1
|
Ortiz Moyano R, Dentice Maidana S, Imamura Y, Elean M, Namai F, Suda Y, Nishiyama K, Melnikov V, Kitazawa H, Villena J. Antagonistic Effects of Corynebacterium pseudodiphtheriticum 090104 on Respiratory Pathogens. Microorganisms 2024; 12:1295. [PMID: 39065064 PMCID: PMC11278748 DOI: 10.3390/microorganisms12071295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In previous studies, it was demonstrated that Corynebacterium pseudodiphtheriticum 090104, isolated from the human nasopharynx, modulates respiratory immunity, improving protection against infections. Here, the antagonistic effect of the 090104 strain on respiratory pathogens, including Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, was explored. In a series of in vitro studies, the capacity of C. pseudodiphtheriticum 090104, its bacterium-like particles, and its culture supernatants to coaggregate, inhibit the growth, and change the virulent phenotype of pathogenic bacteria was evaluated. The results showed that the 090104 strain was able to exert a bacteriostatic effect on K. pneumoniae and S. pneumoniae growth. In addition, C. pseudodiphtheriticum 090104 coaggregated, inhibited biofilm formation, and induced phenotypic changes in all the respiratory pathogens evaluated. In conclusion, this work demonstrated that, in addition to its beneficial effects exerted by host-microbe interactions, C. pseudodiphtheriticum 090104 can enhance protection against respiratory pathogens through its microbe-microbe interactions. The mechanisms involved in such interactions should be evaluated in future research.
Collapse
Affiliation(s)
- Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
| |
Collapse
|
2
|
Huffines JT, Boone RL, Kiedrowski MR. Temperature influences commensal-pathogen dynamics in a nasal epithelial cell co-culture model. mSphere 2024; 9:e0058923. [PMID: 38179905 PMCID: PMC10826359 DOI: 10.1128/msphere.00589-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Chronic rhinosinusitis (CRS) is an inflammatory disease of the paranasal sinuses, and microbial dysbiosis associated with CRS is thought to be a key driver of host inflammation that contributes to disease progression. Staphylococcus aureus is a common upper respiratory tract (URT) pathobiont associated with higher carriage rates in CRS populations, where S. aureus-secreted toxins can be identified in CRS tissues. Although many genera of bacteria colonize the URT, few account for the majority of sequencing reads. These include S. aureus and several species belonging to the genus Corynebacterium, including Corynebacterium propinquum and Corynebacterium pseudodiphtheriticum, which are observed at high relative abundance in the healthy URT. Studies have examined bacterial interactions between major microbionts of the URT and S. aureus, but few have done so in the context of a healthy versus diseased URT environment. Here, we examine the role of temperature in commensal, pathogen, and epithelial dynamics using an air-liquid interface cell culture model mimicking the nasal epithelial environment. Healthy URT temperatures change from the nares to the nasopharynx and are increased during disease. Temperatures representative of the healthy URT increase persistence and aggregate formation of commensal C. propinquum and C. pseudodiphtheriticum, reduce S. aureus growth, and lower epithelial cytotoxicity compared to higher temperatures correlating with the diseased CRS sinus. Dual-species colonization revealed species-specific interactions between Corynebacterium species and S. aureus dependent on temperature. Our findings suggest URT mucosal temperature plays a significant role in mediating polymicrobial and host-bacterial interactions that may exacerbate microbial dysbiosis in chronic URT diseases.IMPORTANCEChronic rhinosinusitis is a complex inflammatory disease with a significant healthcare burden. Although presence of S. aureus and microbial dysbiosis are considered mediators of inflammation in CRS, no studies have examined the influence of temperature on S. aureus interactions with the nasal epithelium and the dominant genus of the healthy URT, Corynebacterium. Interactions between Corynebacterium species and S. aureus have been documented in several studies, but none to date have examined how environmental changes in the URT may alter their interactions with the epithelium or each other. This study utilizes a polarized epithelial cell culture model at air-liquid interface to study the colonization and spatial dynamics of S. aureus and clinical isolates of Corynebacterium from people with CRS to characterize the role temperature has in single- and dual-species dynamics on the nasal epithelium.
