1
|
Osmólska E, Stoma M, Starek-Wójcicka A. Juice Quality Evaluation with Multisensor Systems-A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4824. [PMID: 37430738 DOI: 10.3390/s23104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
E-nose and e-tongue are advanced technologies that allow for the fast and precise analysis of smells and flavours using special sensors. Both technologies are widely used, especially in the food industry, where they are implemented, e.g., for identifying ingredients and product quality, detecting contamination, and assessing their stability and shelf life. Therefore, the aim of this article is to provide a comprehensive review of the application of e-nose and e-tongue in various industries, focusing in particular on the use of these technologies in the fruit and vegetable juice industry. For this purpose, an analysis of research carried out worldwide over the last five years, concerning the possibility of using the considered multisensory systems to test the quality and taste and aroma profiles of juices is included. In addition, the review contains a brief characterization of these innovative devices through information such as their origin, mode of operation, types, advantages and disadvantages, challenges and perspectives, as well as the possibility of their applications in other industries besides the juice industry.
Collapse
Affiliation(s)
- Emilia Osmólska
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Monika Stoma
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Agnieszka Starek-Wójcicka
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
2
|
Wasilewska A, Bielicka M, Klekotka U, Kalska-Szostko B. Nanoparticle applications in food - a review. Food Funct 2023; 14:2544-2567. [PMID: 36799219 DOI: 10.1039/d2fo02180c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The use of nanotechnology in the food industry raises uncertainty in many respects. For years, achievements of nanotechnology have been applied mainly in biomedicine and computer science, but recently it has also been used in the food industry. Due to the extremely small (nano) scale, the properties and behavior of nanomaterials may differ from their macroscopic counterparts. They can be used as biosensors to detect reagents or microorganisms, monitor bacterial growth conditions, increase food durability e.g. when placed in food packaging, reducing the amount of certain ingredients without changing the consistency of the product (research on fat substitutes is underway), improve the taste of food, make some nutrients get better absorbed by the body, etc. There are companies on the market that are already introducing nanoparticles into the economy to improve their functionality, e.g. baby feeding bottles. This review focuses on the use of nanoparticles in the food industry, both organic (chitosan, cellulose, proteins) and inorganic (silver, iron, zinc oxide, titanium oxide, etc.). The use of nanomaterials in food production requires compliance with all legal requirements regarding the safety and quantity of nano-processed food products described in this review. In the future, new methods of testing nanoparticles should be developed that would ensure the effectiveness of compounds subjected to, for example, nano-encapsulation, i.e. whether the encapsulation process had a positive impact on the specific properties of these compounds. Nanotechnology has revolutionized our approach towards food engineering (from production to processing), food storage and the creation of new materials and products, and the search for new product applications.
Collapse
Affiliation(s)
- A Wasilewska
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Str. Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - M Bielicka
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Str. Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - U Klekotka
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - B Kalska-Szostko
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
3
|
Combining nanoflares biosensor and mathematical resolution technique for multi-class mycotoxin analysis in complex food matrices. Food Chem 2023; 402:134487. [DOI: 10.1016/j.foodchem.2022.134487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 01/30/2023]
|
4
|
Kosri E, Ibrahim F, Thiha A, Madou M. Micro and Nano Interdigitated Electrode Array (IDEA)-Based MEMS/NEMS as Electrochemical Transducers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234171. [PMID: 36500794 PMCID: PMC9741053 DOI: 10.3390/nano12234171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 05/28/2023]
Abstract
Micro and nano interdigitated electrode array (µ/n-IDEA) configurations are prominent working electrodes in the fabrication of electrochemical sensors/biosensors, as their design benefits sensor achievement. This paper reviews µ/n-IDEA as working electrodes in four-electrode electrochemical sensors in terms of two-dimensional (2D) planar IDEA and three-dimensional (3D) IDEA configurations using carbon or metal as the starting materials. In this regard, the enhancement of IDEAs-based biosensors focuses on controlling the width and gap measurements between the adjacent fingers and increases the IDEA's height. Several distinctive methods used to expand the surface area of 3D IDEAs, such as a unique 3D IDEA design, integration of mesh, microchannel, vertically aligned carbon nanotubes (VACNT), and nanoparticles, are demonstrated and discussed. More notably, the conventional four-electrode system, consisting of reference and counter electrodes will be compared to the highly novel two-electrode system that adopts IDEA's shape. Compared to the 2D planar IDEA, the expansion of the surface area in 3D IDEAs demonstrated significant changes in the performance of electrochemical sensors. Furthermore, the challenges faced by current IDEAs-based electrochemical biosensors and their potential solutions for future directions are presented herein.
