1
|
Li H, Leng C, Chen N, Ding Q, Yuan Y, Zheng Y, Zhu G, Chen C, Xu L, Shuai J, Jiang Q, Ren D, Wang H. Lactic acid bacteria reduce bacterial diarrhea in rabbits via enhancing immune function and restoring intestinal microbiota homeostasis. BMC Vet Res 2024; 20:151. [PMID: 38643127 PMCID: PMC11031951 DOI: 10.1186/s12917-024-03981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Numerous previous reports have demonstrated the efficacy of Lactic acid bacteria (LAB) in promoting growth and preventing disease in animals. In this study, Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were isolated from the feces of healthy rabbits, and both strains showed good probiotic properties in vitro. Two strains (108CFU/ml/kg/day) were fed to weaned rabbits for 21 days, after which specific bacterial infection was induced to investigate the effects of the strains on bacterial diarrhea in the rabbits. RESULTS Our data showed that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 interventions reduced the incidence of diarrhea and systemic inflammatory response, alleviated intestinal damage and increased antibody levels in animals. In addition, Enterococcus faecium ZJUIDS-R1 restored the flora abundance of Ruminococcaceae1. Ligilactobaciiius animalis ZJUIDS-R2 up-regulated the flora abundance of Adlercreutzia and Candidatus Saccharimonas. Both down-regulated the flora abundance of Shuttleworthia and Barnesiella to restore intestinal flora balance, thereby increasing intestinal short-chain fatty acid content. CONCLUSIONS These findings suggest that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were able to improve intestinal immunity, produce organic acids and regulate the balance of intestinal flora to enhance disease resistance and alleviate diarrhea-related diseases in weanling rabbits.
Collapse
Affiliation(s)
- Huimin Li
- College of Animal Sciences, Zhejiang University, 310058, Hangzhou, PR China
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, PR China
- Zhejiang Jinuo Saibur Biotechnology Co., LTD, 310010, Hangzhou, PR China
| | - Chaoliang Leng
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, PR China
| | - Nan Chen
- College of Animal Sciences, Zhejiang University, 310058, Hangzhou, PR China
| | - Qinchao Ding
- College of Animal Sciences, Zhejiang University, 310058, Hangzhou, PR China
| | - Yizhao Yuan
- College of Animal Sciences, Zhejiang University, 310058, Hangzhou, PR China
| | - Yilei Zheng
- College of Animal Sciences, Zhejiang University, 310058, Hangzhou, PR China
| | - Ge Zhu
- College of Animal Sciences, Zhejiang University, 310058, Hangzhou, PR China
| | - Chen Chen
- College of Animal Sciences, Zhejiang University, 310058, Hangzhou, PR China
| | - Lichang Xu
- College of Animal Sciences, Zhejiang University, 310058, Hangzhou, PR China
| | - Jiangbing Shuai
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, 310016, Hangzhou, PR China
| | - Qinting Jiang
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, 310016, Hangzhou, PR China
| | - Daxi Ren
- College of Animal Sciences, Zhejiang University, 310058, Hangzhou, PR China
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, 310058, Hangzhou, PR China.
- , Room 515 E Building, 866 Yuhangtang Rd, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Wang J, Wen B, Zeng Y, Wang H, Zhao W, Zhou Y, Liu L, Wang P, Pan K, Jing B, Ni X, Zeng D. Assessment the role of some Bacillus strains in improvement rex rabbits resistance against ETEC challenge. Microb Pathog 2022; 165:105477. [DOI: 10.1016/j.micpath.2022.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/05/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
3
|
Zhu YT, Yue SM, Li RT, Qiu SX, Xu ZY, Wu Y, Yao J, Zuo Y, Li KJ, Li Y. Prebiotics Inulin Metabolism by Lactic Acid Bacteria From Young Rabbits. Front Vet Sci 2021; 8:719927. [PMID: 34660762 PMCID: PMC8517115 DOI: 10.3389/fvets.2021.719927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Inulin as a commercial prebiotic could selectively promote the growth of beneficial gut microbes such as lactic acid bacteria (LAB). Whether LAB in rabbit gut possesses the capability to metabolize and utilize inulin is little known. Therefore, this study recovered 94 LAB strains from neonate rabbits and found that only 29% (28/94) could metabolize inulin with both species- and strain-specificity. The most vigorous inulin-degrading strain, Lacticaseibacillus paracasei YT170, could efficiently utilize both short-chain and long-chain components through thin-layer chromatography analysis. From genomic analysis, a predicted fosRABCDXE operon encoding putative cell wall-anchored fructan β-fructosidase, five fructose-transporting proteins and a pts1BCA operon encoding putative β-fructofuranosidase and sucrose-specific IIBCA components were linked to long-chain and short-chain inulin utilization respectively. This study provides a mechanistic rationale for effect of inulin administration on rabbits and lays a foundation for synbiotic applications aimed at modulating the intestinal microbiota of young rabbits.
