1
|
Stoev SD. Natural feed additives and bioactive supplements versus chemical additives as a safe and practical approach to combat foodborne mycotoxicoses. Front Nutr 2024; 11:1335779. [PMID: 38450227 PMCID: PMC10915786 DOI: 10.3389/fnut.2024.1335779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
This review highlights the possible hazard of mycotoxins occurrence in foods and feeds in regards to foodborne diseases. The possible management of the risk of contamination of foods and feeds with mycotoxins by using natural feed additives, protecting against deleterious effects of mycotoxins or inhibiting the growth of fungi and mycotoxin production, is deeply investigated in the available literature and some effective measures for safe utilization of mycotoxin contaminated feed/food are proposed. The biological methods of decontamination, degradation or biotransformation of mycotoxins are deeply analyzed and discussed. Some natural antagonists against target fungi are also reviewed and a comparison is made with conventional fungicides for ensuring a safe prevention of mycotoxin contamination. The most common and useful chemical methods of mycotoxins decontamination of agricultural commodities or raw materials are also investigated, e.g., chemical additives inactivating or destroying and/or adsorbing mycotoxins as well as chemical additives inhibiting the growth of fungi and mycotoxin production. The practical use and safety of various kind of feed/food additives or herbal/biological supplements as possible approach for ameliorating the adverse effects of some dangerous mycotoxins is deeply investigated and some suggestions are given. Various possibilities for decreasing mycotoxins toxicity, e.g., by clarifying the mechanisms of their toxicity and using some target antidotes and vitamins as supplements to the diet, are also studied in the literature and appropriate discussions or suggestions are made in this regard. Some studies on animal diets such as low carbohydrate intake, increased protein content, calorie restriction or the importance of dietary fats are also investigated in the available literature for possible amelioration of the ailments associated with mycotoxins exposure. It could be concluded that natural feed additives and bioactive supplements would be more safe and practical approach to combat foodborne mycotoxicoses as compared to chemical additives.
Collapse
Affiliation(s)
- Stoycho D. Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
2
|
Abdulsalam RA, Ijabadeniyi OA, Cason ED, Sabiu S. Characterization of Microbial Diversity of Two Tomato Cultivars through Targeted Next-Generation Sequencing 16S rRNA and ITS Techniques. Microorganisms 2023; 11:2337. [PMID: 37764180 PMCID: PMC10534366 DOI: 10.3390/microorganisms11092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Even though the nutritional and economic values of Solanum lycopersicum (tomato) are substantially impacted by microbial spoilage, the available data on its microbial community, particularly during spoilage, are limited and have primarily been characterized using conventional culture-dependent methods. This study employed a targeted high-throughput next-generation sequencing method to longitudinally characterize the microbial diversity of two South African tomato cultivars (jam and round) at varied storage intervals (1, 6, and 12 days). Throughout the storage period, the bacterial communities of the two cultivars were more diverse than the fungal communities. The microbial diversity of both bacteria and fungi was greater and comparable between the cultivars on day 1, but becomes distinct as the storage period increases, with round tomatoes being more diverse than jam tomato, though, on day 12, jam tomato develops greater diversity than round tomato. Overall, the most abundant phyla (though Proteobacteria was most dominant) were Proteobacteria, Firmicutes, and Bacteriodota in the bacterial communities, while Ascomycota and Basidiomycota formed most fungal communities with Ascomycota being dominant. At the genus level, Pantoea and Klebsiella (bacteria), Hanseniaspora, Stemphylium, and Alternaria (fungi) were prevalent. Taken together, this study casts light on a broad microbial diversity profile thus, confirms the cultivars' diversity and abundance differences.
