1
|
Probing Serum Albumins and Cyclodextrins as Binders of the Mycotoxin Metabolites Alternariol-3-Glucoside, Alternariol-9-Monomethylether-3-Glucoside, and Zearalenone-14-Glucuronide. Metabolites 2023; 13:metabo13030446. [PMID: 36984886 PMCID: PMC10059066 DOI: 10.3390/metabo13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Mycotoxins are toxic metabolites of molds. Chronic exposure to alternariol, zearalenone, and their metabolites may cause the development of endocrine-disrupting and carcinogenic effects. Alternariol-3-glucoside (AG) and alternariol-9-monomethylether-3-glucoside (AMG) are masked derivatives of alternariol. Furthermore, in mammals, zearalenone-14-glucuronide (Z14Glr) is one of the most dominant metabolites of zearalenone. In this study, we examined serum albumins and cyclodextrins (CDs) as potential binders of AG, AMG, and Z14Glr. The most important results/conclusions were as follows: AG and AMG formed moderately strong complexes with human, bovine, porcine, and rat albumins. Rat albumin bound Z14Glr approximately 4.5-fold stronger than human albumin. AG–albumin and Z14Glr–albumin interactions were barely influenced by the environmental pH, while the formation of AMG–albumin complexes was strongly favored by alkaline conditions. Among the mycotoxin–CD complexes examined, AMG–sugammadex interaction proved to be the most stable. CD bead polymers decreased the mycotoxin content of aqueous solutions, with moderate removal of AG and AMG, while weak extraction of Z14Glr was observed. In conclusion, rat albumin is a relatively strong binder of Z14Glr, and albumin can form highly stable complexes with AMG at pH 8.5. Therefore, albumins can be considered as affinity proteins with regard to the latter mycotoxin metabolites.
Collapse
|
2
|
Flasch M, Bueschl C, Del Favero G, Adam G, Schuhmacher R, Marko D, Warth B. Elucidation of xenoestrogen metabolism by non-targeted, stable isotope-assisted mass spectrometry in breast cancer cells. ENVIRONMENT INTERNATIONAL 2022; 158:106940. [PMID: 34673318 DOI: 10.1016/j.envint.2021.106940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental exposure to xenoestrogens, i.e., chemicals that imitate the hormone 17β-estradiol, has the potential to influence hormone homeostasis and action. Detailed knowledge of xenobiotic biotransformation processes in cell models is key when transferring knowledge learned from in vitro models to in vivo relevance. This study elucidated the metabolism of two naturally-occurring phyto- and mycoestrogens; namely genistein and zearalenone, in an estrogen receptor positive breast cancer cell line (MCF-7) with the aid of stable isotope-assisted metabolomics and the bioinformatic tool MetExtract II. Metabolism was studied in a time course experiment after 2 h, 6 h and 24 h incubation. Twelve and six biotransformation products of zearalenone and genistein were detected, respectively, clearly demonstrating the abundant xenobiotic biotransformation capability of the cells. Zearalenone underwent extensive phase-I metabolism resulting in α-zearalenol (α-ZEL), a molecule known to possess a significantly higher estrogenicity, and several phase-II metabolites (sulfo- and glycoconjugates) of the native compound and the major phase I metabolite α-ZEL. Moreover, potential adducts of zearalenone with a vitamin and several hydroxylated metabolites were annotated. Genistein metabolism resulted in sulfation, combined sulfation and hydroxylation, acetylation, glucuronidation and unexpectedly adduct formation with pentose- and hexose sugars. Kinetics of metabolite formation and subsequent excretion into the extracellular medium revealed a time-dependent increase in most biotransformation products. The untargeted elucidation of biotransformation products formed during cell culture experiments enables an improved and more meaningful interpretation of toxicological assays and has the potential to identify unexpected or unknown metabolites.