Collapse
Affiliation(s)
- Yuan-Ting Zhu
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Shuang-Ming Yue
- Department of Bioengineering, Sichuan Water Conservancy College, Chengdu, China
| | - Rui-Tong Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Shi-Xiu Qiu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Zhen-Ying Xu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Yi Wu
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Jin Yao
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yong Zuo
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Ke-Juan Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yang Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
4
|
Hung YP, Lee CC, Lee JC, Tsai PJ, Hsueh PR, Ko WC. The Potential of Probiotics to Eradicate Gut Carriage of Pathogenic or Antimicrobial-Resistant Enterobacterales. Antibiotics (Basel) 2021; 10:antibiotics10091086. [PMID: 34572668 PMCID: PMC8470257 DOI: 10.3390/antibiotics10091086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Probiotic supplements have been used to decrease the gut carriage of antimicrobial-resistant Enterobacterales through changes in the microbiota and metabolomes, nutrition competition, and the secretion of antimicrobial proteins. Many probiotics have shown Enterobacterales-inhibiting effects ex vivo and in vivo. In livestock, probiotics have been widely used to eradicate colon or environmental antimicrobial-resistant Enterobacterales colonization with promising efficacy for many years by oral supplementation, in ovo use, or as environmental disinfectants. In humans, probiotics have been used as oral supplements for infants to decease potential gut pathogenic Enterobacterales, and probiotic mixtures, especially, have exhibited positive results. In contrast to the beneficial effects in infants, for adults, probiotic supplements might decrease potentially pathogenic Enterobacterales, but they fail to completely eradicate them in the gut. However, there are several ways to improve the effects of probiotics, including the discovery of probiotics with gut-protection ability and antimicrobial effects, the modification of delivery methods, and the discovery of engineered probiotics. The search for multifunctional probiotics and synbiotics could render the eradication of “bad” Enterobacterales in the human gut via probiotic administration achievable in the future.
Collapse
Affiliation(s)
- Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Ching-Chi Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| | - Wen-Chien Ko
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| |
Collapse
|
5
|
Spangler JR, Caruana JC, Medintz IL, Walper SA. Harnessing the potential of Lactobacillus species for therapeutic delivery at the lumenal-mucosal interface. Future Sci OA 2021; 7:FSO671. [PMID: 33815818 PMCID: PMC8015674 DOI: 10.2144/fsoa-2020-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus species have been studied for over 30 years in their role as commensal organisms in the human gut. Recently there has been a surge of interest in their abilities to natively and recombinantly stimulate immune activities, and studies have identified strains and novel molecules that convey particular advantages for applications as both immune adjuvants and immunomodulators. In this review, we discuss the recent advances in Lactobacillus-related activity at the gut/microbiota interface, the efforts to probe the boundaries of the direct and indirect therapeutic potential of these bacteria, and highlight the continued interest in harnessing the native capacity for the production of biogenic compounds shown to influence nervous system activity. Taken together, these aspects underscore Lactobacillus species as versatile therapeutic delivery vehicles capable of effector production at the lumenal-mucosal interface, and further establish a foundation of efficacy upon which future engineered strains can expand.
