1
|
Shishikura K, Li J, Chen Y, McKnight NR, Bustin KA, Barr EW, Chilkamari SR, Ayub M, Kim SW, Lin Z, Hu RM, Hicks K, Wang X, O’Rourke DM, Bollinger JM, Binder ZA, Parsons WH, Martemyanov KA, Liu A, Matthews ML. Hydralazine inhibits cysteamine dioxygenase to treat preeclampsia and senesce glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629450. [PMID: 39803451 PMCID: PMC11722266 DOI: 10.1101/2024.12.19.629450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The vasodilator hydralazine (HYZ) has been used clinically for ~ 70 years and remains on the World Health Organization's List of Essential Medicines as a therapy for preeclampsia. Despite its longstanding use and the concomitant progress toward a general understanding of vasodilation, the target and mechanism of HYZ have remained unknown. We show that HYZ selectively targets 2-aminoethanethiol dioxygenase (ADO) by chelating its metal cofactor and alkylating one of its ligands. This covalent inactivation slows entry of proteins into the Cys/N-degron pathway that ADO initiates. HYZ's capacity to stabilize regulators of G-protein signaling (RGS4/5) normally marked for degradation by ADO explains its effect on blood vessel tension and comports with prior associations of insufficient RGS levels with human preeclampsia and analogous symptoms in mice. The established importance of ADO in glioblastoma led us to test HYZ in these cell types. Indeed, a single treatment induced senescence, suggesting a potential new HYZ-based therapy for this deadly brain cancer.
Collapse
Affiliation(s)
- Kyosuke Shishikura
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, TX, USA
| | - Yiming Chen
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Nate R. McKnight
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Katelyn A. Bustin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric W. Barr
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mahaa Ayub
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sun Woo Kim
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Zongtao Lin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ren-Ming Hu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Hicks
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Xie Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M. O’Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - J. Martin Bollinger
- The Pennsylvania State University, Department of Chemistry and Biochemistry and Molecular Biology, State College, PA, USA
| | - Zev A. Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - William H. Parsons
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, USA
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, TX, USA
| | - Megan L. Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Lead Contact
| |
Collapse
|
2
|
He J, Shi XY, Li ZM, Pan XH, Li ZL, Chen Y, Yan SJ, Xiao L. Proton pump inhibitors can reverse the YAP mediated paclitaxel resistance in epithelial ovarian cancer. BMC Mol Cell Biol 2019; 20:49. [PMID: 31718559 PMCID: PMC6852784 DOI: 10.1186/s12860-019-0227-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Several reports indicated that the expression of Yes-associated protein (YAP) was associated with multi-drug resistance. Acidic microenvironment increased by the overexpression of vacuolar-ATPase (V-ATPase) was also observed in tumor growth and drug resistance. We hypothesize that proton pump inhibitors (PPIs), currently used in the anti-acid treatment of peptic disease, could inhibit the acidification of the tumor microenvironment and increase the sensitivity of tumor cells to cytotoxic agents. Thus, our objective is to explore the reversal of drug resistance by the inhibition of YAP through specific PPIs in the epithelial ovarian carcinoma (EOC) cells. . Results We found that V-ATPase D1 was a positive regulator of YAP. Sub-lethal doses of the proton pump inhibitor esomeprazole (EMSO) in combination with paclitaxel (PTX) increased the PTX sensitivity in PTX-resistant EOC cells, as compared to PTX single treatments by inhibiting YAP and reserving pH gradient created by the V-ATPase D1. Moreover, sub-lethal doses of EMSO combined with PTX decreased autophagy and improved caspases independent apoptosis of PTX-resistant EOC cells. Conclusions These results suggested that sub-lethal doses of esomeprazole reverse YAP-mediated PTX resistance through the inhibiting of both YAP expression and acidic tumor microenvironment created by the V-ATPase D1. Therefore, we think the use of PPIs represents a promising strategy to improve the effectiveness of anti-EOC.