Collapse
Affiliation(s)
- Mira Flasch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Christoph Bueschl
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; University of Vienna, Faculty of Chemistry, Department of Analytical Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Giorgia Del Favero
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Gerhard Adam
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Mendez‐Catala DM, Wang Q, Rietjens IM. PBK Model-Based Prediction of Intestinal Microbial and Host Metabolism of Zearalenone and Consequences for its Estrogenicity. Mol Nutr Food Res 2021; 65:e2100443. [PMID: 34648686 PMCID: PMC9285883 DOI: 10.1002/mnfr.202100443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/01/2021] [Indexed: 01/21/2023]
Abstract
SCOPE The aim of the present study is to develop physiologically-based kinetic (PBK) models for rat and human that include intestinal microbial and hepatic metabolism of zearalenone (ZEN) in order to predict systemic concentrations of ZEN and to obtain insight in the contribution of metabolism by the intestinal microbiota to the overall metabolism of ZEN. METHODS AND RESULTS In vitro derived kinetic parameters, apparent maximum velocities (Vmax ) and Michaelis-Menten constants (Km ) for liver and intestinal microbial metabolism of ZEN are included in the PBK models. The models include a sub-model for the metabolite, α-zearalenol (α-ZEL), a metabolite known to be 60-times more potent as an estrogen than ZEN. Integrating intestinal microbial ZEN metabolism into the PBK models revealed that hepatic metabolism drives the formation of α-ZEL. Furthermore, the models predicted that at the tolerable daily intake (TDI) of 0.25 µg kg-1 bw the internal concentration of ZEN and α-ZEL are three-orders of magnitude below concentrations reported to induce estrogenicity in vitro. CONCLUSION It is concluded that combining kinetic data on liver and intestinal microbial metabolism in a PBK model facilitates a holistic view on the role of the intestinal microbiota in the overall metabolism of the foodborne xenobiotic ZEN and its bioactivation to α-ZEL.
Collapse
Affiliation(s)
| | - Qianrui Wang
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
| | | |
Collapse
|
4
|
Warth B, Preindl K, Manser P, Wick P, Marko D, Buerki-Thurnherr T. Transfer and Metabolism of the Xenoestrogen Zearalenone in Human Perfused Placenta. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107004. [PMID: 31596610 PMCID: PMC6867367 DOI: 10.1289/ehp4860] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Pregnancy is a sensitive condition during which adverse environmental exposures should be monitored thoroughly and minimized whenever possible. In particular, the hormone balance during gestation is delicate, and disturbance may cause acute or chronic long-term health effects. A potential endocrine disruption may be provoked by in utero exposure to xenoestrogens mimicking endogenous estrogens. The mycoestrogen zearalenone (ZEN), a toxic fungal secondary metabolite and mycotoxin found frequently in food and feed, constitutes a prominent example. OBJECTIVES We performed a comprehensive assessment of the transfer as well as phase I and phase II metabolism of ZEN at the human placental barrier. METHODS Human placentas were perfused with 1μM (318μg/L) ZEN for 6 h. Samples from the maternal and fetal compartment, placental tissue, and fetal plasma were analyzed by a highly sensitive UHPLC-MS/MS assay to detect ZEN as well as nine key metabolites (α-zearalenol, β-zearalenol, zearalanone, α-zearalanol, β-zearalanol, ZEN-14-glucuronide, α-zearalenol-14-glucuronide, β-zearalenol-14-glucuronide, ZEN-14-sulfate). RESULTS The model revealed a fast maternofetal transfer of ZEN across the human placental barrier. We also unraveled phase I and phase II metabolism of the parent toxin ZEN into the approximately 70-times more estrogenic α-zearalenol and the less active ZEN-14-sulfate conjugate, which are effectively released into the maternal and fetal circulation in considerable amounts. CONCLUSIONS Our findings suggest that exposure to ZEN (such as through consumption of ZEN-contaminated cereal-based products) during pregnancy may result in in utero exposure of the fetus, not only to ZEN but also some of its highly estrogenically active metabolites. In the light of the known affinity of ZEN and potentially co-occurring xenoestrogens to the estrogen receptor, and our results demonstrating placental transfer of ZEN and its metabolites in an ex vivo model, we recommend further research and more comprehensive assessment of gestational exposures in women. https://doi.org/10.1289/EHP4860.
