1
|
Ma X, Xu J, Zhao X, Qu L, Gao Y, Huang W, Han D, Dang B, Xu Z, Jia W. Selenium Improves the Control Efficacy of Phytophthora nicotianae by Damaging the Cell Membrane System and Promoting Plant Energy Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5073-5087. [PMID: 38377432 DOI: 10.1021/acs.jafc.3c07277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Tobacco black shank (TBS), caused by Phytophthora nicotianae, poses a significant threat to tobacco plants. Selenium (Se), recognized as a beneficial trace element for plant growth, exhibited inhibitory effects on P. nicotianae proliferation, disrupting the cell membrane integrity. This action reduced the energy supply and hindered hyphal transport through membrane proteins, ultimately inducing hyphal apoptosis. Application of 8 mg/L Se through leaf spraying resulted in a notable decrease in TBS incidence. Moreover, Se treatment preserved chloroplast structure, elevated chitinase activities, β-1,3-GA, polyphenol oxidase, phenylalanine ammonia-lyase, and increased hormonal content. Furthermore, Se enhanced flavonoid and sugar alcohol metabolite levels while diminishing amino acid and organic acid content. This shift promoted amino acid degradation and flavonoid synthesis. These findings underscore the potential efficacy of Se in safeguarding tobacco and potentially other plants against P. nicotianae.
Collapse
Affiliation(s)
- Xiaohan Ma
- College of Tobacco Science, Henan Agricultural University/National Tobacco Cultivation and Physiology and Biochemistry Research Center/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450000, P. R. China
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, P. R. China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450000, P. R. China
| | - Xiaohu Zhao
- State Key Laboratory of Agricultural Microbiology/College of Resources and Environment, Huazhong Agricultural University, Wuhan 430000, P. R. China
| | - Lili Qu
- College of Tobacco Science, Henan Agricultural University/National Tobacco Cultivation and Physiology and Biochemistry Research Center/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450000, P. R. China
| | - Yun Gao
- College of Tobacco Science, Henan Agricultural University/National Tobacco Cultivation and Physiology and Biochemistry Research Center/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450000, P. R. China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University/National Tobacco Cultivation and Physiology and Biochemistry Research Center/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450000, P. R. China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University/National Tobacco Cultivation and Physiology and Biochemistry Research Center/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450000, P. R. China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University/National Tobacco Cultivation and Physiology and Biochemistry Research Center/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450000, P. R. China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University/National Tobacco Cultivation and Physiology and Biochemistry Research Center/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450000, P. R. China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University/National Tobacco Cultivation and Physiology and Biochemistry Research Center/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450000, P. R. China
| |
Collapse
|
2
|
Abd-Rabbu HS, Wahba HE, Khalid KA. Pomegranate peel modifies growth, essential oil and certain chemicals of sage (Salvia officinalis L.) herb. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Elkelish AA, Soliman MH, Alhaithloul HA, El-Esawi MA. Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:144-153. [PMID: 30784986 DOI: 10.1016/j.plaphy.2019.02.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 05/08/2023]
Abstract
Salinity stress hampers the growth of most crop plants and reduces yield considerably. Therefore, experiments were conducted on wheat (Triticum aestivum L.) plants for studying the role of selenium (5 and 10 μM Se) supplementation in strengthening the salinity stress tolerance. Exposure to salinity (100 mM NaCl) reduced growth in terms of length, fresh and dry biomass yield. Se was affective in ameliorating the deleterious effects of NaCl stress to significant levels when supplied at 5 μM concentrations compared to 10 μM. Application of Se at 5 μM concentration did not show significant impacts on the physiological and biochemical parameters studied. Plants supplemented with 5 μM Se exhibited the highest RWC, chlorophyll synthesis, and photosynthesis. Se supplementation reduced the NaCl-mediated oxidative damage by up-regulating the activity of enzymatic components of the antioxidant system and the accumulation of ascorbate and glutathione. Furthermore, 5 μM Se proved beneficial in enhancing proline and sugar accumulation in normal and NaCl-stressed seedlings providing extra osmolarity to maintain RWC and protect photosynthesis. Se also affected proline metabolism by modulating the activities of the γ-glutamyl kinase (γ-GK) and proline oxidase (PROX) leading to its greater synthesis and lesser degradation. Moreover, it was observed that Se declined the Na/K ratio and also improved nitrogen and Ca uptake. Conclusively, Se at low concentration can be beneficial in preventing salinity-mediated damage and further studies are required to unravel underlying mechanisms.
Collapse
Affiliation(s)
- Amr A Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mona H Soliman
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr, 46429, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | | | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt; Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Mofeed Abd A, Mohamed Ab F, Ali Khalid K. Comparison Between Salicylic Acid and Selenium Effect on Growth and Biochemical Composition of Celery. ASIAN JOURNAL OF PLANT SCIENCES 2018; 17:150-159. [DOI: 10.3923/ajps.2018.150.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|