1
|
Teerikorpi N, Lasser MC, Wang S, Kostyanovskaya E, Bader E, Sun N, Dea J, Nowakowski TJ, Willsey AJ, Willsey HR. Ciliary biology intersects autism and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.602578. [PMID: 39131273 PMCID: PMC11312554 DOI: 10.1101/2024.07.30.602578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) commonly co-occurs with congenital heart disease (CHD), but the molecular mechanisms underlying this comorbidity remain unknown. Given that children with CHD come to clinical attention by the newborn period, understanding which CHD variants carry ASD risk could provide an opportunity to identify and treat individuals at high risk for developing ASD far before the typical age of diagnosis. Therefore, it is critical to delineate the subset of CHD genes most likely to increase the risk of ASD. However, to date there is relatively limited overlap between high confidence ASD and CHD genes, suggesting that alternative strategies for prioritizing CHD genes are necessary. Recent studies have shown that ASD gene perturbations commonly dysregulate neural progenitor cell (NPC) biology. Thus, we hypothesized that CHD genes that disrupt neurogenesis are more likely to carry risk for ASD. Hence, we performed an in vitro pooled CRISPR interference (CRISPRi) screen to identify CHD genes that disrupt NPC biology similarly to ASD genes. Overall, we identified 45 CHD genes that strongly impact proliferation and/or survival of NPCs. Moreover, we observed that a cluster of physically interacting ASD and CHD genes are enriched for ciliary biology. Studying seven of these genes with evidence of shared risk (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3, TAOK1), we observe that perturbation significantly impacts primary cilia formation in vitro. While in vivo investigation of TAOK1 reveals a previously unappreciated role for the gene in motile cilia formation and heart development, supporting its prediction as a CHD risk gene. Together, our findings highlight a set of CHD risk genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology.
Collapse
Affiliation(s)
- Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California, San Francisco, San Francisco CA 94158, USA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Primary cilia and the DNA damage response: linking a cellular antenna and nuclear signals. Biochem Soc Trans 2021; 49:829-841. [PMID: 33843966 DOI: 10.1042/bst20200751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
The maintenance of genome stability involves integrated biochemical activities that detect DNA damage or incomplete replication, delay the cell cycle, and direct DNA repair activities on the affected chromatin. These processes, collectively termed the DNA damage response (DDR), are crucial for cell survival and to avoid disease, particularly cancer. Recent work has highlighted links between the DDR and the primary cilium, an antenna-like, microtubule-based signalling structure that extends from a centriole docked at the cell surface. Ciliary dysfunction gives rise to a range of complex human developmental disorders termed the ciliopathies. Mutations in ciliopathy genes have been shown to impact on several functions that relate to centrosome integrity, DNA damage signalling, responses to problems in DNA replication and the control of gene expression. This review covers recent findings that link cilia and the DDR and explores the various roles played by key genes in these two contexts. It outlines how proteins encoded by ciliary genes impact checkpoint signalling, DNA replication and repair, gene expression and chromatin remodelling. It discusses how these diverse activities may integrate nuclear responses with those that affect a structure of the cell periphery. Additional directions for exploration of the interplay between these pathways are highlighted, with a focus on new ciliary gene candidates that alter genome stability.
Collapse
|
3
|
Firat-Karalar EN. Proximity mapping of the microtubule plus-end tracking protein SLAIN2 using the BioID approach. ACTA ACUST UNITED AC 2020; 44:61-72. [PMID: 32256142 PMCID: PMC7129064 DOI: 10.3906/biy-2002-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The centrosome is the main microtubule-organizing center of animal cells, which plays key roles in critical cellular processes ranging from cell division to cellular signaling. Accordingly, defects in the structure and function of centrosomes cause various human diseases such as cancer and primary microcephaly. To elucidate the molecular defects underlying these diseases, the biogenesis and functions of the centrosomes have to be fully understood. An essential step towards addressing these questions is the identification and functional dissection of the full repertoire of centrosome proteins. Here, we used high-resolution imaging and showed that the microtubule plus-end tracking protein SLAIN2 localizes to the pericentriolar material at the proximal end of centrioles. To gain insight into its cellular functions and mechanisms, we applied in vivo proximity-dependent biotin identification to SLAIN2 and generated its proximity interaction map. Gene ontology analysis of the SLAIN2 interactome revealed extensive interactions with centriole duplication, ciliogenesis, and microtubule-associated proteins, including previously characterized and uncharacterized interactions. Collectively, our results define SLAIN2 as a component of pericentriolar material and provide an important resource for future studies aimed at elucidating SLAIN2 functions at the centrosome.
Collapse
Affiliation(s)
- Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, İstanbul Turkey
| |
Collapse
|