Chin KY, Tan JK, Aminuddin A, Makpol S. Preventative and therapeutic potential of tocotrienols on musculoskeletal diseases in ageing. Front Pharmacol 2023; 14:1290721. [PMID: 38146461 PMCID: PMC10749321 DOI: 10.3389/fphar.2023.1290721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Musculoskeletal health is paramount in an ageing population susceptible to conditions such as osteoporosis, arthritis and fractures. Age-related changes in bone, muscle, and joint function result in declining musculoskeletal health, reduced mobility, increased risk of falls, and persistent discomfort. Preserving musculoskeletal wellbeing is essential for maintaining independence and enhancing the overall quality of life for the elderly. The global burden of musculoskeletal disorders is significant, impacting 1.71 billion individuals worldwide, with age-related muscle atrophy being a well-established phenomenon. Tocotrienols, a unique type of vitamin E found in various sources, demonstrate exceptional antioxidant capabilities compared to tocopherols. This characteristic positions them as promising candidates for addressing musculoskeletal challenges, particularly in mitigating inflammation and oxidative stress underlying musculoskeletal disorders. This review paper comprehensively examines existing research into the preventive and therapeutic potential of tocotrienols in addressing age-related musculoskeletal issues. It sheds light on the promising role of tocotrienols in enhancing musculoskeletal health and overall wellbeing, emphasizing their significance within the broader context of age-related health concerns.
Collapse
Affiliation(s)
- Siti Liyana Saud Gany
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Chen N, Diao CY, Huang X, Tan WX, Chen YB, Qian XY, Gao J, Zhao DB. RhoA Promotes Synovial Proliferation and Bone Erosion in Rheumatoid Arthritis through Wnt/PCP Pathway. Mediators Inflamm 2023; 2023:5057009. [PMID: 38022686 PMCID: PMC10667059 DOI: 10.1155/2023/5057009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Ras homolog gene family member A (RhoA) plays a major role in the Wnt/planar cell polarity (PCP) pathway, which is significantly activated in patients with rheumatoid arthritis (RA). The function of RhoA in RA synovitis and bone erosion is still elusive. Here, we not only explored the impact of RhoA on the proliferation and invasion of RA fibroblast-like synoviocytes (FLSs) but also elucidated its effect on mouse osteoclast and a mouse model of collagen-induced arthritis (CIA). Results showed that RhoA was overexpressed in RA and CIA synovial tissues. Lentivirus-mediated silencing of RhoA increased apoptosis, attenuated invasion, and dramatically upregulated osteoprotegerin/receptor activator of nuclear factor-κB ligand (OPG/RANKL) ratio in RA-FLSs. Additionally, the silencing of RhoA inhibited mouse osteoclast differentiation in vitro and alleviated synovial hyperplasia and bone erosion in the CIA mouse model. These effects in RA-FLSs and osteoclasts were all regulated by RhoA/Rho-associated protein kinase 2 (ROCK2) and might interact with Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Ning Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Rheumatology and Immunology, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Chao-Yue Diao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Xing Tan
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Ya-Bing Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin-Yu Qian
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dong-Bao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Skubica P, Husakova M, Dankova P. In vitro osteoclastogenesis in autoimmune diseases - Strengths and pitfalls of a tool for studying pathological bone resorption and other disease characteristics. Heliyon 2023; 9:e21925. [PMID: 38034780 PMCID: PMC10682642 DOI: 10.1016/j.heliyon.2023.e21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Osteoclasts play a critical role in bone pathology frequently associated with autoimmune diseases. Studying the etiopathogenesis of these diseases and their clinical manifestations can involve in vitro osteoclastogenesis, an experimental technique that utilizes osteoclast precursors that are relatively easily accessible from peripheral blood or synovial fluid. However, the increasing number of methodical options to study osteoclastogenesis in vitro poses challenges in translating findings to clinical research and practice. This review compares and critically evaluates previous research work based on in vitro differentiation of human osteoclast precursors originating from patients, which aimed to explain autoimmune pathology in rheumatic and enteropathic diseases. The discussion focuses primarily on methodical differences between the studies, including the origin of osteoclast precursors, culture conditions, and methods for identifying osteoclasts and assessing their activity. Additionally, the review examines the clinical significance of the three most commonly used in vitro approaches: induced osteoclastogenesis, spontaneous osteoclastogenesis, and cell co-culture. By analyzing and integrating the gathered information, this review proposes general connections between different studies, even in cases where their results are seemingly contradictory. The derived conclusions and future directions aim to enhance our understanding of a potential and limitations of in vitro osteoclastogenesis and provide a foundation for discussing novel methods (such as osteoclastogenesis dynamic) and standardized approaches (such as spontaneous osteoclastogenesis) for future use in autoimmune disease research.
