1
|
Abedi E, Mohammad Bagher Hashemi S, Ghiasi F. Effective mitigation in the amount of acrylamide through enzymatic approaches. Food Res Int 2023; 172:113177. [PMID: 37689930 DOI: 10.1016/j.foodres.2023.113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 09/11/2023]
Abstract
Acrylamide (AA), as a food-borne toxicant, is created at some stages of thermal processing in the starchy food through Maillard reaction, fatty food via acrolein route, and proteinous food using free amino acids pathway. Maillard reaction obviously takes place in thermal-based products, being responsible for specific sensory attributes; AA formation, thereby, is unavoidable during the thermal processing. Additionally, AA can naturally occur in soil and water supply. In order to reduce the levels of acrylamide in cooked foods, mitigation techniques can be separated into three different types. Firstly, starting materials low in acrylamide precursors can be used to reduce the acrylamide in the final product. Secondly, process conditions may be modified in order to decrease the amount of acrylamide formation. Thirdly, post-process intervention could be used to reduce acrylamide. Conventional or emerging mitigation techniques might negatively influence the pleasant features of heated foods. The current study summarizes the effect of enzymatic reaction induced by asparaginase, glucose oxidase, acrylamidase, phytase, amylase, and protease to possibly inhibit AA formation or progressively hydrolyze formed AA. Not only enzyme-assisted AA reduction could dramatically maintain bio-active compounds, but also no damaging impact has been reported on the sensorial and rheological properties of the final heated products. The enzyme engineering can be applied to ameliorate enzyme functionality through altering the amino acid sequence like site-specific mutagenesis and directed evolution, chemical modifications by covalent conjugation of L-asparaginase onto soluble/insoluble biocompatible polymers and immobilization. Moreover, it would be possible to improve the enzyme's physical, chemical, and thermal stability, recyclability and prevent enzyme overuse by applying engineered ones. In spite of enzymes' cost-effective and eco-friendly, promoting their large-scale usages for AA reduction in food application and AA bioremediation in wastewater and soil resources.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | | - Fatemeh Ghiasi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
2
|
Albedwawi AS, Al Sakkaf R, Yusuf A, Osaili TM, Al-Nabulsi A, Liu SQ, Palmisano G, Ayyash MM. Acrylamide Elimination by Lactic Acid Bacteria: Screening, Optimization, In Vitro Digestion, and Mechanism. Microorganisms 2022; 10:557. [PMID: 35336133 PMCID: PMC8953158 DOI: 10.3390/microorganisms10030557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/30/2023] Open
Abstract
Acrylamide is a toxic compound that is formed in cooked carbohydrate-rich food. Baking, roasting, frying, and grilling are cooking methods that cause its formation in the presence of reducing sugar and asparagine. To prevent acrylamide formation or to remove it after its formation, scientists have been trying to understand acrylamide formation pathways, and methods of prevention and removal. Therefore, this study aimed to: (1) screen newly isolated LAB for acrylamide removal, (2) optimize conditions (pH, temperature, time, salt) of the acrylamide removal for selected LAB isolates using Box-Behnken design (BBD), (3) investigate the acrylamide removal abilities of selected LAB isolates under the in vitro digestion conditions using INFO-GEST2.0 model, and (4) explore the mechanism of the acrylamide removal using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS), zeta potential, transmission electron microscopy (TEM) measurement, and Fourier transform infrared spectroscopy (FTIR). Forty strains were tested in MRS broth, where Streptococcus lutetiensis and Lactiplantibacillus plantarum had the highest capability of acrylamide removal by 39% and 26%, respectively. To enhance the binding ability, both strains were tested under controlled conditions of pH (4.5, 5.5 and 6.5), temperature (32 °C, 37 °C and 42 °C), time (14, 18 and 22 h), and NaCl (0%, 1.5% and 3% w/v) using Box-Behnken design (BBD). Both strains removed more acrylamide in the range of 35-46% for S. lutetiensis and 45-55% for L. plantarum. After testing the bacterial binding ability, both strains were exposed to a simulated gastrointestinal tract environment, removing more than 30% of acrylamide at the gastric stage and around 40% at the intestinal stage. To understand the mechanism of removal, LAB cells were characterized via scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) and transmission electron microscopy (TEM) techniques. Cell charges were characterized by zeta potential and functional groups analyzed by Fourier transform infrared spectroscopy (FTIR). Results indicated that increasing cell wall thickness improved acrylamide adsorption capacity. Both FTIR and EDS indicated that functional groups C=O, C-O, and N-H were associated with acrylamide adsorption.
Collapse
Affiliation(s)
- Amal S. Albedwawi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates;
| | - Reem Al Sakkaf
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.A.S.); (A.Y.); (G.P.)
| | - Ahmed Yusuf
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.A.S.); (A.Y.); (G.P.)
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Anas Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore;
| | - Giovanni Palmisano
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.A.S.); (A.Y.); (G.P.)
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
3
|
Emadi A, Yousefi B, Eslami M, Abdolshahi A. Reduction of acrylamide formation in bread and fried potato products using probiotic microorganisms: a systematic review and dose–response meta-analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00997-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Samanipour B, Jalili M, Rezaei K, Faraji R. Analysis of acrylamide from potato chips using an amino column followed by PDA as the detection system in HPLC. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- B. Samanipour
- Standard Research Institute-ISIRI, Faculty of Food Industries and Agriculture, Karaj 31747-34563, Iran
| | - M. Jalili
- Standard Research Institute-ISIRI, Faculty of Food Industries and Agriculture, Karaj 31747-34563, Iran
| | - K. Rezaei
- Department of Food Science, Engineering, and Technology, University of Tehran, Karaj 31587-77871, Iran
| | - R. Faraji
- Department of Food Science, Engineering, and Technology, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|