1
|
Fu Y, Hu J, Erasmus MA, Zhang H, Johnson TA, Cheng H. Cecal microbiota transplantation: unique influence of cecal microbiota from divergently selected inbred donor lines on cecal microbial profile, serotonergic activity, and aggressive behavior of recipient chickens. J Anim Sci Biotechnol 2023; 14:66. [PMID: 37127691 PMCID: PMC10152610 DOI: 10.1186/s40104-023-00866-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Accumulating evidence from human trials and rodent studies has indicated that modulation of gut microbiota affects host physiological homeostasis and behavioral characteristics. Similarly, alterations in gut microbiota could be a feasible strategy for reducing aggressive behavior and improving health in chickens. The study was conducted to determine the effects of early-life cecal microbiota transplantation (CMT) on cecal microbial composition, brain serotonergic activity, and aggressive behavior of recipient chickens. METHODS Chicken lines 63 and 72 with nonaggressive and aggressive behavior, respectively, were used as donors and a commercial strain Dekalb XL was used as recipients for CMT. Eighty-four 1-d-old male chicks were randomly assigned to 1 of 3 treatments with 7 cages per treatment and 4 chickens per cage (n = 7): saline (control, CTRL), cecal solution of line 63 (63-CMT), and cecal solution of line 72 (72-CMT). Transplantation was conducted via oral gavage once daily from d 1 to 10, and then boosted once weekly from week 3 to 5. At weeks 5 and 16, home-cage behavior was recorded, and chickens with similar body weights were assigned to paired aggression tests between the treatments. Samples of blood, brain, and cecal content were collected from the post-tested chickens to detect CMT-induced biological and microbiota changes. RESULTS 63-CMT chickens displayed less aggressive behavior with a higher hypothalamic serotonergic activity at week 5. Correspondingly, two amplicon sequence variants (ASVs) belonging to Lachnospiraceae and one Ruminococcaceae UCG-005 ASV were positively correlated with the levels of brain tryptophan and serotonin, respectively. 72-CMT chickens had lower levels of brain norepinephrine and dopamine at week 5 with higher levels of plasma serotonin and tryptophan at week 16. ASVs belonging to Mollicutes RF39 and GCA-900066225 in 72-CMT chickens were negatively correlated with the brain 5-hydroxyindoleacetic acid (5-HIAA) at week 5, and one Bacteroides ASV was negatively correlated with plasma serotonin at week 16. CONCLUSION Results indicate that CMT at an early age could regulate aggressive behavior via modulating the cecal microbial composition, together with central serotonergic and catecholaminergic systems in recipient chickens. The selected CMT could be a novel strategy for reducing aggressive behavior through regulating signaling along the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiaying Hu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Marisa A Erasmus
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Hengwei Cheng
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Mohammed A, Mahmoud M, Murugesan R, Cheng HW. Effect of a Synbiotic Supplement on Fear Response and Memory Assessment of Broiler Chickens Subjected to Heat Stress. Animals (Basel) 2021; 11:427. [PMID: 33562225 PMCID: PMC7915859 DOI: 10.3390/ani11020427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to evaluate the effect of a synbiotic containing a probiotic (Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animalis, and Lactobacillus reuteri) and a prebiotic (fructooligosaccharides) on fear response, memory assessment, and selected stress indicators in broilers subjected to heat stress. A total of 360 1-day-old Ross 708 chicks were evenly divided among three treatments: a basal diet mixed with a synbiotic at 0 (G-C), 0.5 (G-0.5X), and 1.0 (G-1.0X) g/kg. After 15 d, the broilers were exposed to 32 °C for 9 h daily until 42 d. The object memory test was conducted at 15 day; touch, novel object, and isolation tests were conducted at 35 day; tonic immobility (TI) took place at 41 day. At 42 day, plasma corticosterone and tryptophan concentrations and heterophile/lymphocyte (H/L) ratios were measured. Compared to controls, synbiotic-fed broilers, regardless of concentration, had a shorter latency to make the first vocalization, with higher vocalization rates during the isolation test (p = 0.001). the G-1.0 group had the lowest H/L ratio (p = 0.001), but higher plasma tryptophan concentrations and a greater number of birds could reach the observer during the touch test (p = 0.001 and 0.043, respectively). The current results indicate that the synbiotic can be used as a growth promoter to reduce the fear response and stress state of heat-stressed broilers.
