1
|
Bryła M, Stępniewska S, Modrzewska M, Waśkiewicz A, Podolska G, Ksieniewicz-Woźniak E, Yoshinari T, Stępień Ł, Urbaniak M, Roszko M, Gwiazdowski R, Kanabus J, Pierzgalski A. Dynamics of Deoxynivalenol and Nivalenol Glucosylation in Wheat Cultivars Infected with Fusarium culmorum in Field Conditions─A 3 Year Study (2018-2020). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4291-4302. [PMID: 35362967 DOI: 10.1021/acs.jafc.2c00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium head blight (FHB) caused by pathogenic species of Fusarium fungi is one of the most important diseases of cereal plants and a factor contributing to losses in plant production. The growth of FHB-associated species is often accompanied by biosynthesis of secondary metabolites─mycotoxins, which serve as a virulence factor. The aim of the study was to evaluate the ratios between deoxynivalenol (DON) and nivalenol (NIV) and their derivatives in the ears of six cultivars of winter wheat with varying resistance to FHB, taking into account a range of factors (weather conditions, location, cultivar, and year) after inoculation with Fusarium culmorum, during a 3 year field experiment, 2018-2020. The presence of toxins in the ears was measured within 21 days of inoculation. The toxins were found in the ears as soon as on the third day from the start of the experiment, whereas relative humidity higher than 80% was a decisive factor for FHB incidence. All wheat cultivars showed the ability to biotransform DON and NIV present in the ears to glucosides, that is, deoxynivalenol-3-glucoside (DON-3G) and nivalenol-3-glucoside (NIV-3G). The levels of these metabolites showed significant correlation with the levels of their basic analogues. In most cases, higher levels of DON and NIV in wheat ears and higher levels of their metabolites were observed, but the relative levels of DON-3G/DON and NIV-3G/NIV at relatively high levels of toxins were lower compared to the ear samples with relatively low toxin levels. The presented results are the first studies, which systematically correlate a variety of wheat cultivars with their extent to glucosylate trichothecenes.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Sylwia Stępniewska
- Department of Grain Processing and Bakery, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, Poznan 60-625, Poland
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation─State Research Institute, Czartoryskich 8, Pulawy 24-100, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Łukasz Stępień
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| | - Monika Urbaniak
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Romuald Gwiazdowski
- Research Centre for Registration of Agrochemicals, Institute of Plant Protection-National Research Institute, Wladysława Wegorka 20, Poznan 60-318, Poland
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| |
Collapse
|
2
|
Żelechowski M, Molcan T, Bilska K, Myszczyński K, Olszewski J, Karpiesiuk K, Wyrębek J, Kulik T. Patterns of Diversity of Fusarium Fungi Contaminating Soybean Grains. Toxins (Basel) 2021; 13:884. [PMID: 34941721 PMCID: PMC8706617 DOI: 10.3390/toxins13120884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Soybean is an important, high protein source of food and feed. However, like other agricultural grains, soybean may pose a risk to human and animal health due to contamination of the grains with toxigenic Fusaria and associated mycotoxins. In this study, we investigated the diversity of Fusaria on a panel of 104 field isolates obtained from soybean grains during the growing seasons in 2017-2020. The results of species-specific PCR analyses showed that Fusarium avenaceum was the most common (n = 40) species associated with soybean grains in Poland, followed by F. equiseti (n = 22) and F. sporotrichioides (11 isolates). A set of isolates, which was not determined based on PCR analyses, was whole genome sequenced. Multiple sequence analyses using tef-1α, top1, rpb1, rpb2, tub2, pgk, cam and lsu genes showed that most of them belonged to Equiseti clade. Three cryptic species from this clade: F. clavum, F. flagelliforme and FIESC 31 (lacking Latin binomial) were found on soybean for the first time. This is the first report demonstrating the prevalence of Fusaria on soybean grains in Poland.
Collapse
Affiliation(s)
- Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warsaw, Poland;
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Jacek Olszewski
- Experimental Education Unit, Oczapowskiego 8, 10-719 Olsztyn, Poland;
| | - Krzysztof Karpiesiuk
- Department of Pig Breeding, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Joanna Wyrębek
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| |
Collapse
|
3
|
Brizuela AM, Lalak-Kańczugowska J, Koczyk G, Stępień Ł, Kawaliło M, Palmero D. Geographical Origin Does Not Modulate Pathogenicity or Response to Climatic Variables of Fusarium oxysporum Associated with Vascular Wilt on Asparagus. J Fungi (Basel) 2021; 7:jof7121056. [PMID: 34947038 PMCID: PMC8703408 DOI: 10.3390/jof7121056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Asparagus crop is distributed worldwide, covering very different climatic regions. Among the different diseases that affect asparagus, vascular Fusarium wilt, caused by Fusarium oxysporum f. sp. aparagi (Foa), stands out. It is not only the cause of large economic losses due to a decrease in yield and shortened longevity of the plantation, but also prevents replanting. This work aimed to determine if F. oxysporum isolates associated with vascular wilt on asparagus have adapted differentially to the different agro-environmental conditions. The potential correlation between origin and mycelial growth under different temperatures and humidity conditions was analysed for isolates from asparagus fields cultivated in northern and southern Europe. The genetic and pathogenic variability were also analysed. While a clear effect of water activity on mycelial growth was observed, all isolates responded in a similar way to changes in water activity in the medium, regardless of their geographical origin. The results revealed a low genetic variability of F. oxysporum isolates associated with vascular wilt on asparagus without signs of differentiation correlated to geographical origin. The southernmost isolates of the two cultivated varieties inoculated did not express more pathogenicity than those isolated from the colder region.