Collapse
Affiliation(s)
- Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa
| | | | - Errol D. Cason
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
3
|
Miranda-Apodaca J, Artetxe U, Aguado I, Martin-Souto L, Ramirez-Garcia A, Lacuesta M, Becerril JM, Estonba A, Ortiz-Barredo A, Hernández A, Zarraonaindia I, Pérez-López U. Stress Response to Climate Change and Postharvest Handling in Two Differently Pigmented Lettuce Genotypes: Impact on Alternaria alternata Invasion and Mycotoxin Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:1304. [PMID: 36986993 PMCID: PMC10059781 DOI: 10.3390/plants12061304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Many species of Alternaria are important pathogens that cause plant diseases and postharvest rots. They lead to significant economic losses in agriculture and affect human and animal health due to their capacity to produce mycotoxins. Therefore, it is necessary to study the factors that can result in an increase in A. alternata. In this study, we discuss the mechanism by which phenol content protects from A. alternata, since the red oak leaf cultivar (containing higher phenols) showed lower invasion than the green one, Batavia, and no mycotoxin production. A climate change scenario enhanced fungal growth in the most susceptible cultivar, green lettuce, likely because elevated temperature and CO2 levels decrease plant N content, modifying the C/N ratio. Finally, while the abundance of the fungi was maintained at similar levels after keeping the lettuces for four days at 4 °C, this postharvest handling triggered TeA and TEN mycotoxin synthesis, but only in the green cultivar. Therefore, the results demonstrated that invasion and mycotoxin production are cultivar- and temperature-dependent. Further research should be directed to search for resistant cultivars and effective postharvest strategies to reduce the toxicological risk and economic losses related to this fungus, which are expected to increase in a climate change scenario.
Collapse
Affiliation(s)
- Jon Miranda-Apodaca
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Iratxe Aguado
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Martin-Souto
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Maite Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - José María Becerril
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Andone Estonba
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Amaia Ortiz-Barredo
- NEIKER-Basque Institute for Agricultural Research and Development, 01080 Vitoria-Gasteiz, Spain
| | - Antonio Hernández
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Iratxe Zarraonaindia
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Usue Pérez-López
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
4
|
Fabrication of Monarda citriodora essential oil nanoemulsions: characterization and antifungal activity against Penicillium digitatum of kinnow. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
5
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
6
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salinity is one of the oldest and most serious environmental problems in the world. The increasingly widespread salinization of soils and water resources represents a growing threat to agriculture around the world. A strategy to cope with this problem is to cultivate salt-tolerant crops and, therefore, it is necessary to identify plant species that are naturally adapted to high-salinity conditions. In this review, we focus our attention on some plant species that can be considered among the most representative halophytes of the Mediterranean region; they can be potential resources, such as new or relatively new vegetable crops, to produce raw or minimally processed (or ready-to-eat) products, considering their nutritional properties and nutraceuticals. The main biological and agronomic characteristics of these species and the potential health risks due to mycotoxigenic fungi have been analyzed and summarized in a dedicated section. The objective of this review is to illustrate the main biological and agronomical characteristics of the most common halophytic species in the Mediterranean area, which could expand the range of leafy vegetables on the market.
Collapse
|
8
|
Antifungal and Antiaflatoxinogenic Effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus Essential Oils Alone and in Combination. J Fungi (Basel) 2022; 8:jof8020117. [PMID: 35205871 PMCID: PMC8878799 DOI: 10.3390/jof8020117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
Abstract
The antifungal and antiaflatoxinogenic activities of the essential oils (EOs) from the leaves of Cymbopogon schoenanthus, Cymbopogon citratus, Cymbopogon nardus, and their pair combinations were investigated. Antifungal susceptibility and the efficacy of paired combinations of EOs were assessed using agar microdilution and checkerboard methods, respectively. Identification and quantification of chemical components of the EOs were carried out by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector (GC-MS and GC-FID), respectively. Aflatoxins were separated and identified by High-Performance Liquid Chromatography (HPLC) and then quantified by spectrofluorescence. The EO of C. nardus exhibited the highest inhibitory activity against Aspergillus flavus and Aspergillus parasiticus. The combination of C. citratus and C. nardus and that of C. nardus and C. schoenanthus exhibited a synergistic effect against Aspergillus flavus and Aspergillus, respectively. Both C. citratus and C. schoenanthus EOs totally inhibited the synthesis of aflatoxin B1 at 1 µL/mL. C. citratus blocked the production of aflatoxins B2 and G2 at 0.5 µL/mL. Both C. citratus and C. schoenanthus totally hampered the production of the aflatoxin G1 at 0.75 µL/mL. The combination of C. citratus and C. schoenanthus completely inhibited the production of the four aflatoxins. The study shows that the combinations can be used to improve their antifungal and antiaflatoxinogenic activities.