Collapse
Affiliation(s)
- Ahmed Mohammed
- Department of Animal Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA;
- Department of Animal and Poultry Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Manal Mahmoud
- Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt;
| | | | - Heng-wei Cheng
- USDA Agricultural Research Service, 125 South Russell Street, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
van der Eijk JAJ, de Vries H, Kjaer JB, Naguib M, Kemp B, Smidt H, Rodenburg TB, Lammers A. Differences in gut microbiota composition of laying hen lines divergently selected on feather pecking. Poult Sci 2020; 98:7009-7021. [PMID: 31226709 PMCID: PMC6869756 DOI: 10.3382/ps/pez336] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Feather pecking (FP), a damaging behavior where laying hens peck and pull at feathers of conspecifics, is multifactorial and has been linked to numerous behavioral and physiological characteristics. The gut microbiota has been shown to influence host behavior and physiology in many species, and could therefore affect the development of damaging behaviors, such as FP. Yet, it is unknown whether FP genotypes (high FP [HFP] and low FP [LFP] lines) or FP phenotypes (i.e., individuals differing in FP, feather peckers and neutrals) differ in their gut microbiota composition. Therefore, we identified mucosa-associated microbiota composition of the ileum and cecum at 10 and 30 wk of age. At 30 wk of age, we further identified luminal microbiota composition from combined content of the ileum, ceca, and colon. FP phenotypes could not be distinguished from each other in mucosa-associated or luminal microbiota composition. However, HFP neutrals were characterized by a higher relative abundance of genera of Clostridiales, but lower relative abundance of Lactobacillus for the luminal microbiota composition compared to LFP phenotypes. Furthermore, HFP neutrals had a higher diversity and evenness for the luminal microbiota compared to LFP phenotypes. FP genotypes could not be distinguished from each other in mucosa-associated microbiota composition. Yet, FP genotypes could be distinguished from each other in luminal microbiota composition. HFP birds were characterized by a higher relative abundance of genera of Clostridiales, but lower relative abundance of Staphylococcus and Lactobacillus compared to LFP birds. Furthermore, HFP birds had a higher diversity and evenness for both cecal mucosa-associated and luminal microbiota compared to LFP birds at adult age. In conclusion, we here show that divergent selection on FP can (in)directly affect luminal microbiota composition. Whether differences in microbiota composition are causal to FP or a consequence of FP remains to be elucidated.
Collapse
Affiliation(s)
- Jerine A J van der Eijk
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands.,Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Hugo de Vries
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Joergen B Kjaer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Animal Welfare and Animal Husbandry, 29223 Celle, Germany
| | - Marc Naguib
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - T Bas Rodenburg
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands.,Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands.,Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| |
Collapse
|
4
|
Cameron A, McAllister TA. Could probiotics be the panacea alternative to the use of antimicrobials in livestock diets? Benef Microbes 2019; 10:773-799. [PMID: 31965849 DOI: 10.3920/bm2019.0059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Probiotics are most frequently derived from the natural microbiota of healthy animals. These bacteria and their metabolic products are viewed as nutritional tools for promoting animal health and productivity, disease prevention and therapy, and food safety in an era defined by increasingly widespread antimicrobial resistance in bacterial pathogens. In contemporary livestock production, antimicrobial usage is indispensable for animal welfare, and employed to enhance growth and feed efficiency. Given the importance of antimicrobials in both human and veterinary medicine, their effective replacement with direct-fed microbials or probiotics could help reduce antimicrobial use, perhaps restoring or extending the usefulness of these precious drugs against serious infections. Thus, probiotic research in livestock is rapidly evolving, aspiring to produce local and systemic health benefits on par with antimicrobials. Although many studies have clearly demonstrated the potential of probiotics to positively affect animal health and inhibit pathogens, experimental evidence suggests that probiotics' successes are modest, conditional, strain-dependent, and transient. Here, we explore current understanding, trends, and emerging applications of probiotic research and usage in major livestock species, and highlight successes in animal health and performance.
Collapse
Affiliation(s)
- A Cameron
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Agriculture and Agri-Food Canada, 5403 1st Ave South, Lethbridge, AB T1J 4P4, Canada
| | - T A McAllister
- Agriculture and Agri-Food Canada, 5403 1st Ave South, Lethbridge, AB T1J 4P4, Canada
| |
Collapse
|