Collapse
Affiliation(s)
- Alexandri María Brizuela
- Department of Agricultural Production, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Justyna Lalak-Kańczugowska
- Plant-Pathogen Interaction Team, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (J.L.-K.); (Ł.S.)
| | - Grzegorz Koczyk
- Biometry and Bioinformatics Team, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (G.K.); (M.K.)
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (J.L.-K.); (Ł.S.)
| | - Michał Kawaliło
- Biometry and Bioinformatics Team, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (G.K.); (M.K.)
| | - Daniel Palmero
- Department of Agricultural Production, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-067-1075
| |
Collapse
|
4
|
Effects of Secondary Metabolites from Pea on Fusarium Growth and Mycotoxin Biosynthesis. J Fungi (Basel) 2021; 7:jof7121004. [PMID: 34946987 PMCID: PMC8706721 DOI: 10.3390/jof7121004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium species present ubiquitously in the environment are capable of infecting a wide range of plant species. They produce several mycotoxins targeted to weaken the host plant. While infecting some resistant plants, the host can alter the expression of toxin-related genes and accumulate no/very low amounts of mycotoxins. The ability of the host plant to modulate the biosynthesis of these toxins is entirely depending on the secondary metabolites produced by the plant, often as a part of systemic acquired resistance (SAR). A major role plays in the family of metabolites called phenyl propanoids, consisting of thousands of natural products, synthesized from the phenylalanine or tyrosine amino acids through a cascade of enzymatic reactions. They are also famous for inhibiting or limiting infection through their antioxidant characteristics. The current study was aimed at identifying the differentially expressed secondary metabolites in resistant (Sokolik) and susceptible (Santana) cultivars of pea (Pisum sativum L.) and understanding their roles in the growth and mycotoxin biosynthesis of two different Fusarium species. Although metabolites such as coumarin, spermidine, p-coumaric acid, isoorientin, and quercetin reduced the growth of the pathogen, a higher level of p-coumaric acid was found to enhance the growth of F. proliferatum strain PEA1. It was also noticeable that the growth of the pathogen did not depend on their ability to produce mycotoxins, as all the metabolites were able to highly inhibit the biosynthesis of fumonisin B1 and beauvericin.
Collapse
|
5
|
Urbaniak M, Waśkiewicz A, Stępień Ł. Fusarium Cyclodepsipeptide Mycotoxins: Chemistry, Biosynthesis, and Occurrence. Toxins (Basel) 2020; 12:toxins12120765. [PMID: 33287253 PMCID: PMC7761704 DOI: 10.3390/toxins12120765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Most of the fungi from the Fusarium genus are pathogenic to cereals, vegetables, and fruits and the products of their secondary metabolism mycotoxins may accumulate in foods and feeds. Non-ribosomal cyclodepsipeptides are one of the main mycotoxin groups and include beauvericins (BEAs), enniatins (ENNs), and beauvenniatins (BEAEs). When ingested, even small amounts of these metabolites significantly affect human and animal health. On the other hand, in view of their antimicrobial activities and cytotoxicity, they may be used as components in drug discovery and processing and are considered as suitable candidates for anti-cancer drugs. Therefore, it is crucial to expand the existing knowledge about cyclodepsipeptides and to search for new analogues of these compounds. The present manuscript aimed to highlight the extensive variability of cyclodepsipeptides by describing chemistry, biosynthesis, and occurrence of BEAs, ENNs, and BEAEs in foods and feeds. Moreover, the co-occurrence of Fusarium species was compared to the amounts of toxins in crops, vegetables, and fruits from different regions of the world.
Collapse
Affiliation(s)
- Monika Urbaniak
- Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Correspondence: (M.U.); (Ł.S.); Tel.: +48-616-55-02-34 (M.U.)