Collapse
Affiliation(s)
- Patrik Skubica
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Marketa Husakova
- First Faculty of Medicine, Charles University, Prague and Institute of Rheumatology, Prague, Czech Republic
| | - Pavlina Dankova
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Tejpal Singh HS, Aminuddin AA, Pang KL, Ekeuku SO, Chin KY. The Role of Tocotrienol in Arthritis Management-A Scoping Review of Literature. Pharmaceuticals (Basel) 2023; 16:385. [PMID: 36986484 PMCID: PMC10052945 DOI: 10.3390/ph16030385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Arthritis is a cluster of diseases impacting joint health and causing immobility and morbidity in the elderly. Among the various forms of arthritis, osteoarthritis (OA) and rheumatoid arthritis (RA) are the most common. Currently, satisfying disease-modifying agents for arthritis are not available. Given the pro-inflammatory and oxidative stress components in the pathogenesis of arthritis, tocotrienol, a family of vitamin E with both anti-inflammatory and antioxidant properties, could be joint-protective agents. This scoping review aims to provide an overview of the effects of tocotrienol on arthritis derived from the existing scientific literature. A literature search using PubMed, Scopus and Web of Science databases was conducted to identify relevant studies. Only cell culture, animal and clinical studies with primary data that align with the objective of this review were considered. The literature search uncovered eight studies investigating the effects of tocotrienol on OA (n = 4) and RA (n = 4). Most of the studies were preclinical and revealed the positive effects of tocotrienol in preserving joint structure (cartilage and bone) in models of arthritis. In particular, tocotrienol activates the self-repair mechanism of chondrocytes exposed to assaults and attenuates osteoclastogenesis associated with RA. Tocotrienol also demonstrated strong anti-inflammatory effects in RA models. The single clinical trial available in the literature showcases that palm tocotrienol could improve joint function among patients with OA. In conclusion, tocotrienol could be a potential anti-arthritic agent pending more results from clinical studies.
Collapse
Affiliation(s)
- Hashwin Singh Tejpal Singh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Alya Aqilah Aminuddin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Malaysia
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Min HK, Kim SH, Won JY, Kim KW, Lee JY, Lee SH, Kim HR. Dasatinib, a selective tyrosine kinase inhibitor, prevents joint destruction in rheumatoid arthritis animal model. Int J Rheum Dis 2023; 26:718-726. [PMID: 36808837 DOI: 10.1111/1756-185x.14627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
AIM We aimed to evaluate the preventive role of the tyrosine kinase inhibitor dasatinib in an animal model of rheumatoid arthritis (RA). METHODS DBA/1J mice were injected with bovine type II collagen to induce arthritis (collagen-induced arthritis [CIA]). There were four experimental groups of mice, namely negative control (non-CIA), vehicle-treated CIA, dasatinib-pretreated CIA, and dasatinib-treated CIA. After collagen immunization, arthritis progression in the mice was clinically scored twice weekly for 5 weeks. Flow cytometry was used to evaluate in vitro CD4+ T-cell differentiation and ex vivo mast cell/CD4+ T-cell differentiation. Osteoclast formation was evaluated using tartrate-resistant acid phosphatase (TRAP) staining and by estimating the resorption pit area. RESULTS We found that the clinical arthritis histological scores were lower in the dasatinib pretreatment group than in the vehicle and dasatinib post-treatment groups. Flow cytometry showed that FcεR1+ cells were downregulated and regulatory T cells were upregulated in splenocytes of the dasatinib pretreatment group compared with those in the vehicle group. Additionally, there was a decline in IL-17+ CD4+ T-cell differentiation and an increase in CD4+ CD24high Foxp3+ T-cell differentiation with in vitro dasatinib treatment of human CD4+ T cells. The number of TRAP+ osteoclasts and the area of the resorption were decreased in the bone marrow cells derived from dasatinib-pretreated mice compared with those derived from vehicle group. CONCLUSION Dasatinib protected against arthritis in an animal model of RA by regulating the differentiation of regulatory T cells and IL-17+ CD4+ T cells and inhibiting osteoclastogenesis, indicating the therapeutic potential of dasatinib in the treatment of early RA.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | | | | | - Ji-Yeon Lee