Collapse
Affiliation(s)
- Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Research Network Chemistry, Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Karin Preindl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Pius Manser
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
5
|
Weber J, Fruhmann P, Hametner C, Schiessl A, Häubl G, Fröhlich J, Mikula H. Synthesis of Isotope-Labeled Deoxynivalenol-15- O
-Glycosides. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julia Weber
- Institute of Applied Synthetic Chemistry; Vienna University of Technology (TU Wien); Getreidemarkt 9 1060 Vienna Austria
| | - Philipp Fruhmann
- Institute of Applied Synthetic Chemistry; Vienna University of Technology (TU Wien); Getreidemarkt 9 1060 Vienna Austria
- Center for Electrochemical Surface Technology (CEST); Viktor-Kaplan Straße 2 2700 Wiener Neustadt Austria
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry; Vienna University of Technology (TU Wien); Getreidemarkt 9 1060 Vienna Austria
| | | | - Georg Häubl
- Romer Labs; Technopark 1 3430 Tulln/Donau Austria
| | - Johannes Fröhlich
- Institute of Applied Synthetic Chemistry; Vienna University of Technology (TU Wien); Getreidemarkt 9 1060 Vienna Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry; Vienna University of Technology (TU Wien); Getreidemarkt 9 1060 Vienna Austria
| |
Collapse
|
6
|
Metabolism of Zearalenone and Its Major Modified Forms in Pigs. Toxins (Basel) 2017; 9:toxins9020056. [PMID: 28208710 PMCID: PMC5331435 DOI: 10.3390/toxins9020056] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
The Fusarium mycotoxin zearalenone (ZEN) can be conjugated with polar molecules, like sugars or sulfates, by plants and fungi. To date, the fate of these modified forms of ZEN has not yet been elucidated in animals. In order to investigate whether ZEN conjugates contribute to the total ZEN exposure of an individual, ZEN (10 µg/kg b.w.) and equimolar amounts of two of its plant metabolites (ZEN-14-O-β-glucoside, ZEN-16-O-β-glucoside) and of one fungal metabolite (ZEN-14-sulfate) were orally administered to four pigs as a single bolus using a repeated measures design. The concentrations of ZEN, its modified forms and its mammalian metabolites ZEN-14-glucuronide, α-zearalenol (α-ZEL) and α-ZEL-14-glucuronide in excreta were analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) based methods. The biological recovery of ZEN in urine was 26% ± 10%, the total biological recovery in excreta was 40% ± 8%. Intact ZEN-14-sulfate, ZEN-14-O-β-glucoside and ZEN-16-O-β-glucoside were neither detected in urine nor in feces. After ZEN-14-sulfate application, 19% ± 5% of the administered dose was recovered in urine. In feces, no ZEN metabolites were detected. The total biological recoveries of ZEN-14-O-β-glucoside and ZEN-16-O-β-glucoside in the form of their metabolites in urine were 19% ± 11% and 13% ± 7%, respectively. The total biological recoveries in urine and feces amounted to 48% ± 7% and 34 ± 3%. An explanation for the low biological recoveries could be extensive metabolization by intestinal bacteria to yet unknown metabolites. In summary, ZEN-14-sulfate, ZEN-14-O-β-glucoside, and ZEN-16-O-β-glucoside were completely hydrolyzed in the gastrointestinal tract of swine, thus contributing to the overall toxicity of ZEN.
Collapse
|
7
|
Warth B, Braun D, Ezekiel CN, Turner PC, Degen GH, Marko D. Biomonitoring of Mycotoxins in Human Breast Milk: Current State and Future Perspectives. Chem Res Toxicol 2016; 29:1087-97. [DOI: 10.1021/acs.chemrestox.6b00125] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
| | - Chibundu N. Ezekiel
- Department
of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Nigeria
- Partnership
for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, African Union Commission, Addis Ababa, Ethiopia
| | - Paul C. Turner
- Maryland
Institute for Environmental Health, School of Public Health, University of Maryland, College Park, Maryland 20742, United States
| | - Gisela H. Degen
- Leibniz-Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, D-44139 Dortmund, Germany
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
| |
Collapse
|
8
|
Chemical Synthesis of Deoxynivalenol-3-β-d-[(13)C₆]-glucoside and Application in Stable Isotope Dilution Assays. Molecules 2016; 21:molecules21070838. [PMID: 27355938 PMCID: PMC6274488 DOI: 10.3390/molecules21070838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
Modified mycotoxins have been gaining importance in recent years and present a certain challenge in LC-MS/MS analysis. Due to the previous lack of a labeled isotopologue of the modified mycotoxin deoxynivalenol-3-glucoside, in our study we synthesized the first (13)C-labeled internal standard. Therefore, we used the Königs-Knorr method to synthesize deoxynivalenol-3-β-d-[(13)C₆]-glucoside originated from unlabeled deoxynivalenol and [(13)C₆]-labeled glucose. Using the synthesized isotopically-labeled standard deoxynivalenol-3-β-d-[(13)C₆]-glucoside and the purchased labeled standard [(13)C15]-deoxynivalenol, a stable isotope dilution LC-MS/MS method was firstly developed for deoxynivalenol-3-glucoside and deoxynivalenol in beer. The preparation and purification of beer samples was based on a solid phase extraction. The validation data of the newly developed method gave satisfying results. Intra- and interday precision studies revealed relative standard deviations below 0.5% and 7%, respectively. The recoveries ranged for both analytes between 97% and 112%. The stable isotope dilution assay was applied to various beer samples from four different countries. In summary, deoxynivalenol-3-glucoside and deoxynivalenol mostly appeared together in varying molar ratios but were quantified in rather low contents in the investigated beers.