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Correspondence: (M.U.); (Ł.S.); Tel.: +48-616-55-02-34 (M.U.)
| |
Collapse
|
6
|
Urbaniak M, Waśkiewicz A, Koczyk G, Błaszczyk L, Stępień Ł. Divergence of Beauvericin Synthase Gene among Fusarium and Trichoderma Species. J Fungi (Basel) 2020; 6:E288. [PMID: 33203083 PMCID: PMC7712144 DOI: 10.3390/jof6040288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Beauvericin (BEA) is a cyclodepsipeptide mycotoxin, showing insecticidal, antibiotic and antimicrobial activities, as well as inducing apoptosis of cancer cell lines. BEA can be produced by multiple fungal species, including saprotrophs, plant, insect and human pathogens, particularly belonging to Fusarium, Beauveria and Isaria genera. The ability of Trichoderma species to produce BEA was until now uncertain. Biosynthesis of BEA is governed by a non-ribosomal peptide synthase (NRPS), known as beauvericin synthase (BEAS), which appears to present considerable divergence among different fungal species. In the present study we compared the production of beauvericin among Fusarium and Trichoderma strains using UPLC methods. BEAS fragments were sequenced and analyzed to examine the level of the gene's divergence between these two genera and confirm the presence of active BEAS copy in Trichoderma. Seventeen strains of twelve species were studied and phylogenetic analysis showed distinctive grouping of Fusarium and Trichoderma strains. The highest producers of beauvericin were F. proliferatum and F. nygamai. Trichoderma strains of three species (T. atroviride, T. viride, T. koningiopsis) were minor BEA producers. The study showed beauvericin production by Fusarium and Trichoderma species and high variance of the non-ribosomal peptide synthase gene among fungal species from the Hypocreales order.
Collapse
Affiliation(s)
- Monika Urbaniak
- Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Grzegorz Koczyk
- Functional Evolution of Biological Systems Team, Department of Biometrics and Bioinformatics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Lidia Błaszczyk
- Plant Microbiome Structure and Function Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| |
Collapse
|
7
|
Cyclodepsipeptide Biosynthesis in Hypocreales Fungi and Sequence Divergence of The Non-Ribosomal Peptide Synthase Genes. Pathogens 2020; 9:pathogens9070552. [PMID: 32660015 PMCID: PMC7400199 DOI: 10.3390/pathogens9070552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Fungi from the Hypocreales order synthesize a range of toxic non-ribosomal cyclic peptides with antimicrobial, insecticidal and cytotoxic activities. Entomopathogenic Beauveria, Isaria and Cordyceps as well as phytopathogenic Fusarium spp. are known producers of beauvericins (BEAs), beauvenniatins (BEAEs) or enniatins (ENNs). The compounds are synthesized by beauvericin/enniatin synthase (BEAS/ESYN1), which shows significant sequence divergence among Hypocreales members. We investigated ENN, BEA and BEAE production among entomopathogenic (Beauveria, Cordyceps, Isaria) and phytopathogenic (Fusarium) fungi; BEA and ENNs were quantified using an LC-MS/MS method. Phylogenetic analysis of partial sequences of putative BEAS/ESYN1 amplicons was also made. Nineteen fungal strains were identified based on sequence analysis of amplified ITS and tef-1α regions. BEA was produced by all investigated fungi, with F. proliferatum and F. concentricum being the most efficient producers. ENNs were synthesized mostly by F. acuminatum, F. avenaceum and C. confragosa. The phylogeny reconstruction suggests that ancestral BEA biosynthesis independently diverged into biosynthesis of other compounds. The divergent positioning of three Fusarium isolates raises the possibility of parallel acquisition of cyclic depsipeptide synthases in ancient complexes within Fusarium genus. Different fungi have independently evolved NRPS genes involved in depsipeptide biosynthesis, with functional adaptation towards biosynthesis of overlapping yet diversified metabolite profiles.
Collapse
|
8
|
Witaszak N, Waśkiewicz A, Bocianowski J, Stępień Ł. Contamination of Pet Food with Mycobiota and Fusarium Mycotoxins-Focus on Dogs and Cats. Toxins (Basel) 2020; 12:toxins12020130. [PMID: 32093088 PMCID: PMC7076849 DOI: 10.3390/toxins12020130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
A wide range of pet food types are available on the market; the dominant type is dry food formulated in croquets. One of the most common ingredients of dry food are cereals—vectors of harmful mycotoxins posing the risk to pet health. In this study, 38 cat and dog dry food samples available on the Polish market were investigated. Morphological and molecular methods were applied to identify fungal genera present in pet food. Quantification of ergosterol and Fusarium mycotoxins: Fumonisin B1, deoxynivalenol, nivalenol, and zearalenone were performed using high performance liquid chromatography. Obtained results indicated five genera of mycotoxigenic fungi: Alternaria sp., Aspergillus sp., Cladosporium sp., Penicillium sp., and Fusarium sp., including Fusarium verticillioides and Fusarium proliferatum. Ergosterol and mycotoxins of interest were detected in both cat and dog food samples in the amounts ranging from 0.31 to 4.05 µg/g for ergosterol and 0.3–30.3, 1.2–618.4, 29.6–299.0, and 12.3–53.0 ng/g for zearalenone, deoxynivalenol, nivalenol, and fumonisin B1, respectively. The conclusion is the presence of mycotoxins in levels much lower than recommended by EU regulations does not eliminate the risk and caution is advised concerning that long-term daily intake of even small doses of mycotoxins can slowly damage pet’s health.