Collapse
Affiliation(s)
- Joseph R Spangler
- National Research Council Postdoctoral Fellow sited in US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Julie C Caruana
- American Society for Engineering Education Postdoctoral Fellow sited in US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Igor L Medintz
- US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Scott A Walper
- US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| |
Collapse
|
6
|
Wang J, Ni X, Wen B, Zhou Y, Liu L, Zeng Y, Zhao W, Khalique A, Wang P, Pan K, Yu Z, Jing B, Liu H, Zeng D. Bacillus strains improve growth performance via enhancing digestive function and anti-disease ability in young and weaning rex rabbits. Appl Microbiol Biotechnol 2020; 104:4493-4504. [PMID: 32193576 DOI: 10.1007/s00253-020-10536-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 01/05/2023]
Abstract
Numerous studies have shown that probiotic Bacillus could promote growth and enhance anti-disease ability in animal. In present study, the mixture of three Bacillus strains, which were isolated from rex rabbits and showed high cellulose, protease, and amylase activities, was added into the diet for investigating its effects on young and weaning rex rabbits. For experiment 1, 40 young rex rabbits (9 weeks old) were randomly divided into four groups and fed with diets containing 0 (NC), 1.0 × 105 cfu/g (LC), 1.0 × 106 cfu/g (MC), and 1.0 × 107 cfu/g (HC) Bacillus strains for 4 weeks. For experiment 2, 80 weaning rex rabbits (5 weeks old) were randomly divided into four groups and fed with diet containing 0 (control), 1.0 × 105 cfu/g (T-1), 1.0 × 106 cfu/g (T-2), and 1.0 × 107 cfu/g (T-3) Bacillus strains for 8 weeks. The results showed that Bacillus strains at a dose of 1.0 × 106 cfu/g significantly enhanced growth performance, increased immune organ indexes, improved serum biochemical parameters, and heightened antioxidant capacity. It also markedly improved the intestinal microbiota by increasing Lactobacillus spp., Bacillus spp. counts, and decreased Escherichia coli count. In addition, the Bacillus mixture raised the concentrations of acetic acid, propionic acid, and butyric acid as well as protease, amylase, and cellulase activities of young and weaning rex rabbits. Moreover, for weaning rex rabbits, the inclusion of Bacillus strains also upregulated the abundance of cellulolytic bacteria and improved intestinal morphology. Therefore, our results indicated that Bacillus strains could facilitate the growth of young and weaning rex rabbits by improving digestive function and anti-disease ability. KEY POINTS: • Bacillus with high extracellular enzyme activity were isolated from rex rabbits. • Bacillus could improve growth performance of young and weaning rex rabbits. • The digestive function of young and weaning rex rabbits could be improved by Bacillus.
Collapse
Affiliation(s)
- Jie Wang
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Bin Wen
- Sichuan Academy of Grassland Science, Chengdu, 611731, Sichuan, China
| | - Yi Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Lei Liu
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Ping Wang
- Sichuan Academy of Grassland Science, Chengdu, 611731, Sichuan, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Zhiju Yu
- Sichuan Academy of Grassland Science, Chengdu, 611731, Sichuan, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Hanzhong Liu
- Sichuan Academy of Grassland Science, Chengdu, 611731, Sichuan, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
7
|
Kang YM, Hong CH, Kang SH, Seo DS, Kim SO, Lee HY, Sim HJ, An HJ. Anti-Photoaging Effect of Plant Extract Fermented with Lactobacillus buchneri on CCD-986sk Fibroblasts and HaCaT Keratinocytes. J Funct Biomater 2020; 11:jfb11010003. [PMID: 31936562 PMCID: PMC7151581 DOI: 10.3390/jfb11010003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet (UV) exposure triggers the abnormal production of reactive oxygen (ROS) species and the expression of matrix metalloproteinases (MMPs) that are responsible for photoaging. Probiotics are widely used in healthcare and for immune enhancement. One probiotic, Lactobacillus buchneri is found in Kimchi. This study was aimed at assessing the anti-photoaging effect of plant extracts fermented with L. buchneri (PELB) to develop functional cosmetics. We investigated the anti-photoaging effect of PELB in a UVB-induced photoaging in vitro model and selected effective extracts using the elastase inhibition assay, ELISA for Type I procollagen and collagenase-1, and quantitative real time PCR. Normal human dermal fibroblasts and epidermal keratinocytes were pre-treated with PELB and exposed to UVB. We found that PELB decreased elastase activity and increased type I collagen expression in a UVB-induced photoaging in vitro model. In addition, PELB greatly reduced collagenase activity and MMP mRNA levels in a UVB-induced photoaging in vitro model. Furthermore, PELB promoted the expression of moisture factor and anti-oxidant enzymes in a UVB-induced photoaging in vitro model. These results indicated that the PELB could be potential candidates for the protective effects against UVB-induced photoaging. Overall, these results suggest that PELB might be useful natural components of cosmetic products.
