1
|
Alharbi KS, Afzal M, Al-Abbasi FA, Moglad E, Al-Qahtani SD, Almalki NAR, Imam F, Sayyed N, Kazmi I. In vivo and in silico study of europinidin against streptozotocin-isoproterenol-induced myocardial damage via alteration of hs-CRP/CPK-MB/Caspase-3/Bcl-2 pathways. Sci Rep 2025; 15:3076. [PMID: 39856142 PMCID: PMC11761472 DOI: 10.1038/s41598-024-83900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Europinidin is a novel anthocyanidin found in the petals of Plumbago europea that exhibits several physiological effects. Research was conducted to assess europinidin's cardioprotective efficacy in a diabetic and myocardial infarction (MI) experimental model. Rat was injected through the intraperitoneal administration of 45 mg/kg of streptozotocin (STZ), while MI was induced by subcutaneously administering 85 mg/kg of isoproterenol (ISP) at 24 and 48 h prior to the sacrifice procedure. Europinidin 10 and 20 mg/day was administered orally for 4 weeks after validation of diabetes (glucose > 250 mg/dl) on the 7th day. Experimental rats were randomly allocated to control, STZ-ISP control, STZ-ISP + europinidin-10 mg, STZ-ISP + europinidin-20 mg and europinidin 20 mg perse group. Biochemicals parameters including anti-diabetic (Glucose, HbA1c, serum insulin), cardiac markers (hs-CRP, CPK-MB), dyslipidaemia (lipid analysis), anti-inflammatory (IL6, TNF-α and IL-β), oxidative stress (MDA) and antioxidant (SOD, CAT and GSH), kidney function (creatinine), liver function (AST) and pancreatic function (lipase) along with apoptosis markers (Bcl-2, caspase-3) were evaluated. In addition, histopathological indices of heart injury were investigated. In addition, molecular docking (AUTODOCK Tools 1.5.6.) and dynamics were performed. Europinidin (10 and 20 mg/day) reduced blood glucose, HbA1c, hs-CRP, and CPK-MB. It improved serum insulin, blood lipid profile and reduced inflammatory cytokines (IL-6, TNF-α, IL-β), oxidative stress and increased antioxidant enzymes (SOD, CAT and GSH). Europinidin also protected renal, hepatic functions and restored apoptosis markers (increased Bcl-2, decreased caspase-3 levels). Histopathological analysis demonstrated a reduced extent of myocardial necrosis and fibrosis. Europinidin binds in silico to proteins 1NME, 1I0E, 3I2Y and 4AQ3 with energies of -7.038, -6.682, -8.6 and - 8.761 kcal/mol, respectively. While molecular dynamics simulation studies supported the interactions of europinidin with important therapeutic target proteins. Europinidin demonstrates significant cardioprotective and anti-diabetic potential in a diabetic MI experimental model.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Al Qassim, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Salwa D Al-Qahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Naif A R Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, 247121, India.
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
2
|
Mahdi WA, AlGhamdi SA, Alghamdi AM, Imam SS, Alshehri S, Almaniea MA, Hajjar BM, Al-Abbasi FA, Sayyed N, Kazmi I. Effect of Europinidin against Alcohol-Induced Liver Damage in Rats by Inhibiting the TNF-α/TGF-β/IFN-γ/NF-kB/Caspase-3 Signaling Pathway. ACS OMEGA 2023; 8:22656-22664. [PMID: 37396259 PMCID: PMC10308532 DOI: 10.1021/acsomega.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The effect of europinidin on alcoholic liver damage in rats was examined in this research. METHODS A total of 24 Wistar rats were grouped in the same way into four groups: normal control (normal), ethanol control (EtOH), europinidin low dose (10 mg/kg), and europinidin higher dose (20 mg/kg). The test group rats were orally treated with europinidin-10 and europinidin-20 for 4 weeks, whereas 5 mL/kg distilled water was administered to control rats. In addition, 1 h after the last dose of the above-mentioned oral treatment, 5 mL/kg (i.p.) EtOH was injected to induce liver injury. After 5 h of EtOH treatment, samples of blood were withdrawn for biochemical estimations. RESULTS Administration of europinidin at both doses restored all of the estimated serum, i.e., liver function tests (ALT, AST, ALP), biochemical test (Creatinine, albumin, BUN, direct bilirubin, and LDH), lipid assessment (TC and TG), endogenous antioxidants (GSH-Px, SOD, and CAT), malondialdehyde (MDA), nitric oxide (NO), cytokines (TGF-β, TNF-α, IL-1β, IL-6, IFN-γ, and IL-12), caspase-3, and nuclear factor kappa B (NF-κB) associated with the EtOH group. CONCLUSION The results of the investigation showed that europinidin had favorable effects in rats given EtOH and may have hepatoprotective potential property.
Collapse
Affiliation(s)
- Wael A. Mahdi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental
Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed Sarim Imam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Almaniea
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Baraa Mohammed Hajjar
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School
of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Altharawi A, Alharthy KM, Althurwi HN, Albaqami FF, Alzarea SI, Al-Abbasi FA, Nadeem MS, Kazmi I. Europinidin Inhibits Rotenone-Activated Parkinson's Disease in Rodents by Decreasing Lipid Peroxidation and Inflammatory Cytokines Pathways. Molecules 2022; 27:molecules27217159. [PMID: 36363986 PMCID: PMC9658735 DOI: 10.3390/molecules27217159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Europinidin is a derivative of delphinidin obtained from the plants Plumbago Europea and Ceratostigma plumbaginoides. This herb has wide medicinal applications in treating various diseases but there are very few studies available on this bioactive compound. Considering this background, the present study is designed for the evaluation of Europinidin against Parkinson’s disease. Aim: The investigation aims to assess the effect of Europinidin in the rotenone-activated Parkinson’s paradigm. Methods: To evaluate neuroprotective activity, rotenone (1.5 mg/kg s.c) and europinidin (10 mg/kg and 20 mg/kg) was administered in rats for 21 days. The behavioural parameters were performed before sacrificing the rats. On the 22nd day, all the rats were assessed for biochemical markers (SOD, GSH, MDA, Catalase), neurotransmitter levels (Dopamine, 5-HIAA, DOPAC, and HVA levels), and neuroinflammatory markers (IL-6, IL-1β and TNF-α). Results: It was found that rotenone produced significant (p < 0.001) oxidative damage, a cholinergic deficit, dopaminergic loss, and a rise in neuroinflammatory markers in rats. Conclusion: The study concludes that europinidin possesses anti-oxidant and anti-inflammatory properties. The results suggest the therapeutic role of europinidin against rotenone-activated behavioural, biochemical, and neuroinflammatory alterations in rats.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (A.A.); (I.K.); Tel.: +966-543-970-731 (I.K.)
| | - Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan N. Althurwi
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faisal F. Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.A.); (I.K.); Tel.: +966-543-970-731 (I.K.)
| |
Collapse
|