1
|
Ahmed Alrasheed A, Ahmed Alrasheid A, Mohamed Abdalla W, Mohammed Saeed S, Haidar Ahmed H. Antimicrobial and Antioxidant Activities and Phytochemical Analysis of Rosmarinus officinalis L. Pod and Thymus vulgaris L. Leaf Ethanolic Extracts on Escherichia coli Urinary Isolates. Int J Microbiol 2023; 2023:4171547. [PMID: 37144024 PMCID: PMC10154087 DOI: 10.1155/2023/4171547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 05/06/2023] Open
Abstract
The indiscriminate use of antibacterial agents has resulted in one of the largest recent global health problems, which is the emergence of bacterial resistance. This study aimed to examine the antimicrobial and antioxidant activities of ethanolic extracts of the two medicinal plants; Rosmarinus officinalis pods and Thymus vulgaris leaves on Escherichia coli urinary isolates. Both plants were extracted by absolute ethanol, and various concentrations (100, 50, 25, and 12.5 mg/ml) of the ethanolic extracts were prepared and tested against 53 urinary isolates of E. coli. An antibiotic susceptibility test was performed using chloramphenicol, gentamycin, amoxicillin, ceftriaxone, and ciprofloxacin against isolated bacteria. The antioxidant activity was measured using the DPPH method. The chemical analysis of both extracts was determined using gas chromatography-mass spectrometry (GC/MS) technique. The results showed that 88.7% of the isolated bacteria were sensitive to chloramphenicol and 87% were sensitive to gentamycin, while all isolates were resistant to amoxicillin, 13% of E. coli isolates were found to be multidrug-resistant (MDR). The inhibitory zone of R. officinalis extract against E. coli ranged between 8 and 23 mm and for T. vulgaris extract ranged between 8 and 20 mm at concentrations between 25, 50, and 100 mg/ml. The MIC of both extracts against isolates is between 12.5 and 50 mg/ml, while the MBC is between 50 and 100 mg/ml. The DPPH radical scavenging potential of T. vulgaris was 83.09%, followed by R. officinalis (81.26%). The chemical analysis by GC-MS of R. officinalis showed that the most active compounds were: eucalyptol (18.57%), bicycloheptan (10.01%), and octahydrodibenz anthracene (7.44%) and for T. vulgaris the most active compounds were: thymol (5.7%), phytol (7.92%), and hexadecanoic acid (18.51%). R. officinalis and T. vulgaris ethanolic extracts possessed antimicrobial and antioxidant activities and were found to be rich natural sources of active constituents used as traditional medicine.
Collapse
Affiliation(s)
- Amel Ahmed Alrasheed
- Department of Microbiology, Faculty of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | - Ayat Ahmed Alrasheid
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medical Sciences and Technology, Khartoum, Sudan
| | - Wafaa Mohamed Abdalla
- Department of Microbiology, Faculty of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | - Samar Mohammed Saeed
- Department of Microbiology, Faculty of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | - Hind Haidar Ahmed
- Department of Microbiology, Faculty of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| |
Collapse
|
2
|
Zakrzewski A, Purkiewicz A, Jakuć P, Wiśniewski P, Sawicki T, Chajęcka-Wierzchowska W, Tańska M. Effectiveness of various solvent-produced thyme (Thymus vulgaris) extracts in inhibiting the growth of Listeria monocytogenes in frozen vegetables. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Hammoudi Halat D, Krayem M, Khaled S, Younes S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022; 14:2104. [PMID: 35631245 PMCID: PMC9147557 DOI: 10.3390/nu14102104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
A perennial wild shrub from the Lamiaceae family and native to the Mediterranean region, thyme is considered an important wild edible plant studied for centuries for its unique importance in the food, pharmaceutical, and cosmetic industry. Thyme is loaded with phytonutrients, minerals and vitamins. It is pungent in taste, yet rich in moisture, proteins, crude fiber, minerals and vitamins. Its chemical composition may vary with geographical location but is mainly composed of flavonoids and antioxidants. Previous studies have illustrated the therapeutic effects of thyme and its essential oils, especially thymol and carvacrol, against various diseases. This is attributed to its multi-pharmacological properties that include, but are not limited to, antioxidant, anti-inflammatory, and antineoplastic actions. Moreover, thyme has long been known for its antiviral, antibacterial, antifungal, and antiseptic activities, in addition to remarkable disruption of microbial biofilms. In the COVID-19 era, some thyme constituents were investigated for their potential in viral binding. As such, thyme presents a wide range of functional possibilities in food, drugs, and other fields and prominent interest as a nutraceutical. The aims of the current review are to present botanical and nutritive values of this herb, elaborate its major constituents, and review available literature on its dietetic and biological activities.