Collapse
Affiliation(s)
- Elyana Kosri
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre of Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Marc Madou
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
- Academia Mexicana de Ciencias, Ciudad de México 14400, CDMX, Mexico
| |
Collapse
|
5
|
Yang S, Zhao D, Xu Z, Yu H, Zhou J. Molecular understanding of acetylcholinesterase adsorption on functionalized carbon nanotubes for enzymatic biosensors. Phys Chem Chem Phys 2022; 24:2866-2878. [PMID: 35060980 DOI: 10.1039/d1cp04997f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immobilization of acetylcholinesterase on different nanomaterials has been widely used in the field of amperometric organophosphorus pesticide (OP) biosensors. However, the molecular adsorption mechanism of acetylcholinesterase on a nanomaterial's surface is still unclear. In this work, multiscale simulations were utilized to study the adsorption behavior of acetylcholinesterase from Torpedo californica (TcAChE) on amino-functionalized carbon nanotube (CNT) (NH2-CNT), carboxyl-functionalized CNT (COOH-CNT) and pristine CNT surfaces. The simulation results show that the active center and enzyme substrate tunnel of TcAChE are both close to and oriented toward the surface when adsorbed on the positively charged NH2-CNT, which is beneficial to the direct electron transfer (DET) and accessibility of the substrate molecule. Meanwhile, the NH2-CNT can also reduce the tunnel cost of the enzyme substrate of TcAChE, thereby further accelerating the transfer rate of the substrate from the surface or solution to the active center. However, for the cases of TcAChE adsorbed on COOH-CNT and pristine CNT, the active center and substrate tunnel are far away from the surface and face toward the solution, which is disadvantageous for the DET and transportation of enzyme substrate. These results indicate that NH2-CNT is more suitable for the immobilization of TcAChE. This work provides a better molecular understanding of the adsorption mechanism of TcAChE on functionalized CNT, and also provides theoretical guidance for the ordered immobilization of TcAChE and the design, development and improvement of TcAChE-OPs biosensors based on functionalized carbon nanomaterials.
Collapse
Affiliation(s)
- Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Daohui Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
6
|
Pushparaj K, Liu WC, Meyyazhagan A, Orlacchio A, Pappusamy M, Vadivalagan C, Robert AA, Arumugam VA, Kamyab H, Klemeš JJ, Khademi T, Mesbah M, Chelliapan S, Balasubramanian B. Nano- from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. ENERGY 2022; 240:122732. [DOI: 10.1016/j.energy.2021.122732] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
|
7
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
8
|
Caglayan MO, Şahin S, Üstündağ Z. Detection Strategies of Zearalenone for Food Safety: A Review. Crit Rev Anal Chem 2020; 52:294-313. [PMID: 32715728 DOI: 10.1080/10408347.2020.1797468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zearalenone (ZEN) is a toxic compound produced by the metabolism of fungi (genus Fusarium) that threaten the food and agricultural industry belonging to the in foods and feeds. ZEN has toxic effects on human and animal health due to its mutagenicity, teratogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. To ensure food safety, rapid, precise, and reliable analytical methods can be developed for the detection of toxins such as ZEN. Different selective molecular diagnostic elements are used in conjunction with different detection strategies to achieve this goal. In this review, the use of electrochemical, colorimetric, fluorometric, refractometric as well as other strategies were discussed for ZEN detection. The success of the sensors in analytical performance depends on the development of receptors with increased affinity to the target. This requirement has been met with different immunoassays, aptamer-assays, and molecular imprinting techniques. The immobilization techniques and analysis strategies developed with the combination of nanomaterials provided high precision, reliability, and convenience in ZEN detection, in which electrochemical strategies perform the best.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
9
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods 2020; 9:E518. [PMID: 32326063 PMCID: PMC7230321 DOI: 10.3390/foods9040518] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Mycotoxins are the most widely studied biological toxins, which contaminate foods at very low concentrations. This review describes the emerging extraction techniques and the current and alternatives analytical techniques and methods that have been used to successfully detect and identify important mycotoxins. Some of them have proven to be particularly effective in not only the detection of mycotoxins, but also in detecting mycotoxin-producing fungi. Chromatographic techniques such as high-performance liquid chromatography coupled with various detectors like fluorescence, diode array, UV, liquid chromatography coupled with mass spectrometry, and liquid chromatography-tandem mass spectrometry, have been powerful tools for analyzing and detecting major mycotoxins. Recent progress of the development of rapid immunoaffinity-based detection techniques such as immunoassays and biosensors, as well as emerging technologies like proteomic and genomic methods, molecular techniques, electronic nose, aggregation-induced emission dye, quantitative NMR and hyperspectral imaging for the detection of mycotoxins in foods, have also been presented.
Collapse
Affiliation(s)
| | | | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| |
Collapse
|
10
|
More AS, Ranadheera CS, Fang Z, Warner R, Ajlouni S. Biomarkers associated with quality and safety of fresh-cut produce. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Haque MA, Wang Y, Shen Z, Li X, Saleemi MK, He C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb Pathog 2020; 142:104095. [PMID: 32097745 DOI: 10.1016/j.micpath.2020.104095] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Mycotoxins are secondary metabolites produced mainly by fungi belonging to the genera Aspergillus, Fusarium, Penicillium, Claviceps, and Alternaria that contaminate basic food products throughout the world, where developing countries are becoming predominantly affected. Currently, more than 500 mycotoxins are reported in which the most important concern to public health and agriculture include AFB1, OTA, TCTs (especially DON, T-2, HT-2), FB1, ZEN, PAT, CT, and EAs. The presence of mycotoxin in significant quantities poses health risks varying from allergic reactions to death on both humans and animals. This review brings attention to the present status of mycotoxin contamination of food products and recommended control strategies for mycotoxin mitigation. Humans are exposed to mycotoxins directly through the consumption of contaminated foods while, indirectly through carryover of toxins and their metabolites into animal tissues, milk, meat and eggs after ingestion of contaminated feeds. Pre-harvest (field) control of mycotoxin production and post-harvest (storage) mitigation of contamination represent the most effective approach to limit mycotoxins in food and feed. Compared with chemical and physical approaches, biological detoxification methods regarding biotransformation of mycotoxins into less toxic metabolites, are generally more unique, productive and eco-friendly. Along with the biological detoxification method, genetic improvement and application of nanotechnology show tremendous potential in reducing mycotoxin production thereby improving food safety and food quality for extended shelf life. This review will primarily describe the latest developments in the formation and detoxification of the most important mycotoxins by biological degradation and other alternative approaches, thereby reducing the potential adverse effects of mycotoxins.