Collapse
Affiliation(s)
- Natalia Witaszak
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
- Correspondence: ; Tel.: +48-61-6550-237
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Scienses, 60-625 Poznań, Poland;
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland;
| | - Łukasz Stępień
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| |
Collapse
|
9
|
Beccari G, Stępień Ł, Onofri A, Lattanzio VMT, Ciasca B, Abd-El Fatah SI, Valente F, Urbaniak M, Covarelli L. In Vitro Fumonisin Biosynthesis and Genetic Structure of Fusarium verticillioides Strains from Five Mediterranean Countries. Microorganisms 2020; 8:microorganisms8020241. [PMID: 32053959 PMCID: PMC7074703 DOI: 10.3390/microorganisms8020241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 11/22/2022] Open
Abstract
Investigating the in vitro fumonisin biosynthesis and the genetic structure of Fusarium verticillioides populations can provide important insights into the relationships between strains originating from various world regions. In this study, 90 F. verticillioides strains isolated from maize in five Mediterranean countries (Italy, Spain, Tunisia, Egypt and Iran) were analyzed to investigate their ability to in vitro biosynthesize fumonisin B1, fumonisin B2 and fumonisin B3 and to characterize their genetic profile. In general, 80% of the analyzed strains were able to biosynthesize fumonisins (range 0.03–69.84 μg/g). Populations from Italy, Spain, Tunisia and Iran showed a similar percentage of fumonisin producing strains (>90%); conversely, the Egyptian population showed a lower level of producing strains (46%). Significant differences in fumonisin biosynthesis were detected among strains isolated in the same country and among strains isolated from different countries. A portion of the divergent FUM1 gene and of intergenic regions FUM6-FUM7 and FUM7-FUM8 were sequenced to evaluate strain diversity among populations. A high level of genetic uniformity inside the populations analyzed was detected. Apparently, neither geographical origin nor fumonisin production ability were correlated to the genetic diversity of the strain set. However, four strains from Egypt differed from the remaining strains.
Collapse
Affiliation(s)
- Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.O.); (F.V.)
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (Ł.S.); (M.U.)
| | - Andrea Onofri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.O.); (F.V.)
| | - Veronica M. T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production (ISPA-CNR), 70126 Bari, Italy; (V.M.T.L.); (B.C.)
| | - Biancamaria Ciasca
- National Research Council of Italy, Institute of Sciences of Food Production (ISPA-CNR), 70126 Bari, Italy; (V.M.T.L.); (B.C.)
| | - Sally I. Abd-El Fatah
- Food Toxins and Contaminants Department, National Research Centre, Cairo 12622, Egypt;
| | - Francesco Valente
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.O.); (F.V.)
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (Ł.S.); (M.U.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.O.); (F.V.)
- Correspondence: ; Tel.: +39-0755856464
| |
Collapse
|
10
|
Witaszak N, Stępień Ł, Bocianowski J, Waśkiewicz A. Fusarium Species and Mycotoxins Contaminating Veterinary Diets for Dogs and Cats. Microorganisms 2019; 7:microorganisms7010026. [PMID: 30669691 PMCID: PMC6352256 DOI: 10.3390/microorganisms7010026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
Veterinary diets are intended for diseased animals and may contain cereal grains, mainly maize and/or wheat. These, in turn, are often infected with pathogens of the Fusarium genus, which are able to produce numerous harmful mycotoxins. Forty-two samples of veterinary diets for dogs and cats were analyzed for the presence of Fusarium species and mycotoxins. Species were identified using molecular methods and the ergosterol and mycotoxins (fumonisin B1, deoxynivalenol, nivalenol and zearalenone) were quantified using HPLC methods. Two Fusarium species were identified: Fusarium proliferatum and Fusarium verticillioides. The highest concentrations of fumonisin B1, deoxynivalenol, nivalenol and zearalenone were 74.83, 2318.05, 190.90, and 45.84 ng/g, respectively. Only 9.5% of the samples were free from Fusarium mycotoxins. The acceptable limits of mycotoxin content in animal feed, specified by the EU regulations, were not exceeded in any of the samples tested. The mean mycotoxin content in veterinary diets for cats was lower than for dogs. Thus, it is recommended that veterinary diets are examined, since the mycotoxin contamination pose additional risk to animal health. The knowledge on Fusarium occurrence in veterinary diets is scarce and as far as we are aware this is the first report concerning the occurrence of Fusarium spp. and their important secondary metabolites—mycotoxins—in different types of veterinary diets for companion animals in Poland.
Collapse
Affiliation(s)
- Natalia Witaszak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland.
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland.
