1
|
Nanotechnology-Based RNA Vaccines: Fundamentals, Advantages and Challenges. Pharmaceutics 2023; 15:pharmaceutics15010194. [PMID: 36678823 PMCID: PMC9864317 DOI: 10.3390/pharmaceutics15010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Over the past decades, many drugs based on the use of nanotechnology and nucleic acids have been developed. However, until recently, most of them remained at the stage of pre-clinical development and testing and did not find their way to the clinic. In our opinion, the main reason for this situation lies in the enormous complexity of the development and industrial production of such formulations leading to their high cost. The development of nanotechnology-based drugs requires the participation of scientists from many and completely different specialties including Pharmaceutical Sciences, Medicine, Engineering, Drug Delivery, Chemistry, Molecular Biology, Physiology and so on. Nevertheless, emergence of coronavirus and new vaccines based on nanotechnology has shown the high efficiency of this approach. Effective development of vaccines based on the use of nucleic acids and nanomedicine requires an understanding of a wide range of principles including mechanisms of immune responses, nucleic acid functions, nanotechnology and vaccinations. In this regard, the purpose of the current review is to recall the basic principles of the work of the immune system, vaccination, nanotechnology and drug delivery in terms of the development and production of vaccines based on both nanotechnology and the use of nucleic acids.
Collapse
|
2
|
Ranamalla SR, Porfire AS, Tomuță I, Banciu M. An Overview of the Supramolecular Systems for Gene and Drug Delivery in Tissue Regeneration. Pharmaceutics 2022; 14:pharmaceutics14081733. [PMID: 36015356 PMCID: PMC9412871 DOI: 10.3390/pharmaceutics14081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue regeneration is a prominent area of research, developing biomaterials aimed to be tunable, mechanistic scaffolds that mimic the physiological environment of the tissue. These biomaterials are projected to effectively possess similar chemical and biological properties, while at the same time are required to be safely and quickly degradable in the body once the desired restoration is achieved. Supramolecular systems composed of reversible, non-covalently connected, self-assembly units that respond to biological stimuli and signal cells have efficiently been developed as preferred biomaterials. Their biocompatibility and the ability to engineer the functionality have led to promising results in regenerative therapy. This review was intended to illuminate those who wish to envisage the niche translational research in regenerative therapy by summarizing the various explored types, chemistry, mechanisms, stimuli receptivity, and other advancements of supramolecular systems.
Collapse
Affiliation(s)
- Saketh Reddy Ranamalla
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence:
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Polańska Ż, Pietralik-Molińska Z, Wojciechowska D, Moliński A, Weiss M, Skrzypczak A, Kozak M. The Process of Binding and Releasing of Genetic Material from Lipoplexes Based on Trimeric Surfactants and Phospholipids. Int J Mol Sci 2021; 22:7744. [PMID: 34299360 PMCID: PMC8303235 DOI: 10.3390/ijms22147744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nonviral vectors for gene therapy such as lipoplexes are characterized by low toxicity, high biocompatibility, and good transfection efficiency. Specifically, lipoplexes based on polymeric surfactants and phospholipids have great potential as gene carriers due to the increased ability to bind genetic material (multiplied positive electric charge) while lowering undesirable effects (the presence of lipids makes the system more like natural membranes). This study aimed to test the ability to bind and release genetic material by lipoplexes based on trimeric surfactants and lipid formulations of different compositions and to characterize formed complexes by circular dichroism (CD) spectroscopy and atomic force microscopy (AFM). The cytotoxicity of studied lipoplexes was tested on HeLa cells by the MTT cell viability assay and the dye exclusion test (trypan blue). The presence of lipids in the system lowered the surfactant concentration required for complexation (higher efficiency) and reduced the cytotoxicity of lipoplexes. Surfactant/lipids/DNA complexes were more stable than surfactant/DNA complexes. Surfactant molecules induced the genetic material condensation, but the presence of lipids significantly intensified this process. Systems based on trimeric surfactants and lipid formulations, particularly TRI_N and TRI_IMI systems, could be used as delivery carrier, and have proven to be highly effective, nontoxic, and universal for DNA of various lengths.
Collapse
Affiliation(s)
- Żaneta Polańska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (Ż.P.); (Z.P.-M.); (D.W.); (A.M.)
| | - Zuzanna Pietralik-Molińska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (Ż.P.); (Z.P.-M.); (D.W.); (A.M.)
| | - Daria Wojciechowska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (Ż.P.); (Z.P.-M.); (D.W.); (A.M.)
| | - Augustyn Moliński
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (Ż.P.); (Z.P.-M.); (D.W.); (A.M.)
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Pastowskiej 3, 61-614 Poznań, Poland
| | - Marek Weiss
- Faculty of Materials Engineering and Technical Physics, Institute of Physics, Poznań University of Technology, Piotrowo 3, 60-965 Poznań, Poland;
| | - Andrzej Skrzypczak
- Faculty of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (Ż.P.); (Z.P.-M.); (D.W.); (A.M.)
| |
Collapse
|
4
|
Ponti F, Campolungo M, Melchiori C, Bono N, Candiani G. Cationic lipids for gene delivery: many players, one goal. Chem Phys Lipids 2021; 235:105032. [PMID: 33359210 DOI: 10.1016/j.chemphyslip.2020.105032] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Lipid-based carriers represent the most widely used alternative to viral vectors for gene expression and gene silencing purposes. This class of non-viral vectors is particularly attractive for their ease of synthesis and chemical modifications to endow them with desirable properties. Despite combinatorial approaches have led to the generation of a large number of cationic lipids displaying different supramolecular structures and improved behavior, additional effort is needed towards the development of more and more effective cationic lipids for transfection purposes. With this review, we seek to highlight the great progress made in the design of each and every constituent domain of cationic lipids, that is, the chemical structure of the headgroup, linker and hydrophobic moieties, and on the specific effect on the assembly with nucleic acids. Since the complexity of such systems is known to affect their performances, the role of formulation, stability and phase behavior on the transfection efficiency of such assemblies will be thoroughly discussed. Our objective is to provide a conceptual framework for the development of ever more performing lipid gene delivery vectors.