Collapse
Affiliation(s)
- Md Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Department of Microbiology, Faculty of Veterinary & Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, 256600, China
| | - Xiaohui Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Muhammad Kashif Saleemi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Jaffri SB, Ahmad KS. Neoteric environmental detoxification of organic pollutants and pathogenic microbes via green synthesized ZnO nanoparticles. ENVIRONMENTAL TECHNOLOGY 2019; 40:3745-3761. [PMID: 29897295 DOI: 10.1080/09593330.2018.1488888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
The present study has for the first time reported Prunus cerasifera leaf extract-mediated zinc oxide nanoparticles (ZnO NPs) in a green and one-pot synthetic mode without utilization of any chemical reducing agents. Synthesized nanoparticles were analysed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). UV-Vis peak was detected at 380 nm due to surface plasmon resonance. A variety of biomolecules were revealed by FTIR involved in reduction cum stabilization of ZnO NPs. Wurtzite hexagonal geometry with an average crystallite size of 12 nm was obtained from XRD diffraction pattern. SEM exhibited size ranges of 80-100 nm and 60-100 nm for 200°C and 600°C calcination temperatures. Synthesized nanoparticles were used as bio-cleaning photocatalysts against organic pollutants, i.e. bromocresol green, bromophenol blue, methyl red and methyl blue, which yielded pseudo-first-order reaction kinetics (R2 = 0.98, 0.92, 0.92 and 0.90, respectively). Pollutants expressed higher degradation percentages in less than 14 min in direct solar irradiance. Moreover, synthesized nanoparticles were tested against resistant microbes, i.e. Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus, Penicillium chrysogenum, Fusarium solani, Lasiodiplodia theobromae, Xanthomonas axonopodis pv. citri and Psuedomonas syringae for the development of a new generation of antimicrobial agents.
Collapse
Affiliation(s)
- Shaan Bibi Jaffri
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
13
|
|
14
|
Chalyan T, Potrich C, Schreuder E, Falke F, Pasquardini L, Pederzolli C, Heideman R, Pavesi L. AFM1 Detection in Milk by Fab' Functionalized Si 3N 4 Asymmetric Mach-Zehnder Interferometric Biosensors. Toxins (Basel) 2019; 11:E409. [PMID: 31337103 PMCID: PMC6669449 DOI: 10.3390/toxins11070409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 11/23/2022] Open
Abstract
Aflatoxins (AF) are naturally occurring mycotoxins, produced by many species of Aspergillus. Among aflatoxins, Aflatoxin M1 (AFM1) is one of the most frequent and dangerous for human health. The acceptable maximum level of AFM1 in milk according to EU regulation is 50 ppt, equivalent to 152 pM, and 25 ppt, equivalent to 76 pM, for adults and infants, respectively. Here, we study a photonic biosensor based on Si 3 N 4 asymmetric Mach-Zehnder Interferometers (aMZI) functionalized with Fab' for AFM1 detection in milk samples (eluates). The minimum concentration of AFM1 detected by our aMZI sensors is 48 pM (16.8 pg/mL) in purified and concentrated milk samples. Moreover, the real-time detection of the ligand-analyte binding enables the study of the kinetics of the reaction. We measured the kinetic rate constants of the Fab'-AFM1 interaction.
Collapse
Affiliation(s)
- Tatevik Chalyan
- Nanoscience Laboratory, Department of Physics, University of Trento, 38123 Trento, Italy.