Collapse
|
9
|
Mahato DK, Kamle M, Sharma B, Pandhi S, Devi S, Dhawan K, Selvakumar R, Mishra D, Kumar A, Arora S, Singh NA, Kumar P. Patulin in food: A mycotoxin concern for human health and its management strategies. Toxicon 2021; 198:12-23. [PMID: 33933519 DOI: 10.1016/j.toxicon.2021.04.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023]
Abstract
The mycotoxin patulin is primarily produced as a secondary metabolite by numerous fungal species and predominantly by Aspergillus, Byssochlamys, and Penicillium species. It is generally associated with fungal infected food materials. Penicillium expansum is considered the only fungal species liable for patulin contamination in pome fruits, especially in apples and apple-based products. This toxin in food poses serious health concerns and economic threat, which has aroused the need to adopt effective detection and mitigation strategies. Understanding its origin sources and biosynthetic mechanism stands essential for efficiently designing a management strategy against this fungal contamination. This review aims to present an updated outline of the sources of patulin occurrence in different foods and their biosynthetic mechanisms. It further provides information regarding the detrimental effects of patulin on human and agriculture as well as its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India.
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Raman Selvakumar
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| | - Diwakar Mishra
- Department of Dairy Technology, Birsa Agricultural University, Dumka, 814145, Jharkhand, India.
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Shalini Arora
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India.
| | - Namita Ashish Singh
- Department of Microbiology, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| |
Collapse
|
10
|
Eucalyptus camaldulensis, Citrus aurantium, and Citrus sinensis Essential Oils as Antifungal Activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Fusarium culmorum. Processes (Basel) 2020. [DOI: 10.3390/pr8081003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Several molds are able to colonize wood and many building products or solid wood causing losses for their valuable uses. Essential oils (EOs) from aromatic plants can be used as an ecofriendly biofungicide against the growth of several molds. EOs from Eucalyptus camaldulensis, Citrus aurantium, and C. sinensis have a broad-spectrum antimicrobial activity. EOs from of E. camaldulensis air-dried aerial parts, C. aurantium leaf and C. sinensis peel, and their combinations (1:1 v/v) were evaluated for their antifungal activity against the growth of four common mold fungi (Aspergillus flavus, A. niger, A. terreus, and Fusarium culmorum). The chemical compositions of the EOs were analyzed with GC/MS. The main compounds in EO from E. camaldulensis were spathulenol (20.84%), eucalyptol (12.01%), and sabinene (9.73%); in C. aurantium were linalyl acetate (42.29%), and linalool (29.76%); and in C. sinensis were D-limonene (73.4%) and γ-terpinene (22.6%). At 50 µL/mL, C. sinensis EO showed the highest fungal mycilial growth inhibition (FMGI) percentage (86.66%) against A. flavus. C. sinensis, E. camaldulensis, and E. camaldulensis/C. sinensis showed FMGI values of 96%, 91.66%, and 75.66% respectively, against A. niger. EOs from C. aurantium and C. sinensis showed potent activity against A. terreus (100% FMGI), while C. aurantium/E. camaldulensis and E. camaldulensis/C. sinensis showed FMGI values of 74.33% and 70.66%, respectively. Potent activity against F. culmorum with 100% was observed as the application of E. camaldulensis and C. sinensis EOs at 50 µL/mL, while E. camaldulensis/C. sinensis (50 µL/mL) showed FMGI value of 65.66%. The results suggest using the EOs and their combinations from E.camaldulensis, C. aurantium, and C. sinensis as a biofungicide against molds. The potent properties of EOs offer the possibility of using them as eco-friendly, safe, and cost-effective antimicrobials for molds that could cause discoloration of the wood packaging or food spoilage.
