1
|
Bangel KA, Bais M, Eijsker N, Schuurman PR, van den Munckhof P, Figee M, Smit DJA, Denys D. Acute effects of deep brain stimulation on brain function in obsessive-compulsive disorder. Clin Neurophysiol 2023; 148:109-117. [PMID: 36774324 DOI: 10.1016/j.clinph.2022.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an effective treatment for refractory obsessive-compulsive disorder (OCD) yet neural markers of optimized stimulation parameters are largely unknown. We aimed to describe (sub-)cortical electrophysiological responses to acute DBS at various voltages in OCD. METHODS We explored how DBS doses between 3-5 V delivered to the ventral anterior limb of the internal capsule of five OCD patients affected electroencephalograms and intracranial local field potentials (LFPs). We focused on theta power/ phase-stability, given their previously established role in DBS for OCD. RESULTS Cortical theta power and theta phase-stability did not increase significantly with DBS voltage. DBS-induced theta power peaks were seen at the previously defined individualized therapeutic voltage. Although LFP power generally increased with DBS voltages, this occurred mostly in frequency peaks that overlapped with stimulation artifacts limiting its interpretability. Though highly idiosyncratic, three subjects showed significant acute DBS effects on electroencephalogram theta power and four subjects showed significant carry-over effects (pre-vs post DBS, unstimulated) on LFP and electroencephalogram theta power. CONCLUSIONS Our findings challenge the presence of a consistent dose-response relationship between stimulation voltage and brain activity. SIGNIFICANCE Theta power may be investigated further as a neurophysiological marker to aid personalized DBS voltage optimization in OCD.
Collapse
Affiliation(s)
- Katrin A Bangel
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Institute of Neuroscience, The Medical School, Newcastle University, NE2 4HH, UK; Department of Medical Physics and Clinical Engineering, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Melisse Bais
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Nadine Eijsker
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - P Richard Schuurman
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Pepijn van den Munckhof
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Martijn Figee
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Dirk J A Smit
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| | - Damiaan Denys
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands; The Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Szechtman H, Ahmari SE, Beninger RJ, Eilam D, Harvey BH, Edemann-Callesen H, Winter C. Obsessive-compulsive disorder: Insights from animal models. Neurosci Biobehav Rev 2017; 76:254-279. [PMID: 27168347 PMCID: PMC5833926 DOI: 10.1016/j.neubiorev.2016.04.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 01/15/2023]
Abstract
Research with animal models of obsessive-compulsive disorder (OCD) shows the following: (1) Optogenetic studies in mice provide evidence for a plausible cause-effect relation between increased activity in cortico-basal ganglia-thalamo-cortical (CBGTC) circuits and OCD by demonstrating the induction of compulsive behavior with the experimental manipulation of the CBGTC circuit. (2) Parallel use of several animal models is a fruitful paradigm to examine the mechanisms of treatment effects of deep brain stimulation in distinct OCD endophenotypes. (3) Features of spontaneous behavior in deer mice constitute a rich platform to investigate the neurobiology of OCD, social ramifications of a compulsive phenotype, and test novel drugs. (4) Studies in animal models for psychiatric disorders comorbid with OCD suggest comorbidity may involve shared neural circuits controlling expression of compulsive behavior. (5) Analysis of compulsive behavior into its constitutive components provides evidence from an animal model for a motivational perspective on OCD. (6) Methods of behavioral analysis in an animal model translate to dissection of compulsive rituals in OCD patients, leading to diagnostic tests.
Collapse
Affiliation(s)
- Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Susanne E Ahmari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Richard J Beninger
- Departments of Psychology and Psychiatry, Queen's University, Kingston, ON, Canada.
| | - David Eilam
- Department of Zoology, Tel-Aviv University, Ramat-Aviv 69978, Israel.
| | - Brian H Harvey
- MRC Unit on Anxiety and Stress Disorders, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa.
| | - Henriette Edemann-Callesen
- Bereich Experimentelle Psychiatrie, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany.
| | - Christine Winter
- Bereich Experimentelle Psychiatrie, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Mantione M, Nieman DH, Figee M, Denys D. Cognitive-behavioural therapy augments the effects of deep brain stimulation in obsessive-compulsive disorder. Psychol Med 2014; 44:3515-3522. [PMID: 25065708 DOI: 10.1017/s0033291714000956] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising new treatment for patients with treatment-refractory obsessive-compulsive disorder (OCD). However, since most DBS patients only show a partial response, the treatment still needs to be improved. In this study we hypothesized that cognitive-behavioural therapy (CBT) could optimize the post-operative management in DBS and we evaluated the efficacy of CBT as augmentation to DBS targeted at the nucleus accumbens. METHOD A total of 16 patients with treatment-refractory OCD were treated with DBS targeted at the nucleus accumbens. After stabilization of decline in OCD symptoms, a standardized 24-week CBT treatment programme was added to DBS in an open-phase trial of 8 months. Changes in obsessive-compulsive, anxiety and depressive symptoms were evaluated using the Yale-Brown Obsessive Compulsive Scale, Hamilton Anxiety Scale and Hamilton Rating Scale for Depression. RESULTS Following the addition of CBT to DBS, a significant decrease in obsessive-compulsive symptoms was observed, but not in anxiety and depressive symptoms. In a subsequent double-blind phase, in which stimulation was discontinued, OCD symptoms returned to baseline (relapse) and anxiety and depressive symptoms worsened (rebound) compared with baseline. CONCLUSIONS The results of this explorative study suggest that a combined treatment of accumbens DBS and CBT may be optimal for improving obsessive-compulsive symptoms in treatment-refractory OCD. However, a subsequent randomized controlled trial is necessary to draw firm conclusions. It seems that DBS results in affective changes that may be required to enable response prevention in CBT. This may indicate that DBS and CBT act as two complementary treatments.
Collapse
Affiliation(s)
- M Mantione
- Department of Psychiatry, Academic Medical Center,University of Amsterdam,Amsterdam,The Netherlands
| | - D H Nieman
- Department of Psychiatry, Academic Medical Center,University of Amsterdam,Amsterdam,The Netherlands
| | - M Figee
- Department of Psychiatry, Academic Medical Center,University of Amsterdam,Amsterdam,The Netherlands
| | - D Denys
- Department of Psychiatry, Academic Medical Center,University of Amsterdam,Amsterdam,The Netherlands
| |
Collapse
|