| | - Cristina Potrich
- LaBSSAH, Fondazione Bruno Kessler, 38123 Trento, Italy
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biofisica, 38123 Trento, Italy
| | - Erik Schreuder
- LioniX International BV, 7521 AN Enschede, The Netherlands
| | - Floris Falke
- LioniX International BV, 7521 AN Enschede, The Netherlands
| | | | | | - Rene Heideman
- LioniX International BV, 7521 AN Enschede, The Netherlands
| | - Lorenzo Pavesi
- Nanoscience Laboratory, Department of Physics, University of Trento, 38123 Trento, Italy
| |
Collapse
|
15
|
Dhiman TK, Lakshmi GBVS, Roychoudhury A, Jha SK, Solanki PR. Ceria‐Nanoparticles‐Based Microfluidic Nanobiochip Electrochemical Sensor for the Detection of Ochratoxin‐A. ChemistrySelect 2019. [DOI: 10.1002/slct.201803752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tarun K. Dhiman
- Special Centre for NanoscienceJawaharlal Nehru University New Delhi- 110067
| | - GBVS Lakshmi
- Special Centre for NanoscienceJawaharlal Nehru University New Delhi- 110067
| | - Appan Roychoudhury
- Centre for Biomedical EngineeringIndian Institute of Technology Delhi, Hauz Khas New Delhi- 110016
| | - Sandeep K. Jha
- Centre for Biomedical EngineeringIndian Institute of Technology Delhi, Hauz Khas New Delhi- 110016
| | - Pratima R. Solanki
- Special Centre for NanoscienceJawaharlal Nehru University New Delhi- 110067
| |
Collapse
|
16
|
Optical Biomarker-based Biosensors for Cancer/Infectious Disease Medical Diagnoses. Appl Immunohistochem Mol Morphol 2019; 27:278-286. [DOI: 10.1097/pai.0000000000000586] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Idrees M, Batool S, Kalsoom T, Raina S, Sharif HMA, Yasmeen S. Biosynthesis of silver nanoparticles using Sida acuta extract for antimicrobial actions and corrosion inhibition potential. ENVIRONMENTAL TECHNOLOGY 2019; 40:1071-1078. [PMID: 29385891 DOI: 10.1080/09593330.2018.1435738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/27/2018] [Indexed: 06/07/2023]
Abstract
Nanotechnology exhibits a multidisciplinary area and gained interests for researchers. Nanoparticles produced via physical and chemical methods affects ecosystem drastically. Green synthesis is the charming technique that is inexpensive and safe for the environment. This study aimed to explore the antibacterial actions of as-synthesized silver nanoparticles (Ag-NPs) against Escherichia coli, Staphylococcus aureus and Streptococcus faecalis. Also, the anti-corrosion actions confirmed that the Ag-NPs proved as good inhibitors. In this way, Ag-NPs were prepared via biosynthesis technique by consuming the ground leaves and stem of 'Sida acuta' as a capping agent. The Ag-NPs were formed by irradiation of the aqueous solution of silver nitrate (AgNO3) with extract of S. acuta stem and leaves. The as-synthesized reaction mixture of Ag-NPs was found to exhibit an absorbance band at 446-447 nm, by an UV/VIS spectrophotometer, which is a characteristic of Ag-NPs due to the surface plasmon resonance absorption band. The X-ray diffraction and transmission electron microscopy (TEM) were used for the confirmation of Ag-NPs' variety dimension, morphology and dispersion. The infrared spectra confirmed the bio-fabrication of the Ag-NPs displayed the existence of conceivable functional groups responsible for the bio-reduction and capping. The antimicrobial actions were measured and the zone of inhibition was compared with standard antibiotics.
Collapse
Affiliation(s)
- Muhammad Idrees
- a MOE Key Laboratory of Space Applied Physics & Chemistry, Shaanxi Key Laboratory of Macromolecular Science & Technology, School of Natural & Applied Sciences , Northwestern Polytechnical University , Xi'an , People's Republic of China
| | - Saima Batool
- a MOE Key Laboratory of Space Applied Physics & Chemistry, Shaanxi Key Laboratory of Macromolecular Science & Technology, School of Natural & Applied Sciences , Northwestern Polytechnical University , Xi'an , People's Republic of China
| | - Tanzila Kalsoom
- b Department of Botany , Government Post Graduate College , Kohat , Pakistan
| | - Sadaf Raina
- c Department of Biological Sciences , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Hafiz Muhammad Adeel Sharif
- d Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Summera Yasmeen
- e Department of Zoology , University of Sargodha , Sargodha , Pakistan
| |
Collapse
|
18
|
Optical Biosensors Based on Silicon-On-Insulator Ring Resonators: A Review. Molecules 2019; 24:molecules24030519. [PMID: 30709027 PMCID: PMC6384601 DOI: 10.3390/molecules24030519] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 11/30/2022] Open
Abstract
Recent developments in optical biosensors based on integrated photonic devices are reviewed with a special emphasis on silicon-on-insulator ring resonators. The review is mainly devoted to the following aspects: (1) Principles of sensing mechanism, (2) sensor design, (3) biofunctionalization procedures for specific molecule detection and (4) system integration and measurement set-ups. The inherent challenges of implementing photonics-based biosensors to meet specific requirements of applications in medicine, food analysis, and environmental monitoring are discussed.
Collapse
|
19
|
Muniandy S, Teh SJ, Thong KL, Thiha A, Dinshaw IJ, Lai CW, Ibrahim F, Leo BF. Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection. Crit Rev Anal Chem 2019; 49:510-533. [DOI: 10.1080/10408347.2018.1561243] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shalini Muniandy
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Swe Jyan Teh
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Ignatius Julian Dinshaw
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Central Unit of Advanced Research Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Thin Films Sensor Devices for Mycotoxins Detection in Foods: Applications and Challenges. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mycotoxins are a group of secondary metabolites produced by different species of filamentous fungi and pose serious threats to food safety due to their serious human and animal health impacts such as carcinogenic, teratogenic and hepatotoxic effects. Conventional methods for the detection of mycotoxins include gas chromatography and high-performance liquid chromatography coupled with mass spectrometry or other detectors (fluorescence or UV detection), thin layer chromatography and enzyme-linked immunosorbent assay. These techniques are generally straightforward and yield reliable results; however, they are time-consuming, require extensive preparation steps, use large-scale instruments, and consume large amounts of hazardous chemical reagents. Rapid detection of mycotoxins is becoming an increasingly important challenge for the food industry in order to effectively enforce regulations and ensure the safety of food and feed. In this sense, several studies have been done with the aim of developing strategies to detect mycotoxins using sensing devices that have high sensitivity and specificity, fast analysis, low cost and portability. The latter include the use of microarray chips, multiplex lateral flow, Surface Plasmon Resonance, Surface Enhanced Raman Scattering and biosensors using nanoparticles. In this perspective, thin film sensors have recently emerged as a good candidate technique to meet such requirements. This review summarizes the application and challenges of thin film sensor devices for detection of mycotoxins in food matrices.