Collapse
|
9
|
Urinary deoxynivalenol (DON) and zearalenone (ZEA) as biomarkers of DON and ZEA exposure of pigs. Mycotoxin Res 2016; 32:69-75. [PMID: 26888520 DOI: 10.1007/s12550-016-0241-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Four diets contaminated with 1.1 to 5.0 mg/kg deoxynivalenol (DON) and 0.4 to 2.4 mg/kg zearalenone (ZEA) were fed to four groups of six growing Large White pigs. Urine samples were collected after 3 to 4 days and again after 6 to 7 days on the diets. On each sampling day, half of the animals were sampled in the morning, after an 8-h fast, and the other half were sampled in the afternoon, after 7 h of ad libitum access to feed. The urinary concentrations of DON, DON-glucuronide, DON-3-sulphate, de-epoxy-DON, as well as of ZEA, ZEA-14-glucuronide, α-zearalenol and α-zearalenol-14-glucuronide, analysed using LC-MS/MS, were used to calculate urinary DON and ZEA equivalent concentrations (DONe and ZEAe). The urinary concentration of DONe (P < 0.001), but not of ZEAe (P = 0.31), was lower in the fasted than that in the fed animals. The urinary DONe/creatinine and ZEAe/creatinine ratios were highly correlated with DON and ZEA intake per kg body weight the day preceding sampling (r = 0.76 and 0.77; P < 0.001). The correlations between DON intake during the 7 h preceding urine sampling in the afternoon and urinary DONe/creatinine ratio (r = 0.88) as well as between mean ZEA intake during 3 days preceding urine sampling and urinary ZEAe/creatinine ratio (r = 0.84) were even higher, reflecting the plasma elimination half-time of several hours for DON and of more than 3 days for ZEA. ZEAe analysed in enzymatically hydrolysed urine using an ELISA kit was highly correlated with the LC-MS/MS data (r = 0.94). The urinary DONe and ZEAe to creatinine ratios, analysed in pooled urine samples of several pigs fed the same diet, can be used to estimate their exposure to DON and ZEA.
Collapse
|
10
|
Shen W, Mao H, Huang Q, Dong J. Benzenediol lactones: a class of fungal metabolites with diverse structural features and biological activities. Eur J Med Chem 2015; 97:747-77. [DOI: 10.1016/j.ejmech.2014.11.067] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/04/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
|
11
|
Frizzell C, Uhlig S, Miles CO, Verhaegen S, Elliott CT, Eriksen GS, Sørlie M, Ropstad E, Connolly L. Biotransformation of zearalenone and zearalenols to their major glucuronide metabolites reduces estrogenic activity. Toxicol In Vitro 2015; 29:575-81. [PMID: 25645597 DOI: 10.1016/j.tiv.2015.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 11/17/2022]
Abstract
Zearalenone (ZEN) is a mycotoxin produced by Fusarium fungi. Once ingested, ZEN may be absorbed and metabolised to α- and β-zearalenol (α-ZOL, β-ZOL), and to a lesser extent α- and β-zearalanol (α-ZAL, β-ZAL). Further biotransformation to glucuronide conjugates also occurs to facilitate the elimination of these toxins from the body. Unlike ZEN and its metabolites, information regarding the estrogenic activity of these glucuronide conjugates in various tissues is lacking. ZEN-14-O-glucuronide, α-ZOL-14-O-glucuronide, α-ZOL-7-O-glucuronide, β-ZOL-14-O-glucuronide and β-ZOL-16-O-glucuronide, previously obtained as the major products from preparative enzymatic synthesis, were investigated for their potential to cause endocrine disruption through interference with estrogen receptor transcriptional activity. All five glucuronide conjugates showed a very weak agonist response in an estrogen responsive reporter gene assay (RGA), with activity ranging from 0.0001% to 0.01% of that of 17β-estradiol, and also less than that of ZEN, α-ZOL and β-ZOL which have previously shown estrogenic potencies of the order 17β-estradiol>α-ZOL>ZEN>β-ZOL. Confirmatory mass spectrometry revealed that any activity observed was likely a result of minor deconjugation of the glucuronide moiety. This study confirms that formation of ZEN and ZOL glucuronides is a detoxification reaction with regard to estrogenicity, serving as a potential host defence mechanism against ZEN-induced estrogenic activity.
Collapse
Affiliation(s)
- Caroline Frizzell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.
| | - Silvio Uhlig
- Section for Chemistry and Toxicology, Norwegian Veterinary Institute, Oslo, Norway.
| | - Christopher O Miles
- Section for Chemistry and Toxicology, Norwegian Veterinary Institute, Oslo, Norway.
| | | | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.
| | - Gunnar S Eriksen
- Section for Chemistry and Toxicology, Norwegian Veterinary Institute, Oslo, Norway.