Collapse
|
11
|
The mechanism involved in enhancing the biological control efficacy of Rhodotorula mucilaginosa with salicylic acid to postharvest green mold decay of oranges. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00559-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Kowalska A, Manning L. Using the rapid alert system for food and feed: potential benefits and problems on data interpretation. Crit Rev Food Sci Nutr 2020; 61:906-919. [PMID: 32274931 DOI: 10.1080/10408398.2020.1747978] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Rapid Alert System for Food and Feed (RASFF), where competent authorities in each Member State (MS) submit notifications on the withdrawal of unsafe or illegal products from the market, makes a significant contribution to food safety control in the European Union. The aim of this paper is to frame the potential challenges of interpreting and then acting upon the dataset contained within the RASFF system. As it is largest cause of RASFF notifications, the lens of enquiry used is mycotoxin contamination. The methodological approach is to firstly iteratively review existing literature to frame the problem, and then to interrogate the RASFF system and analyze the data available. Findings are that caution should be exercised in using the RASFF database both as a predictive tool and for trend analysis, because iterative changes in food law impact on the frequency of regulatory sampling associated with border and inland regulatory checks. The study highlights the variability of engagement by MSs with the RASFF database, influencing generalisability of the trends noted. As importing countries raise market standards, there are wider food safety implications for the exporting countries themselves. As this is one of the first studies articulating the complexities and opportunities of using the RASFF database, this research makes a strong contribution to literature.
Collapse
Affiliation(s)
| | - Louise Manning
- School of Agriculture, Food and Environment, Royal Agricultural University, Cirencester, UK
| |
Collapse
|
13
|
Juan C, Mañes J, Font G, Juan-García A. Determination of mycotoxins in fruit berry by-products using QuEChERS extraction method. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Poapolathep S, Tanhan P, Piasai O, Imsilp K, Hajslova J, Giorgi M, Kumagai S, Poapolathep A. Occurrence and Health Risk of Patulin and Pyrethroids in Fruit Juices Consumed in Bangkok, Thailand. J Food Prot 2017; 80:1415-1421. [PMID: 28762777 DOI: 10.4315/0362-028x.jfp-17-026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mycotoxin patulin (PAT) is well known as a natural contaminant of apple- and other fruit-based products. Pesticides are a group of chemicals abundantly used in agriculture to maximize productivity by protecting crops from pests and weeds. Because of their harmful health effects, PAT and pesticides are strictly monitored. The current study was undertaken to investigate the significance of PAT and pyrethroid insecticide contamination in a variety of fruit juices in Bangkok. To do this, a total of 200 fruit juice samples, consisting of 40 samples each of apple, apricot, peach, pineapple, and grape juice, were collected from supermarkets in Bangkok, Thailand. PAT contamination in a variety of fruit juices was detected using validated liquid chromatography-tandem mass spectrometry, and pyrethroid insecticides (cypermethrin, cyfluthrin, and flumethrin) were analyzed using a gas chromatography equipped with micro-electron capture detector. The survey found that PAT concentrations were lower than the maximum residue limit established by European Union. The results of the present study suggest that the risk of exposure to harmful levels of PAT, cypermethrin, cyfluthrin, and flumethrin in fruit juices is very low in urban areas of Thailand.
