1
|
Mgwatyu Y, Cornelissen S, van Heusden P, Stander A, Ranketse M, Hesse U. Establishing MinION Sequencing and Genome Assembly Procedures for the Analysis of the Rooibos ( Aspalathus linearis) Genome. PLANTS (BASEL, SWITZERLAND) 2022; 11:2156. [PMID: 36015459 PMCID: PMC9416007 DOI: 10.3390/plants11162156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
While plant genome analysis is gaining speed worldwide, few plant genomes have been sequenced and analyzed on the African continent. Yet, this information holds the potential to transform diverse industries as it unlocks medicinally and industrially relevant biosynthesis pathways for bioprospecting. Considering that South Africa is home to the highly diverse Cape Floristic Region, local establishment of methods for plant genome analysis is essential. Long-read sequencing is becoming standard procedure for plant genome research, as these reads can span repetitive regions of the DNA, substantially facilitating reassembly of a contiguous genome. With the MinION, Oxford Nanopore offers a cost-efficient sequencing method to generate long reads; however, DNA purification protocols must be adapted for each plant species to generate ultra-pure DNA, essential for these analyses. Here, we describe a cost-effective procedure for the extraction and purification of plant DNA and evaluate diverse genome assembly approaches for the reconstruction of the genome of rooibos (Aspalathus linearis), an endemic South African medicinal plant widely used for tea production. We discuss the pros and cons of nine tested assembly programs, specifically Redbean and NextDenovo, which generated the most contiguous assemblies, and Flye, which produced an assembly closest to the predicted genome size.
Collapse
Affiliation(s)
- Yamkela Mgwatyu
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Stephanie Cornelissen
- Agricultural Research Council, Biotechnology Platform, 100 Old Soutpans Road, Onderstepoort 0110, South Africa
| | - Peter van Heusden
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Allison Stander
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Mary Ranketse
- Agricultural Research Council, Biotechnology Platform, 100 Old Soutpans Road, Onderstepoort 0110, South Africa
| | - Uljana Hesse
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
2
|
Fraiture MA, Joly L, Vandermassen E, Delvoye M, Van Geel D, Michelet JY, Van Hoeck E, De Jaeger N, Papazova N, Roosens NH. Retrospective survey of unauthorized genetically modified bacteria harbouring antimicrobial resistance genes in feed additive vitamin B2 commercialized in Belgium: Challenges and solutions. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Li YS, Shih KM, Chang CT, Chung JD, Hwang SY. Testing the Effect of Mountain Ranges as a Physical Barrier to Current Gene Flow and Environmentally Dependent Adaptive Divergence in Cunninghamia konishii (Cupressaceae). Front Genet 2019; 10:742. [PMID: 31447888 PMCID: PMC6697026 DOI: 10.3389/fgene.2019.00742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022] Open
Abstract
Populations can be genetically isolated by differences in their ecology or environment that hampered efficient migration, or they may be isolated solely by geographic distance. Moreover, mountain ranges across a species’ distribution area might have acted as barriers to gene flow. Genetic variation was quantified using amplified fragment length polymorphism (AFLP) and 13 selective amplification primer combinations used generated a total of 482 fragments. Here, we tested the barrier effects of mountains on gene flow and environmentally dependent local adaptation of Cunninghamia konishii occur in Taiwan. A pattern of genetic isolation by distance was not found and variation partitioning revealed that environment explained a relatively larger proportion of genetic variation than geography. The effect of mountains as barriers to genetic exchange, despite low population differentiation indicating a high rate of gene flow, was found within the distribution range of C. konishii. Twelve AFLP loci were identified as potential selective outliers using genome-scan methods (BAYESCAN and DFDIST) and strongly associated with environmental variables using regression approaches (LFMM, Samβada, and rstanarm) demonstrating adaptive divergence underlying local adaptation. Annual mean temperature, annual precipitation, and slope could be the most important environmental factors causally associated with adaptive genetic variation in C. konishii. The study revealed the existence of physical barriers to current gene flow and environmentally dependent adaptive divergence, and a significant proportion of the rate of gene flow may represent a reflection of demographic history.