Collapse
Affiliation(s)
- Joshua T. Huffines
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - RaNashia L. Boone
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Megan R. Kiedrowski
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Li Z, Gu M, Sun H, Chen X, Zhou J, Zhang Y. The Potential of Gut Microbiota in Prediction of Stroke-Associated Pneumonia. Brain Sci 2023; 13:1217. [PMID: 37626573 PMCID: PMC10452830 DOI: 10.3390/brainsci13081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Stroke-associated pneumonia (SAP) is a common stroke complication, and the changes in the gut microbiota composition may play a role. Our study aimed to evaluate the predictive ability of gut microbiota for SAP. METHODS Acute ischemic stroke patients were prospectively enrolled and divided into two groups based on the presence or absence of SAP. The composition of gut microbiota was characterized by the 16S RNA Miseq sequencing. The gut microbiota that differed significantly between groups were incorporated into the conventional risk scores, the Acute Ischemic Stroke-Associated Pneumonia Score (AIS-APS), and the Age, Atrial fibrillation, Dysphagia, Sex, Stroke Severity Score (A2DS2). The predictive performances were assessed in terms of the area under the curve (AUC), the Net Reclassification Improvement (NRI), and the Integrated Discrimination Improvement (IDI) indices. RESULTS A total of 135 patients were enrolled, of whom 43 had SAP (31%). The short-chain fatty acids (SCFAs)-producing bacteria, such as Bacteroides, Fusicatenibacter, and Butyricicoccus, were decreased in the SAP group. The integrated models showed better predictive ability for SAP (AUC = 0.813, NRI = 0.333, p = 0.052, IDI = 0.038, p = 0.018, for AIS-APS; AUC = 0.816, NRI = 0.575, p < 0.001, IDI = 0.043, p = 0.007, for A2DS2) in comparison to the differential genera (AUC = 0.699) and each predictive score (AUCAISAPS = 0.777; AUCA2DS2 = 0.777). CONCLUSIONS The lower abundance of SCFAs-producing gut microbiota after acute ischemic stroke was associated with SAP and may play a role in SAP prediction.
Collapse
Affiliation(s)
- Zhongyuan Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing 210006, China; (Z.L.); (X.C.)
| | - Mengmeng Gu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing 210006, China; (Z.L.); (X.C.)
| | - Huanhuan Sun
- Department of Neurology, Nanjing Yuhua Hospital, Nanjing 210039, China
| | - Xiangliang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing 210006, China; (Z.L.); (X.C.)
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing 210006, China; (Z.L.); (X.C.)
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing 210006, China; (Z.L.); (X.C.)
| |
Collapse
|
4
|
Griffin ME, Klupt S, Espinosa J, Hang HC. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chem Biol 2023; 30:436-456. [PMID: 36417916 PMCID: PMC10192474 DOI: 10.1016/j.chembiol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall is composed of a highly crosslinked matrix of glycopeptide polymers known as peptidoglycan that dictates bacterial cell morphology and protects against environmental stresses. Regulation of peptidoglycan turnover is therefore crucial for bacterial survival and growth and is mediated by key protein complexes and enzyme families. Here, we review the prevalence, structure, and activity of NlpC/P60 peptidases, a family of peptidoglycan hydrolases that are crucial for cell wall turnover and division as well as interactions with antibiotics and different hosts. Understanding the molecular functions of NlpC/P60 peptidases should provide important insight into bacterial physiology, their interactions with different kingdoms of life, and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
de Oliveira Sant’Anna L, Cappelli EA, Batista Araújo MR, Ramos JN, Simpson-Lourêdo L, Cucinelli ADES, Pereira Baio PV, Vieira VV, Sanches dos Santos L, Mattos-Guaraldi AL. Virulence potential of the first Corynebacterium mycetoides strain isolated from human urine: a rare species of Corynebacterium. Microbes Infect 2022; 24:105001. [DOI: 10.1016/j.micinf.2022.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 10/31/2022]
|
6
|
Ott L, Möller J, Burkovski A. Interactions between the Re-Emerging Pathogen Corynebacterium diphtheriae and Host Cells. Int J Mol Sci 2022; 23:3298. [PMID: 35328715 PMCID: PMC8952647 DOI: 10.3390/ijms23063298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
Corynebacterium diphtheriae, the etiological agent of diphtheria, is a re-emerging pathogen, responsible for several thousand deaths per year. In addition to diphtheria, systemic infections, often by non-toxigenic strains, are increasingly observed. This indicates that besides the well-studied and highly potent diphtheria toxin, various other virulence factors may influence the progression of the infection. This review focuses on the known components of C. diphtheriae responsible for adhesion, invasion, inflammation, and cell death, as well as on the cellular signaling pathways activated upon infection.
