1
|
Muhaidat R, Al Zoubi M, Oqlat M, McKown AD, Alqudah M. Kranz anatomical and biochemical characterization of C
4
photosynthesis in an aphyllous shrub
Calligonum comosum
(Polygonaceae). PLANT BIOSYSTEMS - AN INTERNATIONAL JOURNAL DEALING WITH ALL ASPECTS OF PLANT BIOLOGY 2024; 158:796-807. [DOI: 10.1080/11263504.2024.2360467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 10/30/2024]
Affiliation(s)
- Riyadh Muhaidat
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Mazhar Al Zoubi
- Department of Basic Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohammad Oqlat
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Athena D. McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia, Canada
| | - Muath Alqudah
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| |
Collapse
|
2
|
Berasategui JA, Žerdoner Čalasan A, Zizka A, Kadereit G. Global distribution, climatic preferences and photosynthesis-related traits of C 4 eudicots and how they differ from those of C 4 grasses. Ecol Evol 2023; 13:e10720. [PMID: 37964791 PMCID: PMC10641307 DOI: 10.1002/ece3.10720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
C₄ is one of three known photosynthetic processes of carbon fixation in flowering plants. It evolved independently more than 61 times in multiple angiosperm lineages and consists of a series of anatomical and biochemical modifications to the ancestral C3 pathway increasing plant productivity under warm and light-rich conditions. The C4 lineages of eudicots belong to seven orders and 15 families, are phylogenetically less constrained than those of monocots and entail an enormous structural and ecological diversity. Eudicot C4 lineages likely evolved the C4 syndrome along different evolutionary paths. Therefore, a better understanding of this diversity is key to understanding the evolution of this complex trait as a whole. By compiling 1207 recognised C4 eudicots species described in the literature and presenting trait data among these species, we identify global centres of species richness and of high phylogenetic diversity. Furthermore, we discuss climatic preferences in the context of plant functional traits. We identify two hotspots of C4 eudicot diversity: arid regions of Mexico/Southern United States and Australia, which show a similarly high number of different C4 eudicot genera but differ in the number of C4 lineages that evolved in situ. Further eudicot C4 hotspots with many different families and genera are in South Africa, West Africa, Patagonia, Central Asia and the Mediterranean. In general, C4 eudicots are diverse in deserts and xeric shrublands, tropical and subtropical grasslands, savannas and shrublands. We found C4 eudicots to occur in areas with less annual precipitation than C4 grasses which can be explained by frequently associated adaptations to drought stress such as among others succulence and salt tolerance. The data indicate that C4 eudicot lineages utilising the NAD-ME decarboxylating enzyme grow in drier areas than those using the NADP-ME decarboxylating enzyme indicating biochemical restrictions of the later system in higher temperatures. We conclude that in most eudicot lineages, C4 evolved in ancestrally already drought-adapted clades and enabled these to further spread in these habitats and colonise even drier areas.
Collapse
Affiliation(s)
- Jessica A. Berasategui
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der PflanzenLudwig‐Maximilians Universität MünchenMünchenGermany
- Institute for Molecular PhysiologyJohannes Gutenberg‐University MainzMainzGermany
| | - Anže Žerdoner Čalasan
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der PflanzenLudwig‐Maximilians Universität MünchenMünchenGermany
| | - Alexander Zizka
- Department of BiologyPhilipps‐University MarburgMarburgGermany
| | - Gudrun Kadereit
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der PflanzenLudwig‐Maximilians Universität MünchenMünchenGermany
- Botanischer Garten München‐Nymphenburg und Botanische Staatssammlung MünchenStaatliche Naturwissenschaftliche Sammlungen BayernsMünchenGermany
| |
Collapse
|
3
|
Dirar AI, Adhikari-Devkota A, Kunwar RM, Paudel KR, Belwal T, Gupta G, Chellappan DK, Hansbro PM, Dua K, Devkota HP. Genus Blepharis (Acanthaceae): A review of ethnomedicinally used species, and their phytochemistry and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113255. [PMID: 32798615 DOI: 10.1016/j.jep.2020.113255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blepharis is an Afro-Asiatic genus belonging to the family Acanthaceae. It comprises about 126 species that occur in arid and semi-arid habitats. Some species of Blepharis are used in traditional medicines in different countries mainly for their anti-inflammatory, wound healing activities along with treatment of gastrointestinal disorders and bone fractures. AIM OF THE REVIEW The present review aims to collate and analyze the available data and information on distribution, traditional uses, chemical constituents and pharmacological activities of Blepharis. METHODS Scientific information of genus Blepharis was retrieved from the online bibliographic databases such as MEDLINE/PubMed, SciFinder, Web of Science and Google Scholar and secondary resources including books and proceedings. RESULTS Seven species of Blepharis were found to be reported frequently as useful in folklore in African and Asian countries. B. maderaspatensis was found to be widely used in Indian traditional medicines whereas the B. ciliaris and B. edulis were common in folklore of Egypt, Jordan, and Arabia. Active phytochemicals of Blepharis are flavonoids from B. ciliaris, alkaloids from B. sindica, phenolic acid derivatives, and phytosterols, and derivatives of hydroxamic acids from B. edulis resulted in possessing diverse biological properties such as anti-microbial, anti-inflammatory, and anti-cancer. CONCLUSIONS Various species of Blepharis were found to be used in traditional medicine systems in African and Asian countries. Few of these species were studied for their bioactive chemical constituents however the activity guided isolation studies are not performed. Similarly, detailed pharmacological studies in animal models to explore their mechanism of action are also not reported. Future studies should focus on these aspects related to the medicinally used species of Blepharis. The detailed and comprehensive comparative analysis presented here gives valuable information of the currently used Blepharis species and pave the way to investigate other useful species of Blepharis pertaining to ethnobotany, phytochemistry and discovery of new drugs.