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, Poznań 60-637, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, Poznań 60-625, Poland.
| |
Collapse
|
11
|
Decleer M, Landschoot S, De Saeger S, Rajkovic A, Audenaert K. Impact of fungicides and weather on cyclodepsipeptide-producing Fusarium spp. and beauvericin and enniatin levels in wheat grains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:253-262. [PMID: 29851099 DOI: 10.1002/jsfa.9167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Fusarium head blight (FHB) is a well-known disease of wheat caused by a complex of Fusarium species. In this research, an extensive study on the occurrence of the emerging Fusarium cyclodepsipeptide mycotoxins beauvericin and enniatins was conducted in Belgian wheat grains harvested in 2015 and 2016. To assess the link between Fusarium species and their mycotoxin production, ultra-performance liquid chromatography-tandem mass spectrometry was used to quantify the cyclodepsipeptide mycotoxins, while quantitative polymerase chain reaction was applied to quantify the presence of Fusarium species. RESULTS It was shown that enniatins were mainly associated with the presence of F. avenaceum, while beauvericin, despite its low incidence, correlated significantly with F. poae. The application of fungicides resulted in a species shift and in the occurring mycotoxins. Concerning the effect of weather conditions, it was seen that levels of enniatins were positively correlated with the rainfall in May and June, while a negative correlation was observed with rainfall in the first half of July. CONCLUSION Our study provides new insights into the occurrence of the emerging cyclodepsipeptide mycotoxins in an agro-ecosystem in which fungicides are the main control measure against FHB. It seems that beauvericin and enniatin levels are affected by different parameters and behave differently upon application of fungicides. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marlies Decleer
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sofie Landschoot
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Andrea Rajkovic
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Laboratory of Applied Mycology and Phenomics, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Stępień Ł, Gromadzka K, Chełkowski J, Basińska-Barczak A, Lalak-Kańczugowska J. Diversity and mycotoxin production by Fusarium temperatum and Fusarium subglutinans as causal agents of pre-harvest Fusarium maize ear rot in Poland. J Appl Genet 2018; 60:113-121. [PMID: 30430379 PMCID: PMC6373406 DOI: 10.1007/s13353-018-0478-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/04/2018] [Accepted: 11/01/2018] [Indexed: 11/13/2022]
Abstract
Maize ear rot is a common disease found worldwide, caused by several toxigenic Fusarium species. Maize ears and kernels infected by Fusarium subglutinans contained significant amounts of beauvericin, fusaproliferin, moniliformin, and enniatins. In 2011, F. subglutinans sensu lato has been divided into two species: Fusarium temperatum sp. nov. and F. subglutinans sensu stricto, showing different phylogeny and beauvericin production within the populations of maize pathogens in Belgium. Isolates of the new species—F. temperatum—were also identified and characterized in Spain, Argentina, Poland, France, and China as one of the most important pathogens of maize. Moreover, F. temperatum was proved to be pathogenic to maize seedlings and stalks. We identified Fusarium isolates obtained from diseased maize ears collected between 2013 and 2016 in Poland (321 isolates). Based on morphological analyses, six Fusarium species were identified. Molecular identification performed on the set of selected isolates (42 isolates) revealed 34 isolates to be F. temperatum and only five to be F. subglutinans. Interestingly, the phylogenetic analysis showed that the population of F. temperatum infecting maize in Poland remained quite uniform for over 30 years with only a few exceptions. For the first time, a single isolate of Fusarium ramigenum was detected from the area of Poland. Significant amounts of BEA were found in Fusarium-damaged kernels. The same kernel samples contained also enniatins A1, A, B1, and B. The results clearly demonstrate the occurrence of F. temperatum as maize pathogen in Poland for over the last three decades.
Collapse
Affiliation(s)
- Ł Stępień
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - K Gromadzka
- Department of Chemistry, Poznan University of Life Sciences, ul. Wojska Polskiego 75, 60-625, Poznań, Poland.
| | - J Chełkowski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - A Basińska-Barczak
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - J Lalak-Kańczugowska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
13
|
Characterisation of the Mycobiota on the Shell Surface of Table Eggs Acquired from Different Egg-Laying Hen Breeding Systems. Toxins (Basel) 2018; 10:toxins10070293. [PMID: 30012982 PMCID: PMC6071293 DOI: 10.3390/toxins10070293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 01/08/2023] Open
Abstract
Microbial safety is an important factor contributing to the egg quality. During egg acquisition, there is significant risk of contamination of the eggshell surface with microscopic fungi. Mycelial hyphae may grow on the eggshell surface and penetrate into the egg content. However, there is no information on the populations of microscopic fungi on the eggshell surface and, consequently, on possible production of mycotoxins. Therefore, the aim of the study was to identify the species of microscopic fungi present on the eggshell surface acquired from different breeding systems and to measure the number of selected mycotoxins. The qualitative analysis resulted in the identification of 41 isolates on the surface of eggs. There were 7 isolates from the organic production system, 11 from the free-range production system, 14 from the deep litter indoor housing system and 9 from the cage farming production system. The research proved that the diversification in the population of mycobiota on the eggshells depended on the egg-laying hen breeding system. The microscopic fungi isolated from the eggshells included toxigenic and pathogenic species such as Fusarium culmorum and F. equiseti. As the egg storage time increased, fungi, including the pathogenic species, penetrated through the eggshells. In consequence, mycotoxins were identified in the egg whites. Type-A and type-B trichothecenes were found in the eggshell samples containing F. culmorum.