- The Rheumatism Research Center, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Kou H, Qing Z, Guo H, Zhang R, Ma J. Effect of vitamin E supplementation in rheumatoid arthritis: a systematic review and meta-analysis. Eur J Clin Nutr 2023; 77:166-172. [PMID: 35468933 DOI: 10.1038/s41430-022-01148-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the safety and effectiveness of vitamin E in rheumatoid arthritis patients. METHODS A computerized search of PubMed, Embase, The Cochrane Library, and Web of Science databases was conducted to find published randomized controlled trials of vitamin E in rheumatoid arthritis; the experimental group was treated with vitamin E, while the control group was treated with placebo, other drugs, or external therapy; the search period was from the time each database was established to December 31, 2021, and a meta-analysis was conducted using Rev Man 5.4 software. RESULTS This research eventually comprised nine publications with a total of 39,845 patients. Vitamin E supplementation was shown to be more effective in individuals with RA for sensitive joints (MD = -1.66, 95% CI - -6.32-2.99; I2 = 93%; P < 0.00001) and swollen joints (MD = -0.46, 95% CI - -1.98-1.07; I2 = 56%; P = 0.08). CONCLUSIONS Vitamin E's ability to restore the intestinal barrier and improve the gastrointestinal tract may be linked to the prevention and treatment of rheumatoid arthritis. Vitamin E supplements used on a regular basis can help individuals with RA reduce joint discomfort, edema, and stiffness, as well as enhance their overall quality of life.
Collapse
Affiliation(s)
- Haiyang Kou
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.,Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Zhong Qing
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Hao Guo
- Yanliang Campus, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
9
|
Zhao H, Guo X, Lei Y, Xia W, Cai F, Zhu D, An Y, Xi Y, Niu X, Wang Z, Yue T, Chen G. γ-Tocotrienol inhibits T helper 17 cell differentiation via the IL-6/JAK/STAT3 signaling pathway. Mol Immunol 2022; 151:126-133. [PMID: 36126500 DOI: 10.1016/j.molimm.2022.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
γ-Tocotrienol (GT3), a member of the vitamin E family, is well known for its medicinal value in clinical treatments. However, the role of GT3 in T helper 17 (Th17)/regulatory T cell (Treg) differentiation and function is not fully understood. Here, we demonstrated that GT3 suppressed Th17 differentiation in vitro by inhibiting signal transducer and activator of transcription 3 (STAT3) phosphorylation in the interleukin 6 (IL-6)/Janus kinase (JAK)/STAT3 signaling pathway. GT3 also inhibited HIF1A expression in Th17 metabolism. Additionally, we showed that GT3 treatment inhibited disease aggravation in an imiquimod (IMQ)-induced psoriasis-like mouse model by reducing the percentage of Th17 cells in the spleen in vivo. The findings of this study demonstrated the effects of GT3 on Th17 cells through the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Hanqing Zhao
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Xin Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yunxuan Lei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Wenjie Xia
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200052, China
| | - Feiyang Cai
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Dehao Zhu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China; Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang An
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yebin Xi
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Tao Yue
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200052, China
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China.