Collapse
Affiliation(s)
- Amina Ibrahim Dirar
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan; Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, P.O. Box 2404, Mek Nimr Street, Khartoum, Sudan; Faculty of Clinical and Industrial Pharmacy, National University-Sudan, P.O. Box 3783, Al-Raki Area, Khartoum, Sudan
| | - Anjana Adhikari-Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tarun Belwal
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
4
|
Muhaidat R, Brake MH, Al Zoubi M, Colautti RI, Al-Nasser A, Awawdeh M, Al-Batayneh K, Al Khateeb W, McKown AD, Lahham J, El-Oqlah A. Integrating morphological characters, molecular markers, and distribution patterns to assess the identity of Blepharis species from Jordan. BOTANICAL STUDIES 2018; 59:18. [PMID: 30046932 PMCID: PMC6060189 DOI: 10.1186/s40529-018-0234-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Blepharis constitutes an important part of the vegetation of the Jordanian arid and semi-arid regions, yet whether one or more species of this genus occurs in the Jordanian area is uncertain. We addressed this question by assessing morphological characters and testing Inter-Simple Sequence Repeat (ISSR) markers from three populations of Blepharis: two northern (lower slopes of Kufranjah valley and the Dead Sea region) and one southern (Wadi al Yutm). RESULTS Shoots from randomly chosen Blepharis plants were harvested from each of the three populations for morphological and molecular analyses. In the northern populations, spikes were lax and bract width was significantly shorter than length of the longest lateral spine compared to the southern population. A multivariate linear discriminant analysis distinguished the northern populations from the southern one by internode length, bract width, longest lateral spine length, and bract width to spine length ratio. The ISSR analysis revealed that 44 markers across eight primers were polymorphic with major allele frequency of 83.6% and an average of 5.5 polymorphic markers per primer. The genetic resemblance among individuals ranged from 0.27 to 0.96. The three Blepharis populations were accordingly clustered into two distinct groups, similar to the analysis of morphological differences and corresponding with the "northern" and "southern" population designations. CONCLUSIONS Our results strongly indicate the occurrence of two discrete Blepharis species in Jordan and reject the hypothesis that the genus is represented by only one species. We propose that the Blepharis species in Jordan are B. attenutata Napper (represented by the northern populations) and B. ciliaris (L.) B. L. Burtt (represented by the southern population). These findings are important for informing and revising floristic work within the region and an updated key has been included in our findings.
Collapse
Affiliation(s)
- Riyadh Muhaidat
- Department of Biological Sciences, Faculty of Science, Yarmouk University, P. O. Box 21163, Irbid, Jordan
| | - Mohammad H. Brake
- Science Department, Faculty of Science, Jerash University, Jerash, Jordan
| | - Mazhar Al Zoubi
- Department of Basic Sciences, Faculty of Medicine, Yarmouk University, P. O. Box 21163, Irbid, Jordan
| | - Robert I. Colautti
- Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6 Canada
| | - Amjad Al-Nasser
- Department of Statistics, Faculty of Science, Yarmouk University, P. O. Box 21163, Irbid, Jordan
| | - Muheeb Awawdeh
- Department of Environmental and Earth Sciences, Faculty of Science, Yarmouk University, P. O. Box 21163, Irbid, Jordan
| | - Khalid Al-Batayneh
- Department of Biological Sciences, Faculty of Science, Yarmouk University, P. O. Box 21163, Irbid, Jordan
| | - Wesam Al Khateeb
- Department of Biological Sciences, Faculty of Science, Yarmouk University, P. O. Box 21163, Irbid, Jordan
| | - Athena D. McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Jamil Lahham
- Department of Biological Sciences, Faculty of Science, Yarmouk University, P. O. Box 21163, Irbid, Jordan
| | - Ahmad El-Oqlah
- Department of Biological Sciences, Faculty of Science, Yarmouk University, P. O. Box 21163, Irbid, Jordan
| |
Collapse
|
5
|