Collapse
Affiliation(s)
- Yi-Shao Li
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kai-Ming Shih
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Te Chang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Jeng-Der Chung
- Division of Silviculture, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Shih-Ying Hwang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
4
|
Shih KM, Chang CT, Chung JD, Chiang YC, Hwang SY. Adaptive Genetic Divergence Despite Significant Isolation-by-Distance in Populations of Taiwan Cow-Tail Fir ( Keteleeria davidiana var. formosana). FRONTIERS IN PLANT SCIENCE 2018; 9:92. [PMID: 29449860 PMCID: PMC5799944 DOI: 10.3389/fpls.2018.00092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 05/05/2023]
Abstract
Double digest restriction site-associated DNA sequencing (ddRADseq) is a tool for delivering genome-wide single nucleotide polymorphism (SNP) markers for non-model organisms useful in resolving fine-scale population structure and detecting signatures of selection. This study performs population genetic analysis, based on ddRADseq data, of a coniferous species, Keteleeria davidiana var. formosana, disjunctly distributed in northern and southern Taiwan, for investigation of population adaptive divergence in response to environmental heterogeneity. A total of 13,914 SNPs were detected and used to assess genetic diversity, FST outlier detection, population genetic structure, and individual assignments of five populations (62 individuals) of K. davidiana var. formosana. Principal component analysis (PCA), individual assignments, and the neighbor-joining tree were successful in differentiating individuals between northern and southern populations of K. davidiana var. formosana, but apparent gene flow between the southern DW30 population and northern populations was also revealed. Fifteen of 23 highly differentiated SNPs identified were found to be strongly associated with environmental variables, suggesting isolation-by-environment (IBE). However, multiple matrix regression with randomization analysis revealed strong IBE as well as significant isolation-by-distance. Environmental impacts on divergence were found between populations of the North and South regions and also between the two southern neighboring populations. BLASTN annotation of the sequences flanking outlier SNPs gave significant hits for three of 23 markers that might have biological relevance to mitochondrial homeostasis involved in the survival of locally adapted lineages. Species delimitation between K. davidiana var. formosana and its ancestor, K. davidiana, was also examined (72 individuals). This study has produced highly informative population genomic data for the understanding of population attributes, such as diversity, connectivity, and adaptive divergence associated with large- and small-scale environmental heterogeneity in K. davidiana var. formosana.
Collapse
Affiliation(s)
- Kai-Ming Shih
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Te Chang
- Department of Geography, National Taiwan University, Taipei, Taiwan
| | - Jeng-Der Chung
- Division of Silviculture, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Shih-Ying Hwang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
5
|
Amer S, Basaid SA, Ali E. Molecular identification of Rosa x damascena growing in Taif region (Saudi Arabia). INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2016. [DOI: 10.4081/pb.2016.6307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A fragment of 772 bp of the chloroplast maturase K gene was amplified and sequenced for <em>Rosa x damascena trigintipetala</em> variety growing in Taif region of Saudi Arabia. The data were aligned with their counterparts of other varieties already found in the Genbank database and were analyzed by maximum-parsimony, neighbor-joining and maximum-likelihood methods and a single rooted tree was executed. <em>R. x damascena trigintipetala</em> was paraphyletic where one sample [A] clustered with all varieties while the second [B] was basal. <em>R. x damascena</em> was sister to <em>R. x chinensis semperflorens</em> with the later being basal. <em>R. x damascena gori</em> was basal for all taxa studied. <em>R. moschata</em> was inside the clade of <em>R. x damascena</em>. Hybridization could be possible among <em>R. damascena, R. chinensis</em> and <em>R. moschata</em>. The genetic distance and tree topology indicated that [A] variety could be originated from <em>R. moshata</em> while [B] could be originated from gori or <em>R. chinensis semperflorens</em>. We, therefore, may consider that <em>R. x damascena gori</em> or <em>R. chinensis</em> could be the origin of all nowadays <em>R. x damascena</em> varieties.