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Erik Ropstad
- Norwegian School of Veterinary Science, Oslo, Norway.
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
12
|
Warth B, Petchkongkaew A, Sulyok M, Krska R. Utilising an LC-MS/MS-based multi-biomarker approach to assess mycotoxin exposure in the Bangkok metropolitan area and surrounding provinces. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:2040-6. [DOI: 10.1080/19440049.2014.969329] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Mikula H, Weber J, Svatunek D, Skrinjar P, Adam G, Krska R, Hametner C, Fröhlich J. Synthesis of zearalenone-16-β,D-glucoside and zearalenone-16-sulfate: A tale of protecting resorcylic acid lactones for regiocontrolled conjugation. Beilstein J Org Chem 2014; 10:1129-34. [PMID: 24991263 PMCID: PMC4077526 DOI: 10.3762/bjoc.10.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/18/2014] [Indexed: 11/23/2022] Open
Abstract
The development of a reliable procedure for the synthesis of the 16-glucoside and 16-sulfate of the resorcylic acid lactone (RAL) type compound zearalenone is presented. Different protective group strategies were considered and applied to enable the preparation of glucosides and sulfates that are difficult to access up to now. Acetyl and p-methoxybenzyl protection led to undesired results and were shown to be inappropriate. Finally, triisopropylsilyl-protected zearalenone was successfully used as intermediate for the first synthesis of the corresponding mycotoxin glucoside and sulfate that are highly valuable as reference materials for further studies in the emerging field of masked mycotoxins. Furthermore, high stability was observed for aryl sulfates prepared as tetrabutylammonium salts. Overall, these findings should be applicable for the synthesis of similar RAL type and natural product conjugates.
Collapse
Affiliation(s)
- Hannes Mikula
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (VUT), Getreidemarkt 9/163, A-1060 Vienna, Austria
| | - Julia Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (VUT), Getreidemarkt 9/163, A-1060 Vienna, Austria
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (VUT), Getreidemarkt 9/163, A-1060 Vienna, Austria
| | - Philipp Skrinjar
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (VUT), Getreidemarkt 9/163, A-1060 Vienna, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 24, 3430 Tulln, Austria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (VUT), Getreidemarkt 9/163, A-1060 Vienna, Austria
| | - Johannes Fröhlich
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (VUT), Getreidemarkt 9/163, A-1060 Vienna, Austria
| |
Collapse
|
14
|
Ezekiel CN, Warth B, Ogara IM, Abia WA, Ezekiel VC, Atehnkeng J, Sulyok M, Turner PC, Tayo GO, Krska R, Bandyopadhyay R. Mycotoxin exposure in rural residents in northern Nigeria: a pilot study using multi-urinary biomarkers. ENVIRONMENT INTERNATIONAL 2014; 66:138-145. [PMID: 24583186 DOI: 10.1016/j.envint.2014.02.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
A pilot, cross-sectional, correlational study was conducted in eight rural communities in northern Nigeria to investigate mycotoxin exposures in 120 volunteers (19 children, 20 adolescents and 81 adults) using a modern LC-MS/MS based multi-biomarker approach. First morning urine samples were analyzed and urinary biomarker levels correlated with mycotoxin levels in foods consumed the day before urine collection. A total of eight analytes were detected in 61/120 (50.8%) of studied urine samples, with ochratoxin A, aflatoxin M1 and fumonisin B1 being the most frequently occurring biomarkers of exposure. These mycotoxin biomarkers were present in samples from all age categories, suggestive of chronic (lifetime) exposures. Rough estimates of mycotoxin intake suggested some exposures were higher than the tolerable daily intake. Overall, rural consumer populations from Nasarawa were more exposed to several mixtures of mycotoxins in their diets relative to those from Kaduna as shown by food and urine biomarker data. This study has shown that mycotoxin co-exposure may be a major public health challenge in rural Nigeria; this calls for urgent intervention.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- Mycotoxicology Research Unit, Department of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Nigeria; Pathology/Mycotoxin Laboratory, International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria.