Collapse
|
14
|
Kozłowska E, Hoc N, Sycz J, Urbaniak M, Dymarska M, Grzeszczuk J, Kostrzewa-Susłow E, Stępień Ł, Pląskowska E, Janeczko T. Biotransformation of steroids by entomopathogenic strains of Isaria farinosa. Microb Cell Fact 2018; 17:71. [PMID: 29753319 PMCID: PMC5948769 DOI: 10.1186/s12934-018-0920-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background Steroid compounds are very interesting substrates for biotransformation due to their high biological activity and a high number of inactivated carbons which make chemical modification difficult. Microbial transformation can involve reactions which are complicated and uneconomical in chemical synthesis, and searching for a new effective biocatalyst is necessary. The best known entomopathogenic species used in steroid modification is Beauveria bassiana. In this study we tested the ability of Isaria farinosa, another entomopathogenic species, to transform several steroids. Results Twelve strains of the entomopathogenic filamentous fungus Isaria farinosa, collected in abandoned mines located in the area of the Lower Silesian Voivodeship, Poland, from insects’ bodies covered by fungus, were used as a biocatalyst. All the tested strains effectively transformed dehydroepiandrosterone (DHEA). We observed 7α- and 7β-hydroxy derivatives as well as changes in the percentage composition of the emerging products. Due to the similar metabolism of DHEA in all tested strains, one of them was selected for further investigation. In the culture of the selected strain, Isaria farinosa KCh KW1.1, transformations of androstenediol, androstenedione, adrenosterone, 17α-methyltestosterone, 17β-hydroxyandrost-1,4,6-triene-3-one and progesterone were performed. All the substrates were hydroxylated with high yield and stereoselectivity. We obtained 6β-hydroxyandrost-4-ene-3,11,17-trione, 15α,17β-dihydroxy-6β,7β-epoxyandrost-1,4-diene-3-one and 6β,11α-dihydroxyprogesterone. There is no evidence of either earlier microbial transformation of 17β-hydroxyandrost-1,4,6-triene-3-one or new epoxy derivatives. Conclusions Isaria farinosa has a broad spectrum of highly effective steroid hydroxylases. The obtained 7-hydroxydehydroepiandrosterone has proven high biological activity and can be used in Alzheimer’s disease and as a key intermediate in the synthesis of aldosterone antagonists. Transformation of progesterone leads to high yield of 6β,11α-dihydroxyprogesterone and it is worth further study.
Collapse
Affiliation(s)
- Ewa Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| | - Natalia Hoc
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Jordan Sycz
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Jakub Grzeszczuk
- Department of Plant Protection, Plant Pathology and Mycology Division, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Elżbieta Pląskowska
- Department of Plant Protection, Plant Pathology and Mycology Division, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
15
|
Gorczyca A, Oleksy A, Gala-Czekaj D, Urbaniak M, Laskowska M, Waśkiewicz A, Stępień Ł. Fusarium head blight incidence and mycotoxin accumulation in three durum wheat cultivars in relation to sowing date and density. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2017; 105:2. [PMID: 29209889 PMCID: PMC5717115 DOI: 10.1007/s00114-017-1528-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/22/2022]
Abstract
Durum wheat (Triticum turgidum var. durum) is an important crop in Europe, particularly in the Mediterranean countries. Fusarium head blight (FHB) is considered as one of the most damaging diseases, resulting in yield and quality reduction as well as contamination of grain with mycotoxins. Three winter durum wheat cultivars originating from Austria, Slovakia, and Poland were analyzed during 2012-2014 seasons for FHB incidence and Fusarium mycotoxin accumulation in harvested grain. Moreover, the effects of sowing density and delayed sowing date were evaluated in the climatic conditions of Southern Poland. Low disease severity was observed in 2011/2012 in all durum wheat cultivars analyzed, and high FHB occurrence was recorded in 2012/2013 and 2013/2014 seasons. Fusarium graminearum was the most abundant pathogen, followed by Fusarium avenaceum. Through all three seasons, cultivar Komnata was the most susceptible to FHB and to mycotoxin accumulation, while cultivars Auradur and IS Pentadur showed less symptoms. High susceptibility of cv. Komnata was reflected by the number of Fusarium isolates and elevated mycotoxin (deoxynivalenol, zearalenone, and moniliformin) content in the grain of this cultivar across all three seasons. Nivalenol was identified in the samples of cv. Komnata only. Genotype-dependent differences in FHB susceptibility were observed for the plants sown at optimal date but not at delayed sowing date. It can be hypothesized that cultivars bred in Austria and Slovakia show less susceptibility towards FHB than the cultivar from Poland because of the environmental conditions allowing for more efficient selection of breeding materials.