Muhaidat R, McKown AD, Al Zoubi M, Bani Domi Z, Otoum O. C 4 photosynthesis and transition of Kranz anatomy in cotyledons and leaves of Tetraena simplex. AMERICAN JOURNAL OF BOTANY 2018; 105:822-835. [PMID: 29791720 DOI: 10.1002/ajb2.1087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Tetraena simplex is an independently evolved C4 species in the Zygophylloideae (Zygophyllaceae) and a characteristic forb of saline flats in hot and sandy desert habitats. During early ontogeny, the species had a morphological shift from planar cotyledons (dorsiventral symmetry) to terete, succulent leaves (radial symmetry). We tested whether this shift had a corresponding change in internal Kranz anatomy and tissue patterning. METHODS For a comprehensive characterization of C4 photosynthesis across early ontogeny in T. simplex, structural and ultrastructural anatomical properties and localization patterns, activities, and immunoblotting of key C4 photosynthetic enzymes were compared in mesophyll and bundle sheath tissues in cotyledons and leaves. KEY RESULTS Cotyledons and leaves possessed different types of Kranz anatomy (atriplicoid type and a "Tetraena" variant of the kochioid type, respectively), reflecting the change in leaf morphology. In bundle sheath cells, key differences in ultrastructural features included increased organelle numbers and chloroplast thylakoid stacking. C4 enzymes had strict tissue-specific localization patterns within bundle sheath and mesophyll cells in both cotyledons and leaves. The decarboxylase NAD-ME maintained the highest activity, increasing from cotyledons to leaves. This classified T. simplex as fully C4 across ontogeny and a strictly NAD-ME biochemical subtype. CONCLUSIONS Tetraena simplex cotyledons and leaves showed differences in Kranz type, with associated progression in ultrastructural features, and differing activities/expression levels of C4 enzymes. Furthermore, leaves characterized a new "Tetraena" variation of the kochioid Kranz anatomy.
Collapse
Affiliation(s)
- Riyadh Muhaidat
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, P. O. Box 21163, Jordan
| | - Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mazhar Al Zoubi
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, P. O. Box 21163, Jordan
- Department of Basic Sciences, Faculty of Medicine, Yarmouk University, Irbid, P. O. Box 21163, Jordan
| | - Zakariya Bani Domi
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, P. O. Box 21163, Jordan
| | - Osama Otoum
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, P. O. Box 21163, Jordan
| |
Collapse
|
6
|
Muhaidat R, McKown AD. Significant involvement of PEP-CK in carbon assimilation of C4 eudicots. ANNALS OF BOTANY 2013; 111:577-89. [PMID: 23388881 PMCID: PMC3605952 DOI: 10.1093/aob/mct017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/17/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS C4 eudicot species are classified into biochemical sub-types of C4 photosynthesis based on the principal decarboxylating enzyme. Two sub-types are known, NADP-malic enzyme (ME) and NAD-ME; however, evidence for the occurrence or involvement of the third sub-type (phosphoenolpyruvate carboxykinase; PEP-CK) is emerging. In this study, the presence and activity of PEP-CK in C4 eudicot species of Trianthema and Zaleya (Sesuvioideae, Aizoaceae) is clarified through analysis of key anatomical features and C4 photosynthetic enzymes. METHODS Three C4 species (T. portulacastrum, T. sheilae and Z. pentandra) were examined with light and transmission electron microscopy for leaf structural properties. Activities and immunolocalizations of C4 enzymes were measured for biochemical characteristics. KEY RESULTS Leaves of each species possess atriplicoid-type Kranz anatomy, but differ in ultrastructural features. Bundle sheath organelles are centripetal in T. portulacastrum and Z. pentandra, and centrifugal in T. sheilae. Bundle sheath chloroplasts in T. portulacastrum are almost agranal, whereas mesophyll counterparts have grana. Both T. sheilae and Z. pentandra are similar, where bundle sheath chloroplasts contain well-developed grana while mesophyll chloroplasts are grana deficient. Cell wall thickness is significantly greater in T. sheilae than in the other species. Biochemically, T. portulacastrum is NADP-ME, while T. sheilae and Z. pentandra are NAD-ME. Both T. portulacastrum and Z. pentandra exhibit considerable PEP-CK activity, and immunolocalization studies show dense and specific compartmentation of PEP-CK in these species, consistent with high PEP-CK enzyme activity. CONCLUSIONS Involvement of PEP-CK in C4 NADP-ME T. portulacastrum and NAD-ME Z. petandra occurs irrespective of biochemical sub-type, or the position of bundle sheath chloroplasts. Ultrastructural traits, including numbers of bundle sheath peroxisomes and mesophyll chloroplasts, and degree of grana development in bundle sheath chloroplasts, coincide more directly with PEP-CK recruitment. Discovery of high PEP-CK activity in C4 Sesuvioideae species offers a unique opportunity for evaluating PEP-CK expression and suggests the possibility that PEP-CK recruitment may exist elsewhere in C4 eudicots.
Collapse
Affiliation(s)
- Riyadh Muhaidat
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, PO 21163, Hashemite Kingdom of Jordan
| | - Athena D. McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|