| | - Benedikt Warth
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Isaac M Ogara
- Faculty of Agriculture, Nasarawa State University Keffi, Lafia Campus, Nasarawa State, Nigeria
| | - Wilfred A Abia
- Laboratory of Pharmacology and Toxicology, University of Yaounde I, Yaounde, Cameroon; Department of Food Technology, Faculty of Science, University of Johannesburg, South Africa
| | | | - Joseph Atehnkeng
- Pathology/Mycotoxin Laboratory, International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Paul C Turner
- MIAEH, School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Grace O Tayo
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo, Nigeria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Ranajit Bandyopadhyay
- Pathology/Mycotoxin Laboratory, International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria
| |
Collapse
|
15
|
Berthiller F, Burdaspal P, Crews C, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stroka J, Whitaker T. Developments in mycotoxin analysis: an update for 2012-2013. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1637] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2012 and mid-2013. It covers the major mycotoxins: aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone. A wide range of analytical methods for mycotoxin determination in food and feed were developed last year, in particular immunochemical methods and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)-based methods. After a section on sampling and sample preparation, due to the rapid spread and developments in the field of LC-MS/MS multimycotoxin methods, a separate section has been devoted to this area of research. It is followed by a section on mycotoxins in botanicals and spices, before continuing with the format of previous reviews in this series with dedicated sections on method developments for the individual mycotoxins.
Collapse
Affiliation(s)
- F. Berthiller
- University of Natural Resources and Life Sciences, Vienna
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- National Centre for Food, Spanish Food Safety and Nutrition Agency, Carretera de Majadahonda a Pozuelo km 5, 228220 Majadahonda, Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.H. Iha
- Instituto Adolfo Lutz, Laboratrio I de Ribeiro Preto, Av Dr Arnaldo 355, CEP 14085-410, Ribeiro Preto SP, Brazil
| | - R. Krska
- University of Natural Resources and Life Sciences, Vienna
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - J. Stroka
- Institute for Reference Materials and Measurements (IRMM), European Commission Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|
16
|
Mikula H, Skrinjar P, Sohr B, Ellmer D, Hametner C, Fröhlich J. Total synthesis of masked Alternaria mycotoxins—sulfates and glucosides of alternariol (AOH) and alternariol-9-methyl ether (AME). Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Abia WA, Warth B, Sulyok M, Krska R, Tchana A, Njobeh PB, Turner PC, Kouanfack C, Eyongetah M, Dutton M, Moundipa PF. Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food Chem Toxicol 2013; 62:927-34. [PMID: 24128729 DOI: 10.1016/j.fct.2013.10.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 12/26/2022]
Abstract
Bio-monitoring of human exposure to mycotoxin has mostly been limited to a few individually measured mycotoxin biomarkers. This study aimed to determine the frequency and level of exposure to multiple mycotoxins in human urine from Cameroonian adults. 175 Urine samples (83% from HIV-positive individuals) and food frequency questionnaire responses were collected from consenting Cameroonians, and analyzed for 15 mycotoxins and relevant metabolites using LC-ESI-MS/MS. In total, eleven analytes were detected individually or in combinations in 110/175 (63%) samples including the biomarkers aflatoxin M1, fumonisin B1, ochratoxin A and total deoxynivalenol. Additionally, important mycotoxins and metabolites thereof, such as fumonisin B2, nivalenol and zearalenone, were determined, some for the first time in urine following dietary exposures. Multi-mycotoxin contamination was common with one HIV-positive individual exposed to five mycotoxins, a severe case of co-exposure that has never been reported in adults before. For the first time in Africa or elsewhere, this study quantified eleven mycotoxin biomarkers and bio-measures in urine from adults. For several mycotoxins estimates indicate that the tolerable daily intake is being exceeded in this study population. Given that many mycotoxins adversely affect the immune system, future studies will examine whether combinations of mycotoxins negatively impact Cameroonian population particularly immune-suppressed individuals.
Collapse
Affiliation(s)
- Wilfred A Abia
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon; Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, A-3430 Tulln, Austria; Department of Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028 Gauteng, South Africa
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sarkanj B, Warth B, Uhlig S, Abia WA, Sulyok M, Klapec T, Krska R, Banjari I. Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia. Food Chem Toxicol 2013; 62:231-7. [PMID: 23994093 DOI: 10.1016/j.fct.2013.08.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/15/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
In this pilot survey the levels of various mycotoxin biomarkers were determined in third trimester pregnant women from eastern Croatia. First void urine samples were collected and analysed using a "dilute and shoot" LC-ESI-MS/MS multi biomarker method. Deoxynivalenol (DON) and its metabolites: deoxynivalenol-15-glucuronide and deoxynivalenol-3-glucuronide were detected in 97.5% of the studied samples, partly at exceptionally high levels, while ochratoxin A was found in 10% of the samples. DON exposure was primarily reflected by the presence of deoxynivalenol-15-glucuronide with a mean concentration of 120 μg L(-1), while free DON was detected with a mean concentration of 18.3 μg L(-1). Several highly contaminated urine samples contained a third DON conjugate, tentatively identified as deoxynivalenol-7-glucuronide by MS/MS scans. The levels of urinary DON and its metabolites measured in this study are the highest ever reported, and 48% of subjects were estimated to exceed the provisional maximum tolerable daily intake (1 μg kg(-1) b.w.).