Collapse
Affiliation(s)
- Federica Ponti
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy; Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Dept. Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Matilde Campolungo
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Clara Melchiori
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Nina Bono
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Gabriele Candiani
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| |
Collapse
|
5
|
Husteden C, Doberenz F, Goergen N, Pinnapireddy SR, Janich C, Langner A, Syrowatka F, Repanas A, Erdmann F, Jedelská J, Bakowsky U, Groth T, Wölk C. Contact-Triggered Lipofection from Multilayer Films Designed as Surfaces for in Situ Transfection Strategies in Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8963-8977. [PMID: 32003972 DOI: 10.1021/acsami.9b18968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomaterials, which release active compounds after implantation, are an essential tool for targeted regenerative medicine. In this study, thin multilayer films loaded with lipid/DNA complexes (lipoplexes) were designed as surface coatings for in situ transfection applicable in tissue engineering and regenerative medicine. The film production and embedding of lipoplexes were based on the layer-by-layer (LbL) deposition technique. Hyaluronic acid (HA) and chitosan (CHI) were used as the polyelectrolyte components. The embedded plasmid DNA was complexed using a new designed cationic lipid formulation, namely, OH4/DOPE 1/1, the advantageous characteristics of which have been proven already. Three different methods were tested regarding its efficiency of lipid and DNA deposition. Therefore, several surface specific analytics were used to characterize the LbL formation, the lipid DNA embedding, and the surface characteristics of the multilayer films, such as fluorescence microscopy, surface plasmon resonance spectroscopy, ellipsometry, zeta potential measurements, atomic force microscopy, and scanning electron microscopy. Interaction studies were conducted for optimized lipoplex-loaded polyelectrolyte multilayers (PEMs) that showed an efficient attachment of C2C12 cells on the surface. Furthermore, no acute toxic effects were found in cell culture studies, demonstrating biocompatibility. Cell culture experiments with C2C12 cells, a cell line which is hard to transfect, demonstrated efficient transfection of the reporter gene encoding for green fluorescent protein. In vivo experiments using the chicken embryo chorion allantois membrane animal replacement model showed efficient gene-transferring rates in living complex tissues, although the DNA-loaded films were stored over 6 days under wet and dried conditions. Based on these findings, it can be concluded that OH4/DOPE 1/1 lipoplex-loaded PEMs composed of HA and CHI can be an efficient tool for in situ transfection in regenerative medicine.
Collapse
Affiliation(s)
- Catharina Husteden
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Falko Doberenz
- Institute of Pharmacy, Department Biomedical Materials , Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
| | - Nathalie Goergen
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Christopher Janich
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Andreas Langner
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Frank Syrowatka
- Interdisciplinary Center of Materials Science , Martin-Luther-University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
| | - Alexandros Repanas
- Institute of Pharmacy, Department Biomedical Materials , Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
| | - Frank Erdmann
- Institute of Pharmacy, Department of Pharmacology , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Thomas Groth
- Institute of Pharmacy, Department Biomedical Materials , Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
- Interdisciplinary Center of Materials Science , Martin-Luther-University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering , I.M. Sechenov First Moscow State University , Trubetskaya Street 8 , 119991 Moscow , Russian Federation
| | - Christian Wölk
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine , Leipzig University , 04317 Leipzig , Germany
| |
Collapse
|
6
|
Ni R, Feng R, Chau Y. Synthetic Approaches for Nucleic Acid Delivery: Choosing the Right Carriers. Life (Basel) 2019; 9:E59. [PMID: 31324016 PMCID: PMC6789897 DOI: 10.3390/life9030059] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the genetic roots of various human diseases has motivated the exploration of different exogenous nucleic acids as therapeutic agents to treat these genetic disorders (inherited or acquired). However, the physicochemical properties of nucleic acids render them liable to degradation and also restrict their cellular entrance and gene translation/inhibition at the correct cellular location. Therefore, gene condensation/protection and guided intracellular trafficking are necessary for exogenous nucleic acids to function inside cells. Diversified cationic formulation materials, including natural and synthetic lipids, polymers, and proteins/peptides, have been developed to facilitate the intracellular transportation of exogenous nucleic acids. The chemical properties of different formulation materials determine their special features for nucleic acid delivery, so understanding the property-function correlation of the formulation materials will inspire the development of next-generation gene delivery carriers. Therefore, in this review, we focus on the chemical properties of different types of formulation materials and discuss how these formulation materials function as protectors and cellular pathfinders for nucleic acids, bringing them to their destination by overcoming different cellular barriers.
Collapse
Affiliation(s)
- Rong Ni
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute for Advanced Study, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ruilu Feng
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
7
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
8
|
Rasoulianboroujeni M, Kupgan G, Moghadam F, Tahriri M, Boughdachi A, Khoshkenar P, Ambrose J, Kiaie N, Vashaee D, Ramsey J, Tayebi L. Development of a DNA-liposome complex for gene delivery applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:191-197. [DOI: 10.1016/j.msec.2017.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/17/2016] [Accepted: 02/06/2017] [Indexed: 01/22/2023]
|