1
|
Sun J, Akıllıoğlu HG, Zhong J, Muk T, Pan X, Lund MN, Sangild PT, Nguyen DN, Bering SB. Ultra-High Temperature Treatment of Liquid Infant Formula, Systemic Immunity, and Kidney Development in Preterm Neonates. Mol Nutr Food Res 2023; 67:e2300318. [PMID: 37888862 DOI: 10.1002/mnfr.202300318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Indexed: 10/28/2023]
Abstract
SCOPE Ready-to-feed liquid infant formulas (IFs) are increasingly being used for newborn preterm infants when human milk is unavailable. However, sterilization of liquid IFs by ultra-high temperature (UHT) introduces Maillard reaction products (MRPs) that may negatively affect systemic immune and kidney development. METHODS AND RESULTS UHT-treated IF without and with prolonged storage (SUHT) are tested against pasteurized IF (PAST) in newborn preterm pigs as a model for preterm infants. After 5 days, blood leukocytes, markers of systemic immunity and inflammation, kidney structure and function are evaluated. No consistent differences between UHT and PAST pigs are observed. However, SUHT increases plasma TNFα and IL-6 and reduces neutrophils and in vitro response to LPS. In SUHT pigs, the immature kidneys show minor upregulation of gene expressions related to inflammation (RAGE, MPO, MMP9) and oxidative stress (CAT, GLO1), together with glomerular mesangial expansion and cell injury. The increased inflammatory status in SUHT pigs appears unrelated to systemic levels of MRPs. CONCLUSION SUHT feeding may impair systemic immunity and affect kidney development in preterm newborns. The systemic effects may be induced by local gut inflammatory effects of MRPs. Optimal processing and length of storage are critical for UHT-treated liquid IFs for preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | | | - Jingren Zhong
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Tik Muk
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Marianne Nissen Lund
- Department of Food Science, University of Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
- Hans Christian Andersen Children's Hospital, Odense, Denmark
- Department of Neonatology, Rigshospitalet, Denmark
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Stine Brandt Bering
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| |
Collapse
|
2
|
Wang W, Bale S, Yalavarthi B, Verma P, Tsou PS, Calderone KM, Bhattacharyya D, Fisher GJ, Varga J, Bhattacharyya S. Deficiency of inhibitory TLR4 homolog RP105 exacerbates fibrosis. JCI Insight 2022; 7:e160684. [PMID: 36136452 PMCID: PMC9675479 DOI: 10.1172/jci.insight.160684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Activation of TLR4 by its cognate damage-associated molecular patterns (DAMPs) elicits potent profibrotic effects and myofibroblast activation in systemic sclerosis (SSc), while genetic targeting of TLR4 or its DAMPs in mice accelerates fibrosis resolution. To prevent aberrant DAMP/TLR4 activity, a variety of negative regulators evolved to dampen the magnitude and duration of the signaling. These include radioprotective 105 kDa (RP105), a transmembrane TLR4 homolog that competitively inhibits DAMP recognition of TLR4, blocking TLR4 signaling in immune cells. The role of RP105 in TLR4-dependent fibrotic responses in SSc is unknown. Using unbiased transcriptome analysis of skin biopsies, we found that levels of both TLR4 and its adaptor protein MD2 were elevated in SSc skin and significantly correlated with each other. Expression of RP105 was negatively associated with myofibroblast differentiation in SSc. Importantly, RP105-TLR4 association was reduced, whereas TLR4-TLR4 showed strong association in fibroblasts from patients with SSc, as evidenced by PLA assays. Moreover, RP105 adaptor MD1 expression was significantly reduced in SSc skin biopsies and explanted SSc skin fibroblasts. Exogenous RP105-MD1 abrogated, while loss of RP105 exaggerated, fibrotic cellular responses. Importantly, ablation of RP105 in mice was associated with augmented TLR4 signaling and aggravated skin fibrosis in complementary disease models. Thus, we believe RP105-MD1 to be a novel cell-intrinsic negative regulator of TLR4-MD2-driven sustained fibroblast activation, representing a critical regulatory network governing the fibrotic process. Impaired RP105 function in SSc might contribute to persistence of progression of the disease.