Collapse
Affiliation(s)
- Yun-Mi Kang
- Department of Pharmacology, College of Korean Medicine, Sangji University, Gangwon-do 26339, Korea;
| | - Chul-Hee Hong
- Department of Korean Ophthalmology and Otolaryngology and Dermatology, College of Korean Medicine, Sangji University, Wonju, Gangwon 26339, Korea;
| | - Sa-Haeng Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Iksan, Jeonbuk 59338, Korea;
| | - Dong-Seok Seo
- WonNature, Wonkwang University, Iksan, Jeonbuk 54538, Korea;
| | - Seong-Oh Kim
- Research Institute, Wonkwang herb Co., Ltd., Jinan, Jeonbuk 55442, Korea; (S.-O.K.); (H.-Y.L.); (H.-J.S.)
| | - Hoon-Yeon Lee
- Research Institute, Wonkwang herb Co., Ltd., Jinan, Jeonbuk 55442, Korea; (S.-O.K.); (H.-Y.L.); (H.-J.S.)
| | - Hyeon-Jae Sim
- Research Institute, Wonkwang herb Co., Ltd., Jinan, Jeonbuk 55442, Korea; (S.-O.K.); (H.-Y.L.); (H.-J.S.)
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Gangwon-do 26339, Korea;
- Correspondence: ; Tel.: +82-33-738-7503; Fax: +82-33-730-0679
| |
Collapse
|
8
|
Fang S, Chen X, Zhou L, Wang C, Chen Q, Lin R, Xiao T, Gan Q. Faecal microbiota and functional capacity associated with weaning weight in meat rabbits. Microb Biotechnol 2019; 12:1441-1452. [PMID: 31571427 PMCID: PMC6801154 DOI: 10.1111/1751-7915.13485] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/15/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
Weaning weight is an important economic trait in the meat rabbit industry. Evidence has linked the gut microbiota to health and production performance in rabbits. However, the effect of gut microbiota on meat rabbit weaning weight remains unclear. In this study, we performed 16S rRNA gene sequencing analysis of 135 faecal samples from commercial Ira rabbits. We detected 50 OTUs significantly associated with weaning weight. OTUs that showed positive associations with weaning weight were mostly members of the family Ruminococcaceae which are important in degrading dietary fibres and producing butyrate. On the contrary, OTUs annotated to genera Blautia, Lachnoclostridium and Butyricicoccus correlated with fat deposition were negatively associated with weaning weight. Predicted functional capacity analysis revealed that 91 KOs and 26 KEGG pathways exhibited potential correlations with weaning weight. We found that gut microbiota involved in the metabolism of amino acids, butanoate, energy and monosaccharides affected weaning weight. Additionally, cross-validation analysis indicated that 16.16% of the variation in weaning weight was explained by the gut microbiome. Our findings provide important information to improve weaning weight of meat rabbits by modulating their gut microbiome.