Collapse
Affiliation(s)
- Bojan Sarkanj
- Subdepartment of Biochemistry and Toxicology, Department of Applied Chemistry and Ecology, Faculty of Food Technology, Josip Juraj Strossmayer University, Osijek, Croatia; Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Warth B, Sulyok M, Krska R. LC-MS/MS-based multibiomarker approaches for the assessment of human exposure to mycotoxins. Anal Bioanal Chem 2013; 405:5687-95. [PMID: 23774829 PMCID: PMC3695324 DOI: 10.1007/s00216-013-7011-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/26/2022]
Abstract
Mycotoxins are toxic fungal secondary metabolites that frequently contaminate food and feed worldwide, and hence represent a major hazard for food and feed safety. To estimate human exposure arising from contaminated food, so-called biomarker approaches have been developed as a complementary biomonitoring tool besides traditional food analysis. The first methods based on radioimmunoassays and enzyme-linked immunosorbent assays as well as on liquid chromatography were developed in the late 1980s and early 1990s for the carcinogenic aflatoxins and in the last two decades further tailor-made methods for some major mycotoxins have been published. Since 2010, there has been a clear trend towards the development and application of multianalyte methods based on liquid chromatography–electrospray ionization tandem mass spectrometry for assessment of mycotoxin exposure made possible by the increased sensitivity and selectivity of modern mass spectrometry instrumentation and sophisticated sample cleanup approaches. With use of these advanced methods, traces of mycotoxins and relevant breakdown and conjugation products can be quantified simultaneously in human urine as so-called biomarkers and can be used to precisely describe the real exposure, toxicokinetics, and bioavailability of the toxins present. In this article, a short overview and comparison of published multibiomarker methods focusing on the determination of mycotoxins and relevant excretion products in human urine is presented. Special attention is paid to the main challenges when analyzing these toxic food contaminants in urine, i.e., very low analyte concentrations, appropriate sample preparation, matrix effects, and a lack of authentic, NMR-confirmed calibrants and reference materials. Finally, the progress in human exposure assessment studies facilitated by these analytical methods is described and an outlook on probable developments and possibilities is presented. Mycotoxin exposure assessment: traditional food analysis compared to the innovative, complementary biomarker approach ![]()
Collapse
Affiliation(s)
- Benedikt Warth
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
20
|
Mikula H, Sohr B, Skrinjar P, Weber J, Hametner C, Berthiller F, Krska R, Adam G, Fröhlich J. Sulfation of β-resorcylic acid esters—first synthesis of zearalenone-14-sulfate. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Mikula H, Weber J, Lexmüller S, Bichl G, Schwartz H, Varga E, Berthiller F, Hametner C, Krska R, Fröhlich J. Simultaneous preparation of α/β-zearalenol glucosides and glucuronides. Carbohydr Res 2013; 373:59-63. [DOI: 10.1016/j.carres.2013.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 11/16/2022]
|
22
|
Warth B, Sulyok M, Berthiller F, Schuhmacher R, Krska R. New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol Lett 2013; 220:88-94. [PMID: 23623764 DOI: 10.1016/j.toxlet.2013.04.012] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 11/16/2022]
Abstract
This study reports on the detailed investigation of human deoxynivalenol (DON) and zearalenone (ZEN) in vivo metabolism through the analysis of urine samples obtained from one volunteer following a naturally contaminated diet containing 138μg DON and 10μg ZEN over a period of four days. Based on the mycotoxin intake and the concentrations of mycotoxin conjugates in urine, a mass balance was established. The average rates of DON excretion and glucuronidation were determined to be 68 and 76%, respectively. The investigation of formed glucuronides revealed DON-15-glucuronide as main conjugation product besides DON-3-glucuronide. Furthermore, for the first time in human urine a third DON-glucuronide was detected and the fate of ingested masked DON forms (3-acetyl-DON and DON-3-glucoside) was preliminary assessed. The mean excretion rate of ZEN was determined to be 9.4%. ZEN was mainly present in its glucuronide form and in some samples ZEN-14-glucuronide was directly determined 3-10h after exposure. For the first time concrete figures have become available for the excretion pattern of DON and ZEN-glucuronides throughout a day, the comparison of total DON in 24h and first morning urine samples and the urinary excretion rate of total ZEN in humans following exposure through naturally contaminated food. Therefore, valuable preliminary information has been obtained through the chosen experimental approach although the study involved only one single individual and needs to be confirmed in larger monitoring studies. The presented experiment contributes to a better understanding of human DON and ZEN in vivo metabolism and thereby supports advanced exposure and risk assessment to increase food safety and examine the relationship between these mycotoxins and potentially associated chronic diseases in the future.