Collapse
Affiliation(s)
- Jing He
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China.,Department of Obstetrics and Gynecoloy, An Qing Municipal Hospital, An Qing, 246003, AnHui, People's Republic of China
| | - Xiao-Yan Shi
- Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, People's Republic of China
| | - Zhi-Min Li
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Xiao-Hua Pan
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China
| | - Ze-Lian Li
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China
| | - Ying Chen
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China
| | - Shi-Jie Yan
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China.
| | - Lan Xiao
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China.
| |
Collapse
|
3
|
Qasem A, Kasabri V, AbuRish E, Bustanji Y, Al-Hiari Y, Al-Abbasi R, Abu-Irmaileh B, Alalawi S. The Evaluation of Potential Cytotoxic Effect of Different Proton Pump Inhibitors on Different Human Cancer Cell Lines. Anticancer Agents Med Chem 2019; 20:245-253. [PMID: 31663482 DOI: 10.2174/1871520619666191029151545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/27/2019] [Accepted: 09/13/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To assess the differential cytotoxic activity of PPIs on different human cancer cell lines; namely A549 lung cancer, CACO-2 colorectal cancer, MCF-7 breast cancer, and PANC-1 pancreatic cancer, A375 skin melanoma. METHODS In this study, the five human cancer cell lines and human non-cancerous fibroblasts were treated with increasing concentration of PPIs Omeprazole (OMP), Esomeprazole (ESOM), and Lansoprazole (LANSO) (50-300μM), over 24h, 48h, and 72h. Cell viability was determined using 3-(4,5- Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and the IC50 values of PPIs were measured. The most sensitive cell line A375 was used for further investigation. The cytotoxic effects of LANSO on these cells were assessed using Annexin-V Propidium Iodide (AV-PI) flow cytometry. As of action mechanism; anti-inflammatory effects of each PPIs and PPIs-DOXO combination therapy on LPS-stimulated RAW 264.7 mouse macrophages were assessed. RESULTS Dose and time dependence cytotoxic activity of PPIs on human cancer cell lines was founded. Unlike DOXO; All PPIs had a selective cytotoxic effect in the normal fibroblasts. Unlike the equipotent OMP and ESOM; LANSO was the most potent drug with IC50 values at 72h of 99, 217, 272, 208, 181μM against A375, A549, CACO-2, MCF-7, and PANC-1, respectively. AV-PI flow cytometry revealed dose-dependent apoptotic effects of LANSO alone and substantially enhanced in DOXO-co-treatments. Interestingly unlike ESOM and OMP, LANSO proved more effective than indomethacin in LPS-stimulated RAW 264.7 macrophages. None of the tested compounds, as well as indomethacin, exerted any cytotoxicity against RAW 264.7 macrophages. PPIs-DOXO lacked potential synergistic combination antiinflammation therapies. CONCLUSION This study provides the evidence that PPIs induce a direct and differential cytotoxic activity against human cancer cell line by the induction of the apoptosis. Moreover, PPIs increase cancer cell lines sensitivity to doxorubicin via apoptosis augmentation. Nevertheless, PPIs-DOXO lacked potential synergistic combination therapies in either antiproliferation or anti-inflammation.
Collapse
Affiliation(s)
- Aya Qasem
- School of Pharmacy, University of Jordan, Amman, Jordan
| | | | - Eman AbuRish
- School of Pharmacy, University of Jordan, Amman, Jordan
| | - Yasser Bustanji
- School of Pharmacy, University of Jordan, Amman, Jordan.,Hamdi Mango Center for Scientific Research, University of Jordan, Amman, Jordan
| | | | - Reem Al-Abbasi
- School of Pharmacy, University of Jordan, Amman, Jordan.,Hamdi Mango Center for Scientific Research, University of Jordan, Amman, Jordan
| | | | | |
Collapse
|