Collapse
Affiliation(s)
- Anna Gorczyca
- Department of Agricultural Environment Protection, Agricultural University in Kraków, Mickiewicza 21, 31-120, Kraków, Poland
| | - Andrzej Oleksy
- Institute of Plant Production, Agricultural University in Kraków, Mickiewicza 21, 31-120, Kraków, Poland
| | - Dorota Gala-Czekaj
- Department of Agrotechnology and Agricultural Ecology, Agricultural University in Kraków, Mickiewicza 21, 31-120, Kraków, Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Magdalena Laskowska
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| |
Collapse
|
16
|
Podolska G, Bryła M, Sułek A, Waśkiewicz A, Szymczyk K, Jędrzejczak R. Influence of the cultivar and nitrogen fertilisation level on the mycotoxin contamination in winter wheat. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2017. [DOI: 10.3920/qas2016.1064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- G. Podolska
- Department of Cereal Crop Production Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - M. Bryła
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| | - A. Sułek
- Department of Cereal Crop Production Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - A. Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - K. Szymczyk
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| | - R. Jędrzejczak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| |
Collapse
|
17
|
Dymarska M, Grzeszczuk J, Urbaniak M, Janeczko T, Pląskowska E, Stępień Ł, Kostrzewa-Susłow E. Glycosylation of 6-methylflavone by the strain Isaria fumosorosea KCH J2. PLoS One 2017; 12:e0184885. [PMID: 28981527 PMCID: PMC5628805 DOI: 10.1371/journal.pone.0184885] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/03/2017] [Indexed: 11/18/2022] Open
Abstract
Entomopathogenic fungi are known for their ability to carry out glycosylation of flavonoids, which usually results in the improvement of their stability and bioavailability. In this study we used a newly isolated strain of the entomopathogenic filamentous fungus Isaria fumosorosea KCH J2 as a biocatalyst. Our aim was to evaluate its ability to carry out the biotransformation of flavonoids and to obtain new flavonoid derivatives. The fungus was isolated from a spider's carcass and molecularly identified using analysis of the ITS1-ITS2 rDNA sequence. As a result of biotransformation of 6-methylflavone two new products were obtained: 6-methylflavone 8-O-β-D-(4"-O-methyl)-glucopyranoside and 6-methylflavone 4'-O-β-D-(4"-O-methyl)-glucopyranoside. Chemical structures of the products were determined based on spectroscopic methods (1H NMR, 13C NMR, COSY, HMBC, HSQC). Our research allowed us to discover a new species of filamentous fungus capable of carrying out glycosylation reactions and proved that I. fumosorosea KCH J2 is an effective biocatalyst for glycosylation of flavonoid compounds. For the first time we describe biotransformations of 6-methylflavone and the attachment of the sugar unit to the flavonoid substrate having no hydroxyl group. The possibility of using flavonoid aglycones is often limited by their low bioavailability due to poor solubility in water. The incorporation of a sugar unit improves the physical properties of tested compounds and thus increases the chance of using them as pharmaceuticals.
Collapse
Affiliation(s)
- Monika Dymarska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jakub Grzeszczuk
- Department of Plant Protection, Plant Pathology and Mycology Division, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Monika Urbaniak
- Plant-Microorganism Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Janeczko
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Elżbieta Pląskowska
- Department of Plant Protection, Plant Pathology and Mycology Division, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Łukasz Stępień
- Plant-Microorganism Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Poznań, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
18
|
Górna K, Perlikowski D, Kosmala A, Stępień Ł. Host extracts induce changes in the proteome of plant pathogen Fusarium proliferatum. Fungal Biol 2017; 121:676-688. [PMID: 28705396 DOI: 10.1016/j.funbio.2017.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 10/19/2022]
Abstract
Fusarium proliferatum is a polyphagous pathogenic fungus able to infect many crop plants worldwide. Differences in proteins accumulated were observed when maize- and asparagus-derived F. proliferatum strains were exposed to host extracts prepared from asparagus, maize, garlic, and pineapple tissues. Seventy-three unique proteins were up-regulated in extract-supplemented cultures compared to the controls. They were all identified using mass spectrometry and their putative functions were assigned. A major part of identified proteins was involved in sugar metabolism and basic metabolic processes. Increased accumulation of proteins typically associated with stress response (heat shock proteins, superoxide dismutases, and glutaredoxins) as well as others, putatively involved in signal transduction, suggests that some metabolites present in plant extracts may act as elicitors inducing similar reaction as the abiotic stress factors. As a case study, thirteen genes encoding the proteins induced by the extracts were identified in the genomes of diverse F. proliferatum strains using gene-specific DNA markers. Extract-induced changes in the pathogen's metabolism are putatively a result of differential gene expression regulation. Our findings suggest that host plant metabolites present in the extracts can cause biotic stress resulting in elevated accumulation of diverse set of proteins, including those associated with pathogen's stress response.