Collapse
|
21
|
Some new findings on the potential use of biocompatible silver nanoparticles in winemaking. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Abstract
Engineered nanoparticles are materials between 1 and 100 nm and exist as metalloids, metallic oxides, nonmetals, and carbon nanomaterials and as functionalized dendrimers, liposomes, and quantum dots. Their small size, large surface area, and high reactivity have enabled their use as bactericides/ fungicides and nanofertilizers. Nanoparticles can be designed as biosensors for plant disease diagnostics and as delivery vehicles for genetic material, probes, and agrichemicals. In the past decade, reports of nanotechnology in phytopathology have grown exponentially. Nanomaterials have been integrated into disease management strategies and diagnostics and as molecular tools. Most reports summarized herein are directed toward pathogen inhibition using metalloid/metallic oxide nanoparticles as bactericides/fungicides and as nanofertilizers to enhance health. The use of nanoparticles as biosensors in plant disease diagnostics is also reviewed. As global demand for food production escalates against a changing climate, nanotechnology could sustainably mitigate many challenges in disease management by reducing chemical inputs and promoting rapid detection of pathogens.
Collapse
Affiliation(s)
- Wade Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, USA;
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, USA
| |
Collapse
|
23
|
Label-Free QCM Immunosensor for the Detection of Ochratoxin A. SENSORS 2018; 18:s18041161. [PMID: 29641432 PMCID: PMC5948555 DOI: 10.3390/s18041161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 02/05/2023]
Abstract
Ochratoxin A (OTA) is a potent mycotoxin that poses a risk in food and feed moieties and subject to worldwide regulation. Laboratory-based analytical methods are traditionally employed for reliable OTA quantification, but these methods cannot provide rapid and on-site analysis, where biosensors fill this gap. In this study a label-free quartz crystal microbalance (QCM)-based immunosensor for the detection of OTA, which is one of the most important small molecule contaminants, was developed by direct immobilization of OTA to amine-bearing sensor surfaces using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) chemistry. The protein-free sensor surface enabled regeneration of sensor surface with 50 mM NaOH and 1% SDS up to 13 times without loss of performance, which would disrupt a protein-containing sensor surface. We developed a QCM immunosensor using the developed sensor surface with a 17.2–200 ng/mL detection range which can be used for on-site detection of feedstuffs.
Collapse
|
24
|
Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection. BIOSENSORS-BASEL 2018; 8:bios8020032. [PMID: 29584662 PMCID: PMC6023029 DOI: 10.3390/bios8020032] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/14/2018] [Accepted: 03/20/2018] [Indexed: 12/25/2022]
Abstract
A sensitive and label-free surface plasmon resonance (SPR) based sensor was developed in this work for the detection of milk allergens. β-lactoglobulin (BLG) protein was used as the biomarker for cow milk detection. This is to be used directly in final rinse samples of cleaning in-place (CIP) systems of food manufacturers. The affinity assay was optimised and characterised before a standard curve was performed in pure buffer conditions, giving a detection limit of 0.164 µg mL-1 as a direct binding assay. The detection limit can be further enhanced through the use of a sandwich assay and amplification with nanomaterials. However, this was not required here, as the detection limit achieved exceeded the required allergen detection levels of 2 µg mL-1 for β-lactoglobulin. The binding affinities of the polyclonal antibody for BLG, expressed by the dissociation constant (KD), were equal to 2.59 × 10-9 M. The developed SPR-based sensor offers several advantages in terms of label-free detection, real-time measurements, potential on-line system and superior sensitivity when compared to ELISA-based techniques. The method is novel for this application and could be applied to wider food allergen risk management decision(s) in food manufacturing.
Collapse
|
25
|
Abstract
Because multianalyte methods are highly desirable in order to keep analysis time and costs low, the biosensor development increasingly focuses on parallel analysis of several mycotoxins. Here, we describe an indirect competitive immunoassay on regenerable, reusable glass microchips for the parallel determination of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisin B1 in oat extracts, using a fully automated flow-through device with chemiluminescence readout.
Collapse
|
26
|
Zhu Z. An Overview of Carbon Nanotubes and Graphene for Biosensing Applications. NANO-MICRO LETTERS 2017; 9:25. [PMID: 30393720 PMCID: PMC6199032 DOI: 10.1007/s40820-017-0128-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/04/2017] [Indexed: 05/15/2023]
Abstract
With the development of carbon nanomaterials in recent years, there has been an explosion of interests in using carbon nanotubes (CNTs) and graphene for developing new biosensors. It is believed that employing CNTs and graphene as sensor components can make sensors more reliable, accurate, and fast due to their remarkable properties. Depending on the types of target molecular, different strategies can be applied to design sensor device. This review article summarized the important progress in developing CNT- and graphene-based electrochemical biosensors, field-effect transistor biosensors, and optical biosensors. Although CNTs and graphene have led to some groundbreaking discoveries, challenges are still remained and the state-of-the-art sensors are far from a practical application. As a conclusion, future effort has to be made through an interdisciplinary platform, including materials science, biology, and electric engineering.