Collapse
|
6
|
Techen N, Parveen I, Pan Z, Khan IA. DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol 2013; 25:103-10. [PMID: 24484887 DOI: 10.1016/j.copbio.2013.09.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/27/2013] [Indexed: 01/13/2023]
Abstract
Because of the increasing demand for herbal remedies and for authentication of the source material, it is vital to provide a single database containing information about authentic plant materials and their potential adulterants. The database should provide DNA barcodes for data retrieval and similarity search. In order to obtain such barcodes, several molecular methods have been applied to develop markers that aid with the authentication and identification of medicinal plant materials. In this review, we discuss the genomic regions and molecular methods selected to provide barcodes, available databases and the potential future of barcoding using next generation sequencing.
Collapse
Affiliation(s)
- Natascha Techen
- National Center for Natural Products Research and Research Institute of Pharmaceutical Sciences, Department of Pharmacognosy, School of Pharmacy, University of Mississippi, P.O. Box 1848, MS 38677, USA
| | - Iffat Parveen
- National Center for Natural Products Research and Research Institute of Pharmaceutical Sciences, Department of Pharmacognosy, School of Pharmacy, University of Mississippi, P.O. Box 1848, MS 38677, USA
| | - Zhiqiang Pan
- USDA-ARS-NPURU, P.O. Box 8048, University, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research and Research Institute of Pharmaceutical Sciences, Department of Pharmacognosy, School of Pharmacy, University of Mississippi, P.O. Box 1848, MS 38677, USA; School of Pharmacy, King Saud University, Saudi Arabia.
| |
Collapse
|
7
|
Agbagwa IO, Datta S, Patil PG, Singh P, Nadarajan N. A protocol for high-quality genomic DNA extraction from legumes. GENETICS AND MOLECULAR RESEARCH 2012; 11:4632-9. [PMID: 23079974 DOI: 10.4238/2012.september.14.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Current DNA extraction protocols, which require liquid nitrogen, lyophilization and considerable infrastructure in terms of instrumentation, often impede the application of biotechnological tools in less researched crops in laboratories in developing countries. We modified and optimized the existing CTAB method for plant genomic DNA extraction by avoiding liquid nitrogen usage and lyophilization. DNA was extracted directly from freshly harvested leaves ground in pre-heated CTAB buffer. Chloroform:isoamyl alcohol (24:1) and RNase treatments followed by single-purification step decontaminated the samples thereby paving way for selective extraction of DNA. High molecular weight DNA yield in the range of 328 to 4776 ng/μL with an average of 1459 ng/μL was obtained from 45 samples of cultivated and wild Cajanus species. With an absorbance ratio at 260 to 280 nm, a range of 1.66 to 2.20, and a mean of 1.85, very low levels of protein and polysaccharide contamination were recorded. Forty samples can be extracted daily at a cost between 1.8 and US$2.0 per plant sample. This modified method is suitable for most plants especially members of the Leguminosae. Apart from Cajanus, it has been extensively applied in DNA extraction from Cicer and Vigna species.
Collapse
Affiliation(s)
- I O Agbagwa
- Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, India.
| | | | | | | | | |
Collapse
|
8
|
Sane A, Abdul Kare V, Rajasekhar P, Vasantha K T. Optimization of DNA Isolation and PCR Protocol for ISSR Analysis of Nothapodytes nimmoniana: A Threatened Anti-cancerous Medicinal Plant. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajbkr.2012.100.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Biteau F, Nisse E, Hehn A, Miguel S, Hannewald P, Bourgaud F. A Rapid and Efficient Method for Isolating High Quality DNA from Leaves of Carnivorous Plants from the Drosera Genus. Mol Biotechnol 2011; 51:247-53. [DOI: 10.1007/s12033-011-9462-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Liu WY, Zhang KJ. Rapid Salt-Extraction of Genomic DNA from Formalin-Fixed Toad and Frog Tissues for PCR-Based Analyses. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajava.2011.958.965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Haque I, Bandopadhy R, Mukhopadhy K. An Optimised Protocol for Fast Genomic DNA Isolation from High Secondary Metabolites and Gum Containing Plants. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/ajps.2008.304.308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|