Collapse
Affiliation(s)
- Wenxia Wang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Swarna Bale
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Pei-Suen Tsou
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Ken M. Calderone
- Derpartment of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dibyendu Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Gary J. Fisher
- Derpartment of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| |
Collapse
|
3
|
Wang W, Bale S, Wei J, Yalavarthi B, Bhattacharyya D, Yan JJ, Abdala-Valencia H, Xu D, Sun H, Marangoni RG, Herzog E, Berdnikovs S, Miller SD, Sawalha AH, Tsou PS, Awaji K, Yamashita T, Sato S, Asano Y, Tiruppathi C, Yeldandi A, Schock BC, Bhattacharyya S, Varga J. Fibroblast A20 governs fibrosis susceptibility and its repression by DREAM promotes fibrosis in multiple organs. Nat Commun 2022; 13:6358. [PMID: 36289219 PMCID: PMC9606375 DOI: 10.1038/s41467-022-33767-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
In addition to autoimmune and inflammatory diseases, variants of the TNFAIP3 gene encoding the ubiquitin-editing enzyme A20 are also associated with fibrosis in systemic sclerosis (SSc). However, it remains unclear how genetic factors contribute to SSc pathogenesis, and which cell types drive the disease due to SSc-specific genetic alterations. We therefore characterize the expression, function, and role of A20, and its negative transcriptional regulator DREAM, in patients with SSc and disease models. Levels of A20 are significantly reduced in SSc skin and lungs, while DREAM is elevated. In isolated fibroblasts, A20 mitigates ex vivo profibrotic responses. Mice haploinsufficient for A20, or harboring fibroblasts-specific A20 deletion, recapitulate major pathological features of SSc, whereas DREAM-null mice with elevated A20 expression are protected. In DREAM-null fibroblasts, TGF-β induces the expression of A20, compared to wild-type fibroblasts. An anti-fibrotic small molecule targeting cellular adiponectin receptors stimulates A20 expression in vitro in wild-type but not A20-deficient fibroblasts and in bleomycin-treated mice. Thus, A20 has a novel cell-intrinsic function in restraining fibroblast activation, and together with DREAM, constitutes a critical regulatory network governing the fibrotic process in SSc. A20 and DREAM represent novel druggable targets for fibrosis therapy.
Collapse
Affiliation(s)
- Wenxia Wang
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Swarna Bale
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jun Wei
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dibyendu Bhattacharyya
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jing Jing Yan
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dan Xu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hanshi Sun
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roberta G Marangoni
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Erica Herzog
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Amr H Sawalha
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pei-Suen Tsou
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Anjana Yeldandi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bettina C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Swati Bhattacharyya
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA.
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - John Varga
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA.
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Suriguga S, Li M, Luangmonkong T, Boersema M, de Jong KP, Oosterhuis D, Gorter AR, Beljaars L, Olinga P. Distinct responses between healthy and cirrhotic human livers upon lipopolysaccharide challenge: possible implications for acute-on-chronic liver failure. Am J Physiol Gastrointest Liver Physiol 2022; 323:G114-G125. [PMID: 35727919 DOI: 10.1152/ajpgi.00243.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Patients with acute-on-chronic liver failure (ACLF) are at risk of developing acute hepatic decompensation and organ failures with an unraveled complex mechanism. An altered immune response toward insults in cirrhotic compared with healthy livers may contribute to the ACLF development. Therefore, we aim to investigate the differences in inflammatory responses between cirrhotic and healthy livers using human precision-cut liver slices (PCLSs) upon the lipopolysaccharide (LPS) challenge. PCLSs prepared from livers of patients with cirrhosis or healthy donors of liver transplantation were incubated ex vivo with or without LPS for up to 48 h. Viability test, qRT-PCR, and multiplex cytokine assay were performed. Regulation of the LPS receptors during incubation or with LPS challenge differed between healthy versus cirrhotic PCLSs. LPS upregulated TLR-2 in healthy PCLSs solely (P < 0.01). Culturing for 48 h induced a stronger inflammatory response in the cirrhotic than healthy PCLS. Upon LPS stimulation, cirrhotic PCLSs secreted more proinflammatory cytokines (IL-8, IL-6, TNF-α, eotaxin, and VEGF) significantly and less anti-inflammatory cytokine (IL-1ra) than those of healthy. In summary, cirrhotic PCLSs released more proinflammatory and less anti-inflammatory cytokines after LPS stimuli than healthy, leading to dysregulated inflammatory response. These events could possibly resemble the liver immune response in ACLF.NEW & NOTEWORTHY Precision-cut liver slices (PCLSs) model provides a unique platform to investigate the different immune responses of healthy versus cirrhotic livers in humans. Our data show that cirrhotic PCLSs exhibit excessive inflammatory response accompanied by a lower anti-inflammatory cytokine release in response to LPS; a better understanding of this alteration may guide the novel therapeutic approaches to mitigate the excessive inflammation during the onset of acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Su Suriguga
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.,Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Mei Li
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Theerut Luangmonkong
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Miriam Boersema
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Koert P de Jong
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dorenda Oosterhuis
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - A R Gorter
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Leonie Beljaars
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|