Collapse
Affiliation(s)
- Saranya Poapolathep
- 1 Department of Pharmacology, Faculty of Veterinary Medicine.,2 Pharmacology and Toxicology Unit, Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies (CASAF, NRU-KU)
| | - Phanwimol Tanhan
- 1 Department of Pharmacology, Faculty of Veterinary Medicine.,2 Pharmacology and Toxicology Unit, Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies (CASAF, NRU-KU)
| | - Onuma Piasai
- 3 Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Kanjana Imsilp
- 1 Department of Pharmacology, Faculty of Veterinary Medicine.,2 Pharmacology and Toxicology Unit, Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies (CASAF, NRU-KU)
| | - Jana Hajslova
- 4 Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, Institute of Chemical Technology, Technica 3, Prague 6, Czech Republic
| | - Mario Giorgi
- 5 Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), San Piero a Grado, 56122 Pisa, Italy
| | - Susumu Kumagai
- 6 Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 1138657, Japan
| | - Amnart Poapolathep
- 1 Department of Pharmacology, Faculty of Veterinary Medicine.,2 Pharmacology and Toxicology Unit, Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies (CASAF, NRU-KU)
| |
Collapse
|
15
|
Antifungal Activity of Essential Oil of Eucalyptus camaldulensis Dehnh. against Selected Fusarium spp. Int J Microbiol 2017; 2017:8761610. [PMID: 28127308 PMCID: PMC5239988 DOI: 10.1155/2017/8761610] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/18/2016] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to evaluate the antifungal activity of essential oil (EO) of Eucalyptus camaldulensis Dehnh. against five Fusarium spp. commonly associated with maize. The essential oil had been extracted by steam distillation in a modified Clevenger-type apparatus from leaves of E. camaldulensis and their chemical composition characterized by gas chromatography mass spectrometry. Poisoned food technique was used to determine the percentage inhibition of mycelial growth, minimum inhibitory concentration, and minimum fungicidal concentration of the EO on the test pathogens. Antifungal activity of different concentrations of the EO was evaluated using disc diffusion method. The most abundant compounds identified in the EO were 1,8-cineole (16.2%), α-pinene (15.6%), α-phellandrene (10.0%), and p-cymene (8.1%). The EO produced complete mycelial growth inhibition in all the test pathogens at a concentration of 7-8 μL/mL after five days of incubation. The minimum inhibitory concentration and minimum fungicidal concentration of the EO on the test fungi were in the range of 7-8 μL/mL and 8–10 μL/mL, respectively. These findings confirm the fungicidal properties of E. camaldulensis essential oils and their potential use in the management of economically important Fusarium spp. and as possible alternatives to synthetic fungicides.
Collapse
|
16
|
Mahunu GK, Zhang H, Yang Q, Li C, Zheng X. Biological Control of Patulin by Antagonistic Yeast: A case study and possible model. Crit Rev Microbiol 2015; 42:643-55. [DOI: 10.3109/1040841x.2015.1009823] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Gustav Komla Mahunu
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, China
| | - Hongyin Zhang
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, China
| | - Qiya Yang
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, China
| | - Chaolan Li
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, China
| | - Xiangfeng Zheng
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, China
| |
Collapse
|
17
|
Vaclavikova M, Dzuman Z, Lacina O, Fenclova M, Veprikova Z, Zachariasova M, Hajslova J. Monitoring survey of patulin in a variety of fruit-based products using a sensitive UHPLC–MS/MS analytical procedure. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.07.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Shephard G, Berthiller F, Dorner J, Krska R, Lombaert G, Malone B, Maragos C, Sabino M, Solfrizzo M, Trucksess M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2007-2008. WORLD MYCOTOXIN J 2009. [DOI: 10.3920/wmj2008.1095] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2007 and mid-2008. It covers the major mycotoxins: aflatoxins, Alternaria toxins, cyclopiazonic acid, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. Some aspects of natural occurrence, particularly if linked to novel aspects of analytical methods, are also included. The review demonstrates the rise of LC-MS methods, the continuing interest in developing alternative and rapid methods and the modification of well-established mycotoxin analytical methods by individual laboratories to meet their own requirements.
Collapse
Affiliation(s)
- G. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences Vienna, Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin Research, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - J. Dorner
- USDA, ARS, National Peanut Research Laboratory, P.O. Box 509, 1011 Forrester Dr. SE, Dawson, GA 31742, USA
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences Vienna, Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin Research, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - G. Lombaert
- Health Canada, 510 Lagimodiere Blvd., Winnipeg, MB, R2J 3Y1, Canada
| | - B. Malone
- Trilogy Analytical Laboratory, 111 West Fourth Street, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av. Dr. Arnaldo 355, 01246-902, São Paulo/SP, Brazil
| | - M. Solfrizzo
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, 700126 Bari, Italy
| | - M. Trucksess
- US Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740, USA
| | - H. van Egmond
- National Institute for Public Health & the Environment, Laboratory for Food and Residue Analysis (ARO), P.O. Box 1, 3720 BA Bilthoven, the Netherlands
| | - T. Whitaker
- USDA, ARS, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|