Collapse
Affiliation(s)
- Benedikt Warth
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | | | | | | | | |
Collapse
|
23
|
Mikula H, Hametner C, Fröhlich J. Zearalenone Mimics: Synthesis of (E)-6-(1-Alkenyl)-substituted β-Resorcylic Acid Esters. SYNTHETIC COMMUN 2013. [DOI: 10.1080/00397911.2012.681827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hannes Mikula
- a Institute of Applied Synthetic Chemistry, Vienna University of Technology , Vienna , Austria
| | - Christian Hametner
- a Institute of Applied Synthetic Chemistry, Vienna University of Technology , Vienna , Austria
| | - Johannes Fröhlich
- a Institute of Applied Synthetic Chemistry, Vienna University of Technology , Vienna , Austria
| |
Collapse
|
24
|
van Egmond H. Foreword. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2013.x001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Abstract
In 1990, Gareis et al. referred to a zearalenone-glycoside as a ‘masked mycotoxin’ to emphasise the fact that this mycotoxin conjugate was not detected by routine analysis of food or feed, but probably contributed to the total mycotoxin content and subsequent effects. Indeed, pigs fed with mixed feed, artificially contaminated with synthesised zearalenone-4-ß-D-glucopyranoside, excreted zearalenone (ZEA) and α-zearalenol in their faeces and urine, demonstrating release of the aglucone during digestion. Earlier, in 1988, Engelhardt et al. demonstrated that wheat and maize cell cultures were able to transform ZEA to the ß-D-glucopyranoside-conjugate as part of their plant metabolism. It is generally known that plants can reduce the toxicity of phytotoxic compounds by chemical modification. This plant detoxification process includes the conjugation of mycotoxins to polar substances such as sugars, amino acids and sulphate, and subsequent storage of the conjugates in cell vacuoles. In 2002, Schneweis et al. described the natural occurrence of zearalenone-4-glucoside in wheat, while in 2005, Berthiller et al. published the first report on the natural occurrence of deoxynivalenol-3-glucoside (DON-3G) in maize and wheat samples. Since then, research on masked mycotoxins has grown exponentially. Besides plant metabolism, food technological processes also have an impact on the masking mechanism, specifically in cereal-based products in the case of fumonisins (Humpf and Voss, 2004; Dall’Asta et al., 2008) and deoxynivalenol (DON) (Lancova et al., 2008).
Collapse
|
26
|
Warth B, Sulyok M, Fruhmann P, Mikula H, Berthiller F, Schuhmacher R, Hametner C, Abia WA, Adam G, Fröhlich J, Krska R. Development and validation of a rapid multi-biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1533-1540. [PMID: 22638970 DOI: 10.1002/rcm.6255] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Mycotoxins regularly occur in food worldwide and pose serious health risks to consumers. Since individuals can be exposed to a variety of these toxic secondary metabolites of fungi at the same time, there is a demand for proper analytical methods to assess human exposure by suitable biomarkers. METHODS This study reports on the development of a liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method for the quantitative measurement of 15 mycotoxins and key metabolites in human urine using polarity switching. Deoxynivalenol (DON), DON-3-O-glucuronide, DON-15-O-glucuronide (D15GlcA), de-epoxy DON, nivalenol (NIV), T-2 toxin, HT-2 toxin, zearalenone, zearalenone-14-O-glucuronide, α- and β-zearalenol, fumonisins B(1) and B(2) (FB(1), FB(2)), ochratoxin A (OTA) and aflatoxin M(1) (AFM(1)) were determined without the need for any cleanup using a rapid and simple dilute and shoot approach. RESULTS Validation was performed in the range of 0.005-40 µg L(-1) depending on the analyte and expected urinary concentration levels. Apparent recoveries between 78 and 119% and interday precisions of 2-17% relative standard deviation (RSD) were achieved. The applicability of the method was demonstrated by the analysis of urine samples obtained from Cameroon. In naturally contaminated urine samples up to six biomarkers of exposure (AFM(1), DON, D15GlcA, NIV, FB(1), and OTA) were detected simultaneously. CONCLUSIONS We conclude that the developed LC/MS/MS method is well suited to quantify multiple mycotoxin biomarkers in human urine down to the sub-ppb range within 18 min and without any prior cleanup. The co-occurrence of several mycotoxins in the investigated samples clearly emphasizes the great potential and importance of this method to assess exposure of humans and animals to naturally occurring mycotoxins.
Collapse
Affiliation(s)
- Benedikt Warth
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, A-3430 Tulln, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|