Collapse
Affiliation(s)
- Karolina Górna
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|
19
|
Kozłowska E, Urbaniak M, Kancelista A, Dymarska M, Kostrzewa-Susłow E, Stępień Ł, Janeczko T. Biotransformation of dehydroepiandrosterone (DHEA) by environmental strains of filamentous fungi. RSC Adv 2017. [DOI: 10.1039/c7ra04608a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Study on the ability of selected filamentous fungus species to transform dehydroepiandrosterone was performed (DHEA) and interesting DHEA derivatives were obtained with high yield.
Collapse
Affiliation(s)
- Ewa Kozłowska
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance
- Institute of Plant Genetics
- Polish Academy of Sciences
- 60-479 Poznań
- Poland
| | - Anna Kancelista
- Department of Biotechnology and Food Microbiology
- Wrocław University of Environmental and Life Sciences
- 51-630 Wrocław
- Poland
| | - Monika Dymarska
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance
- Institute of Plant Genetics
- Polish Academy of Sciences
- 60-479 Poznań
- Poland
| | - Tomasz Janeczko
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| |
Collapse
|
20
|
Stępień Ł, Waśkiewicz A, Urbaniak M. Wildly Growing Asparagus (Asparagus officinalis L.) Hosts Pathogenic Fusarium Species and Accumulates Their Mycotoxins. MICROBIAL ECOLOGY 2016; 71:927-937. [PMID: 26687343 PMCID: PMC4823322 DOI: 10.1007/s00248-015-0717-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Asparagus officinalis L. is an important crop in many European countries, likely infected by a number of Fusarium species. Most of them produce mycotoxins in plant tissues, thus affecting the physiology of the host plant. However, there is lack of information on Fusarium communities in wild asparagus, where they would definitely have considerable environmental significance. Therefore, the main scientific aim of this study was to identify the Fusarium species and quantify their typical mycotoxins present in wild asparagus plants collected at four time points of the season. Forty-four Fusarium strains of eight species--Fusarium acuminatum, Fusarium avenaceum, Fusarium culmorum, Fusarium equiseti, Fusarium oxysporum, Fusarium proliferatum, Fusarium sporotrichioides, and Fusarium tricinctum--were isolated from nine wild asparagus plants in 2013 season. It is the first report of F. sporotrichioides isolated from this particular host. Fumonisin B1 was the most abundant mycotoxin, and the highest concentrations of fumonisins B1-B3 and beauvericin were found in the spears collected in May. Moniliformin and enniatins were quantified at lower concentrations. Mycotoxins synthesized by individual strains obtained from infected asparagus tissues were assessed using in vitro cultures on sterile rice grain. Most of the F. sporotrichioides strains synthesized HT-2 toxin and F. equiseti strains were found to be effective zearalenone producers.
Collapse
Affiliation(s)
- Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
21
|
Covarelli L, Beccari G, Prodi A, Generotti S, Etruschi F, Meca G, Juan C, Mañes J. Biosynthesis of beauvericin and enniatins in vitro by wheat Fusarium species and natural grain contamination in an area of central Italy. Food Microbiol 2015; 46:618-626. [DOI: 10.1016/j.fm.2014.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 11/17/2022]
|
22
|
Stępień Ł, Waśkiewicz A. Sequence divergence of the enniatin synthase gene in relation to production of beauvericin and enniatins in Fusarium species. Toxins (Basel) 2013; 5:537-55. [PMID: 23486233 PMCID: PMC3705277 DOI: 10.3390/toxins5030537] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/25/2013] [Accepted: 03/05/2013] [Indexed: 02/07/2023] Open
Abstract
Beauvericin (BEA) and enniatins (ENNs) are cyclic peptide mycotoxins produced by a wide range of fungal species, including pathogenic Fusaria. Amounts of BEA and ENNs were quantified in individual rice cultures of 58 Fusarium strains belonging to 20 species, originating from different host plant species and different geographical localities. The species identification of all strains was done on the basis of the tef-1α gene sequence. The main aim of this study was to analyze the variability of the esyn1 gene encoding the enniatin synthase, the essential enzyme of this metabolic pathway, among the BEA- and ENNs-producing genotypes. The phylogenetic analysis based on the partial sequence of the esyn1 gene clearly discriminates species producing exclusively BEA from those synthesizing mainly enniatin analogues.
Collapse
Affiliation(s)
- Łukasz Stępień
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, Poznań 60-625, Poland; E-Mail:
| |
Collapse
|