Collapse
Affiliation(s)
- Zanzan Zhu
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| |
Collapse
|
27
|
Xu L, Zhang Z, Zhang Q, Li P. Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers. Toxins (Basel) 2016; 8:239. [PMID: 27529281 PMCID: PMC4999855 DOI: 10.3390/toxins8080239] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination threatens health and life of humans and animals throughout the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin contamination. Advanced sensors based on antibodies or aptamers boast the advantages of high sensitivity and rapidity, and have been used in the mycotoxin sensing. These sensors are miniaturized, thereby lowering costs, and are applicable to high-throughput modes. In this work, the latest developments in sensing strategies for mycotoxin determination were critically discussed. Optical and electrochemical sensing modes were compared. The sensing methods for single mycotoxin or multiple mycotoxins in food samples were reviewed, along with the challenges and the future of antibody or aptamer-based sensors. This work might promote academic studies and industrial applications for mycotoxin sensing.
Collapse
Affiliation(s)
- Lin Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection and Test Center for oilseeds Products, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
28
|
Biosensor-Based Technologies for the Detection of Pathogens and Toxins. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
29
|
Lim SA, Ahmed MU. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv 2016. [DOI: 10.1039/c6ra00333h] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, tremendous advances have been made in biosensors based on nanoscale electrochemical immunosensors for use in the fields of agriculture, food safety, biomedicine, quality control, and environmental and industrial monitoring.
Collapse
Affiliation(s)
- Syazana Abdullah Lim
- Environmental and Life Sciences Programme
- Faculty of Science
- Universiti Brunei Darussalam
- Gadong
- Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Biotechnology Laboratory
- Chemical Science Programme
- Faculty of Science
- Universiti Brunei Daruusalam
- Gadong
| |
Collapse
|
30
|
Reverté L, Prieto-Simón B, Campàs M. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review. Anal Chim Acta 2015; 908:8-21. [PMID: 26826685 DOI: 10.1016/j.aca.2015.11.050] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 01/01/2023]
Abstract
The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Beatriz Prieto-Simón
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, SA 5095, Australia
| | - Mònica Campàs
- IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain.
| |
Collapse
|
31
|
Biosensors for waterborne viruses: Detection and removal. Biochimie 2015; 115:144-54. [DOI: 10.1016/j.biochi.2015.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/14/2015] [Indexed: 01/20/2023]
|
32
|
Rai M, Jogee PS, Ingle AP. Emerging nanotechnology for detection of mycotoxins in food and feed. Int J Food Sci Nutr 2015; 66:363-70. [DOI: 10.3109/09637486.2015.1034251] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Yao H, Hruska Z, Di Mavungu JD. Developments in detection and determination of aflatoxins. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1797] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the discovery of aflatoxins in the 1960s, much research has focused on detecting the toxins in contaminated food and feedstuffs in the interest of public safety. Most traditional detection methods involved lengthy culturing and/or separation techniques or analytical instrumentation and complex, multistep procedures that required destruction of samples for accurate toxin determination. With more regulations for acceptable levels of aflatoxins in place, modern analytical methods have become quite sophisticated, capable of achieving results with very high precision and accuracy, suitable for regulatory laboratories and for post-harvest sample testing in developed countries. Unfortunately, many countries around the world that are affected by the aflatoxin problem do not have ready access to high performance liquid chromatography and mass spectrometry instrumentation and require alternate, readily available and simple detection methods that may be used by small holdings farmers in developing countries. This paper presents an overview of the existing detection and/or determination methods for aflatoxins. The traditional, quantitative, chemically-based analytical strategies for detecting aflatoxins in maize and their evolution to the modern instrumentation routinely used in developed countries are reviewed. Additionally, novel, more streamlined, user-friendly and in some instances, non-destructive, methods that may be useful for semi-quantitative or qualitative, quick-screening of contaminated maize samples appropriate also for use in developing countries, are discussed.