| |
Collapse
|
10
|
Kim HR, Kim SH. Perioperative and anesthetic management of patients with rheumatoid arthritis. Korean J Intern Med 2022; 37:732-739. [PMID: 35811362 PMCID: PMC9271718 DOI: 10.3904/kjim.2021.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/03/2022] [Indexed: 11/27/2022] Open
Abstract
Our understanding and management of rheumatoid arthritis (RA) have greatly improved, but perioperative and anesthetic management remain challenging. RA is not limited to joints; systemic evaluation is thus required when planning perioperative management. Especially, careful airway evaluation is needed; management of airway-related arthritis is challenging. A multidisciplinary approach is essential to prevent complications without exacerbating RA disease activity. Guidelines published in 2017 are available for perioperative management of anti-rheumatic medication in patients with rheumatic diseases undergoing elective total hip or total knee arthroplasty. However, the guidelines focus only on anti- rheumatic medications, and do not consider all aspects of perioperative management (including anesthesia). Here, we discuss the perioperative and anesthetic management of patients with RA.
Collapse
Affiliation(s)
- Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul,
Korea
| | - Seong-Hyop Kim
- Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul,
Korea
- Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul,
Korea
| |
Collapse
|
11
|
Li X, Lei Y, Gao Z, Wu G, Gao W, Xia L, Lu J, Shen H. IL-34 affects fibroblast-like synoviocyte proliferation, apoptosis and function by regulating IL-17. Sci Rep 2021; 11:16378. [PMID: 34385542 PMCID: PMC8361173 DOI: 10.1038/s41598-021-95839-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by proliferation and insufficient apoptosis of fibroblast-like synoviocytes (FLSs).The biology and functions of interleukin (IL)-34 are only beginning to be uncovered. We previously demonstrated IL-34 could upregulate the expression of IL-17 in RA patients. In this study, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry of Annexin V and PI staining were performed to assess cell proliferation and apoptosis progression in RA-FLSs after stimulated with increasing concentrations of IL-34, respectively. Inflammatory cytokines and angiogenic factors were measured using quantitative real-time PCR, Western blotting and ELISA. We explored the association between IL-34 and RA-FLS proliferation and apoptosis in the context of RA. Stimulating RA-FLSs with different concentrations of IL-34 significantly promoted the proliferation and inhibited the apoptosis of RA-FLSs in a concentration-dependent manner. Neutralization of IL-17 with the IL-17 inhibitor plumbagin (PB) reduced the effects of IL-34. Proinflammatory cytokine (IL-17A IL-6 and tumor necrosis factor-α, TNF-α) and angiogenic factor (vascular endothelial growth factor, VEGF and hypoxia-inducible factor-1α, HIF-1α) expression was markedly upregulated in RA-FLSs stimulated by IL-34. PB-mediated inhibition of IL-17A also decreased the expression of IL-6, TNF-α, HIF-1α and VEGF in RA-FLSs. Taken together, these findings suggest that targeting IL-34 production in RA-FLSs may be a therapeutic strategy for RA.
Collapse
Affiliation(s)
- Xin Li
- Department of Rheumatology, 1st Affiliated Hospital of Jin Zhou Medical University, Jin Zhou, 121000, China.,Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Yimeng Lei
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Ziyu Gao
- 104k Class 86, China Medical University, Shen Yang, 110001, China
| | - Gang Wu
- Department of General Surgery, 1st Affiliated Hospital of Jin Zhou Medical University, Jin Zhou, 121000, China
| | - Wei Gao
- Department of Rheumatology, 1st Affiliated Hospital of Jin Zhou Medical University, Jin Zhou, 121000, China
| | - Liping Xia
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Jing Lu
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Hui Shen
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China.
| |
Collapse
|