Collapse
Affiliation(s)
- Shaoming Fang
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xuan Chen
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Liwen Zhou
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chongchong Wang
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qiaohui Chen
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ruiyi Lin
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tianfang Xiao
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - QianFu Gan
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
9
|
Yang B, Lu P, Li MX, Cai XL, Xiong WY, Hou HJ, Ha XQ. A meta-analysis of the effects of probiotics and synbiotics in children with acute diarrhea. Medicine (Baltimore) 2019; 98:e16618. [PMID: 31517810 PMCID: PMC6750275 DOI: 10.1097/md.0000000000016618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE This meta-analysis assessed the effectiveness of probiotics and synbiotics for acute diarrhea (AD) in children and investigated probiotic formulations, types of interventions, and country factors. METHODS Randomized, double-blind, placebo-controlled trials evaluating the effects of probiotics or synbiotics on AD were analyzed. We followed the recommendations of the Cochrane Handbook and the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. The risks of systematic errors (bias) and random errors were assessed, and the overall quality of the evidence was evaluated using the Grades of Recommendations Assessment, Development, and Evaluation (GRADE) approach. RESULTS The meta-analysis included 34 studies with 4911 patients. Five and 29 studies presented the results of synbiotic and probiotic interventions, respectively. After intervention, the durations of diarrhea (weighted mean difference (WMD) = -16.63 [-20.16; -12.51]) and hospitalization (risk ratio (RR) = 0.59 [0.48; 0.73]) were shorter, the stool frequency on day 3 (WMD = -0.98 [-1.55; -0.40]) was decreased, and the incidence of diarrhea lasting 3 days was lower in the probiotic and synbiotic groups than in the control groups. Furthermore, in the subgroup analyses, synbiotics were more effective than probiotics at reducing the durations of diarrhea and hospitalization, and Saccharomyces and Bifidobacterium were more effective than Lactobacillus at reducing the duration of diarrhea. CONCLUSION This meta-analysis supports the potential beneficial roles of probiotics and synbiotics for AD in children. Further research is needed to determine problems associated with probiotic/synbiotic mixtures and appropriate dosages.
Collapse
Affiliation(s)
- Bo Yang
- Department of Clinical Laboratory, The People's Liberation Arimy Joint Service Support Unit 940 Hospital
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine (TCM), Lanzhou
| | - Ping Lu
- School of Clinical Medicine, Capital Medical University, Beijing
| | - Mei-Xuan Li
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Ling Cai
- Department of Clinical Laboratory, The People's Liberation Arimy Joint Service Support Unit 940 Hospital
| | - Wan-Yuan Xiong
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine (TCM), Lanzhou
| | - Huai-Jing Hou
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine (TCM), Lanzhou
| | - Xiao-Qin Ha
- Department of Clinical Laboratory, The People's Liberation Arimy Joint Service Support Unit 940 Hospital
| |
Collapse
|
10
|
Chen X, Yang Z, Hu H, Duan W, Wang A, Dong Y, Gao W, Deng S, Cheng B, Li J, Sun N, Cheng Z, Guo W, Li Y, Gao Y. Differentiation and Proliferation of Intestinal Stem Cells and its Underlying Regulated Mechanisms during Weaning. Curr Protein Pept Sci 2019; 20:690-695. [DOI: 10.2174/1389203720666190125101834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/13/2019] [Indexed: 11/22/2022]
Abstract
Weaning is a stressful event associated with gastrointestinal disorders and increased disease
susceptibility. Many studies have reported the changes that happened in the gut of various mammals such
as pigs and rats after weaning. These findings suggest that the development of intestinal tract mainly is
affected at the time of weaning through interfering in the differentiation and proliferation of intestinal
stem cells. Weaning stress stimulates the rapid differentiation and proliferation of intestinal stem cells in
order to adjust to changes caused by weaning, which are mainly manifested as deeper crypt depth and
decreased intestine villus height. However, the accelerated cellular process may lead to an increase in
the proportion of immature intestinal epithelial cells and goblet cells, which affect intestinal permeability
and reduce the gut-barrier function against toxins and pathogens. This review briefly describes the effects
coforticotrophin-releasing factor (CRF), epidermal growth factor (EGF) and polyamines on the differentiation
and proliferation of intestinal stem cells after weaning and discusses its possible underlying regulatory
mechanisms. Firstly, weaning stress activates CRF to binds its receptors, which induces proinflammatory
responses and promote rapid differentiation and proliferation of intestinal stem cells to a
larger fraction of immature intestinal epithelial cells and goblet cells. Secondly, the lack of EGF after
weaning inhibits the expression of goblet cell maturation factors and makes it difficult for goblet cells
and intestinal epithelial cells to mature. Finally, diet and endogenous synthesis lead to excessive polyamines
in the intestine, which promote the proliferation of intestinal stem cells by regulating the expression
of human antigen R (HuR) and other related genes at the time of weaning.
Collapse
Affiliation(s)
- Xi Chen
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zehong Yang
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiling Hu
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wentao Duan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Aiping Wang
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanbin Dong
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Weihang Gao
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Song Deng
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Cheng
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiali Li
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Nannan Sun
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhibin Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wenfeng Guo
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanwu Li
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong Gao
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|