Collapse
Affiliation(s)
- H. Yao
- Geosystems Research Institute, Mississippi State University, 1021 Balch Blvd, Stennis Space Center, MS 39529, USA
| | - Z. Hruska
- Geosystems Research Institute, Mississippi State University, 1021 Balch Blvd, Stennis Space Center, MS 39529, USA
| | - J. Diana Di Mavungu
- Laboratory of Food Analysis, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| |
Collapse
|
34
|
Warriner K, Reddy SM, Namvar A, Neethirajan S. Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Olcer Z, Esen E, Muhammad T, Ersoy A, Budak S, Uludag Y. Fast and sensitive detection of mycotoxins in wheat using microfluidics based Real-time Electrochemical Profiling. Biosens Bioelectron 2014; 62:163-9. [PMID: 24998314 DOI: 10.1016/j.bios.2014.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 11/17/2022]
Abstract
The objective of the study has been the development of a new sensing platform, called Real-time Electrochemical Profiling (REP) that relies on real-time electrochemical immunoassay detection. The proposed REP platform consists of new electrode arrays that are easy to fabricate, has a small imprint allowing microfluidic system integration, enables multiplexed amperometric measurements and performs well in terms of electrochemical immunoassay detection as shown through the deoxynivalenol detection assays. The deoxynivalenol detection has been conducted according to an optimised REP assay protocol using deoxynivalenol standards at varying concentrations and a standard curve was obtained (y=-20.33ln(x)+124.06; R(2)=0.97) with a limit of detection of 6.25 ng/ml. As both ELISA and REP detection methods use horse radish peroxidase as the label and 3.3',5.5'-Tetramethylbenzidine as the substrate, the performance of the REP platform as an ELISA reader has also been investigated and a perfect correlation between the deoxynivalenol concentration and the current response was obtained (y=-14.56ln(x)+101.02; R(2)=0.99). The calibration curves of both assays have been compared to conventional ELISA tests for confirmation. After assay optimisation using toxin spiked buffer, the deoxynivalenol detection assay has also been performed to detect toxins in wheat grain.
Collapse
Affiliation(s)
- Zehra Olcer
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey; Department of Chemistry, Gebze Institute of Technology, 41400 Gebze/Kocaeli, Turkey
| | - Elif Esen
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey
| | - Turghun Muhammad
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey; College of Chemistry & Chemical Engineering, Xinjiang University, Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, Urumqi, People's Republic of China
| | - Aylin Ersoy
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey
| | - Sinan Budak
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey
| | - Yıldız Uludag
- UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze/Kocaeli, Turkey.
| |
Collapse
|
36
|
|
37
|
Altintas Z, Fakanya WM, Tothill IE. Cardiovascular disease detection using bio-sensing techniques. Talanta 2014; 128:177-86. [PMID: 25059146 DOI: 10.1016/j.talanta.2014.04.060] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 12/14/2022]
Abstract
Universally, cardiovascular disease (CVD) is recognised as the prime cause of death with estimates exceeding 20 million by 2015 due to heart disease and stroke. Facts regarding the disease, its classification and diagnosis are still lacking. Hence, understanding the issues involved in its initiation, its symptoms and early detection will reduce the high risk of sudden death associated with it. Biosensors developed to be used as rapid screening tools to detect disease biomarkers at the earliest stage and able to classify the condition are revolutionising CVD diagnosis and prognosis. Advances in interdisciplinary research areas have made biosensors faster, highly accurate, portable and environmentally friendly diagnostic devices. The recent advances in microfluidics and the advent of nanotechnology have resulted in the development of improved diagnostics through reduction of analysis time and integration of several clinical assays into a single, portable device as lab-on-a-chip (LOC). The development of such affinity based systems is a major drive of the rapidly growing nanotechnology industry which involves a multidisciplinary research effort encompassing nanofluidics, microelectronics and analytical chemistry. This review summarised the classification of CVD, the biomarkers used for its diagnosis, biosensors and their application including the latest developments in the field of heart-disease detection.
Collapse
Affiliation(s)
- Zeynep Altintas
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Wellington M Fakanya
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK; Atlas Genetics, White Horse Business Park, Wiltshire BA14 0XG, UK
| | - Ibtisam E Tothill
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
38
|
Lawal AT, Wallace GG. Vapour phase polymerisation of conducting and non-conducting polymers: A review. Talanta 2014; 119:133-43. [DOI: 10.1016/j.talanta.2013.10.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/12/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023]
|
39
|
Li W, Powers S, Dai S. Using commercial immunoassay kits for mycotoxins: ‘joys and sorrows’? WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2014.1715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Rapid test methods are widely used for measuring mycotoxins in a variety of matrices. This review presents an overview of the current commercially available immunoassay rapid test formats. Enzyme linked immune-sorbent assay (ELISA), lateral flow tests, flow through immunoassay, fluorescent polarisation immunoassay, and immunoaffinity columns coupled with fluorometric assay are common formats in the current market. The two existing evaluation programs for commercial testing kits by United State Department of Agricultural Grain Inspection, Packers & Stockyards Administration (USDA-GIPSA) and AOAC Research Institute are introduced. The strengths and weaknesses of these test kits are discussed with regard to the application scope, variance, specificity and cross reactivity, accuracy and precision, and measurement range. Generally speaking, the current commercially available testing kits meet research and industrial needs as ‘fit-for-purpose’. Furthermore, quality assurance concerns and future perspectives are elaborated for broader application of commercial test kits in research, industry and regulatory applications. It is expected that new commercial kits based on advanced technologies such as electrochemical affinity biosensors, molecularly imprinted polymers, surface plasmon resonance, fluorescence resonance energy transfer, aptamer-based biosensors and dynamic light scattering might be available to users in the future. Meanwhile, harmonisation of testing kit evaluation, incorporation of more quality assurance into the testing kit utilisation scheme, and a larger variety of kits available at lower cost will expand the usage of testing kits for food safety testing worldwide.