Collapse
Affiliation(s)
- Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon
| | - Maha Krayem
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Sanaa Khaled
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon;
| |
Collapse
|
4
|
Al-Radadi NS. Laboratory scale medicinal plants mediated green synthesis of biocompatible nanomaterials and their versatile biomedical applications. Saudi J Biol Sci 2022; 29:3848-3870. [PMID: 35844411 PMCID: PMC9280260 DOI: 10.1016/j.sjbs.2022.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
|
5
|
Hassan AH, Korany AM, Zeinhom MM, Mohamed DS, Abdel-Atty NS. Effect of chitosan-gelatin coating fortified with papaya leaves and thyme extract on quality and shelf life of chicken breast fillet and soft cheese during chilled storage. Int J Food Microbiol 2022; 371:109667. [DOI: 10.1016/j.ijfoodmicro.2022.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
6
|
Mahrye, Anwar F, Mehmood T, Qadir R, Riaz M. Phenolics profiling and biological activities of different solvent extracts from aerial parts of wild thyme (Thymus vulgaris L.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01185-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Vergun O, Svidenko L, Grygorieva O, Horčinová Sedláčková V, Fatrcová Šramková K, Ivanišová E, Brindza J. Polyphenol component and antioxidant activity of Thymus spp. POTRAVINARSTVO 2022. [DOI: 10.5219/1715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This scientific work was aimed to evaluate the antioxidant potential of aromatic plants of Thymus spp. in the East of Ukraine. These plants are known as medicinal and food around the world. All antioxidant parameters were investigated spectrophotometrically: total content of polyphenols (TPC), the total content of phenolic acids (TPAC), the total content of flavonoids (TFC), molybdenum reducing power of extracts (MRP), and antioxidant activity by DPPH method (DPPH). Investigation of ethanolic extracts demonstrated that TPC varied from 57.89 to 123.67 mg/g gallic acid equivalent (GAE) DW for Th. pulegioides, from 61.43 to 168.18 mg GAE/g for Th. serpyllum, and from 47.36 to 115.67 mg GAE/g for Th. vulgaris. TPAC ranged from 27.36 to 50.22 mg/g caffeic acid equivalent (CAE) DW for Th. pulegioides, from 28.58 to 59.62 mg CAE/g for Th. serpyllum, and from 22.95 to 53.82 mg CAE/g for Th. vulgaris. TFC was determined in a range from 29.88 to 61.23 mg/g quercetin equivalent (QE) DW for Th. pulegioides, from 36.0 to 82.43 mg QE/g for Th. serpyllum, and from 24.59 to 55.41 mg QE/g for Th. vulgaris. MRP was detected in the range of 94.65 – 204.76 mg/g Trolox equivalent (TE) DW for Th. pulegioides, 96.06 – 219.0 mg TE/g for Th. serpyllum, and 87.56 – 215.43 mg TE/g for Th. vulgaris. The antioxidant activity of extracts by the DPPH method was 6.34 – 9.23 mg TE/g for Th. pulegioides, 8.11 – 9.21 mg TE/g for Th. serpyllum, and 4.97 – 9.53 mg TE/g for Th. vulgaris. It was established that polyphenol accumulation depended on the growth stage and species. For all species was found a strong correlation between TPC and TFC (r=0.938, 0.908, and 0.854). Investigated Thymus spp. are a valuable source of antioxidants that can be used in pharmacological studies and the food industry.
Collapse
|
8
|
Abstract
Interest in the content of natural antioxidants in plant-based foods can be from the human health perspective, in terms of how these compounds might help promote one's health and wellness, or from the storage point-of-view, as the endogenous antioxidant constituents aid to extend a foodstuff's shelf-life. This chapter reports essential information about the mechanism of antioxidant action and methods employed for determination of their activity, classes of phenolic compounds (phenolic acids, flavonoids, lignans, stilbenes, tannins), sources of plant antioxidants (oil seeds, cereals, legumes, plants of the Lamiaceae family, tea and coffee, tree nuts, fruits, and berries), extraction strategies of phenolic compounds from plant material, and the influence of processing and storage on the content of natural antioxidants in foods and their antioxidant activity. Thermal processing, if not releasing bound phenolics from the structural matrices of the food, tends to decrease the antioxidant potential or, in the best case scenario, has no significant negative impact. Gentler sterilization processes such as high-pressure processing tend to better retain the antioxidant potential of a foodstuff than thermal treatments such as steaming, boiling, or frying. The impact of processing can be assessed by determining the antioxidant potential of foodstuffs either at the point of formulation or after different periods of storage under specified conditions.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, Athens, United States
| |
Collapse
|
9
|
Pan X, Wu S, Yan Y, Chen X, Guan J, Bao Y, Xiong X, Liu L. Rice bran polysaccharide-metal complexes showed safe antioxidant activity in vitro. Int J Biol Macromol 2019; 126:934-940. [DOI: 10.1016/j.ijbiomac.2018.12.265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 01/14/2023]
|