Collapse
Affiliation(s)
- Wei Li
- Office of the Texas State Chemist, Texas A&M University, 445 Agronomy Road, College Station, TX 77843, USA
| | - S. Powers
- VICAM, 34 Maple Street, Milford, MA 02157, USA
| | - S.Y. Dai
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| |
Collapse
|
40
|
Heurich M, Altintas Z, Tothill IE. Computational design of peptide ligands for ochratoxin A. Toxins (Basel) 2013; 5:1202-18. [PMID: 23793075 PMCID: PMC3717777 DOI: 10.3390/toxins5061202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022] Open
Abstract
In this paper, we describe a peptide library designed by computational modelling and the selection of two peptide sequences showing affinity towards the mycotoxin, ochratoxin A (OTA). A virtual library of 20 natural amino acids was used as building blocks to design a short peptide library against ochratoxin A template using the de novo design program, LeapFrog, and the dynamic modelling software, FlexiDock. Peptide sequences were ranked according to calculated binding scores in their capacity to bind to ochratoxin A. Two high scoring peptides with the sequences N'-Cys-Ser-Ile-Val-Glu-Asp-Gly-Lys-C' (octapeptide) and N'-Gly-Pro-Ala-Gly-Ile-Asp-Gly-Pro-Ala-Gly-Ile-Arg-Cys-C' (13-mer) were selected for synthesis from the resulting database. These synthesized peptides were characterized using a microtitre plate-based binding assay and a surface plasmon resonance biosensor (Biacore 3000). The binding assay confirmed that both de novo designed peptides did bind to ochratoxin A in vitro. SPR analysis confirmed that the peptides bind to ochratoxin A, with calculated K(D) values of ~15.7 μM (13-mer) and ~11.8 μM (octamer). The affinity of the peptides corresponds well with the molecular modelling results, as the 13-mer peptide affinity is about 1.3-times weaker than the octapeptide; this is in accordance with the binding energy values modelled by FlexiDock. This work illustrates the potential of using computational modelling to design a peptide sequence that exhibits in vitro binding affinity for a small molecular weight toxin.
Collapse
Affiliation(s)
| | | | - Ibtisam E. Tothill
- Cranfield Health, Cranfield University, Cranfield, Bedfordshire MK43 0AL, England, UK; E-Mail: (Z.A.)
| |
Collapse
|
41
|
Electrochemical affinity biosensors for detection of mycotoxins: A review. Biosens Bioelectron 2013; 49:146-58. [PMID: 23743326 DOI: 10.1016/j.bios.2013.05.008] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 11/22/2022]
Abstract
This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago.
Collapse
|
42
|
Ates M. A review study of (bio)sensor systems based on conducting polymers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1853-9. [DOI: 10.1016/j.msec.2013.01.035] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/18/2012] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
43
|
Oswald S, Karsunke XYZ, Dietrich R, Märtlbauer E, Niessner R, Knopp D. Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals. Anal Bioanal Chem 2013; 405:6405-15. [PMID: 23620369 DOI: 10.1007/s00216-013-6920-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/01/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
An automated flow-through multi-mycotoxin immunoassay using the stand-alone Munich Chip Reader 3 platform and reusable biochips was developed and evaluated. This technology combines a unique microarray, prepared by covalent immobilization of target analytes or derivatives on diamino-poly(ethylene glycol) functionalized glass slides, with a dedicated chemiluminescence readout by a CCD camera. In a first stage, we aimed for the parallel detection of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisins in cereal samples in a competitive indirect immunoassay format. The method combines sample extraction with methanol/water (80:20, v/v), extract filtration and dilution, and immunodetection using horseradish peroxidase-labeled anti-mouse IgG antibodies. The total analysis time, including extraction, extract dilution, measurement, and surface regeneration, was 19 min. The prepared microarray chip was reusable for at least 50 times. Oat extract revealed itself as a representative sample matrix for preparation of mycotoxin standards and determination of different types of cereals such as oat, wheat, rye, and maize polenta at relevant concentrations according to the European Commission regulation. The recovery rates of fortified samples in different matrices, with 55-80 and 58-79%, were lower for the better water-soluble fumonisin B1 and deoxynivalenol and with 127-132 and 82-120% higher for the more unpolar aflatoxins and ochratoxin A, respectively. Finally, the results of wheat samples which were naturally contaminated with deoxynivalenol were critically compared in an interlaboratory comparison with data obtained from microtiter plate ELISA, aokinmycontrol® method, and liquid chromatography-mass spectrometry and found to be in good agreement.
Collapse
Affiliation(s)
- S Oswald
- Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Sabino M, Solfrizzo M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2011-2012. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1492] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2011 and mid- 2012. It covers the major mycotoxins aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. A section on mycotoxins in botanicals and spices is also included. Methods for mycotoxin determination continue to be developed using a wide range of analytical systems ranging from rapid immunochemical-based methods to the latest advances in mass spectrometry. This review follows the format of previous reviews in this series (i.e. sections on individual mycotoxins), but due to the rapid spread and developments in the field of multimycotoxin methods by liquid chromatography-tandem mass spectrometry, a separate section has been devoted to advances in this area of research.
Collapse
Affiliation(s)
- G.S. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- Spanish Food Safety and Nutrition Agency, National Centre for Food, km 5.100, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.A. Jonker
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902 São Paulo/SP, Brazil
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - H.P. van Egmond
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|