Collapse
Affiliation(s)
- Lisa Ott
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Jens Möller
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Andreas Burkovski
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
7
|
Cappelli EA, do Espírito Santo Cucinelli A, Simpson-Louredo L, Canellas MEF, Antunes CA, Burkovski A, da Silva JFR, Mattos-Guaraldi AL, Saliba AM, dos Santos LS. Insights of OxyR role in mechanisms of host-pathogen interaction of Corynebacterium diphtheriae. Braz J Microbiol 2022; 53:583-594. [PMID: 35169995 PMCID: PMC9151940 DOI: 10.1007/s42770-022-00710-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Corynebacterium diphtheriae, the leading causing agent of diphtheria, has been increasingly related to invasive diseases, including sepsis, endocarditis, pneumonia, and osteomyelitis. Oxidative stress defense is required not only for successful growth and survival under environmental conditions but also in the regulation of virulence mechanisms of human pathogenic species, by promoting mucosal colonization, survival, dissemination, and defense against the innate immune system. OxyR, functioning as a negative and/or positive transcriptional regulator, has been included among the major bacterial coordinators of antioxidant response. OxyR was first reported as a repressor of catalase expression in C. diphtheriae. However, the involvement of OxyR in C. diphtheriae pathogenesis remains unclear. Accordingly, this work aimed to investigate the role of OxyR in mechanisms of host-pathogen interaction of C. diphtheriae through the disruption of the OxyR of the diphtheria toxin (DT)-producing C. diphtheriae CDC-E8392 strain. The effects of OxyR gene disruption were analyzed through interaction assays with human epithelial cell lines (HEp-2 and pneumocytes A549) and by the induction of experimental infections in Caenorhabditis elegans nematodes and Swiss Webster mice. The OxyR disruption exerted influence on NO production and mechanism accountable for the expression of the aggregative-adherence pattern (AA) expressed by CDC-E8392 strain on human epithelial HEp-2 cells. Moreover, invasive potential and intracytoplasmic survival within HEp-2 cells, as well as the arthritogenic potential in mice, were found affected by the OxyR disruption. In conclusion, data suggest that OxyR is implicated in mechanisms of host-pathogen interaction of C. diphtheriae.
Collapse
Affiliation(s)
- Elisabete Alves Cappelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andrezza do Espírito Santo Cucinelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Liliane Simpson-Louredo
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Maria Eurydice Freire Canellas
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Camila Azevedo Antunes
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil ,grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Burkovski
- grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jemima Fuentes Ribeiro da Silva
- grid.412211.50000 0004 4687 5267Department of Histology and Embryology, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Luíza Mattos-Guaraldi
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alessandra Mattos Saliba
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Louisy Sanches dos Santos
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Limosilactobacillus fermentum SWP-AFFS02 Improves the Growth and Survival Rate of White Shrimp via Regulating Immunity and Intestinal Microbiota. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
White shrimp Litopenaeus vannamei is an important species of farmed shrimp. Intestinal bacterial composition and immune activity play important roles in regulating the health condition of shrimp. Lactic acid bacteria Limosilactobacillus fermentum SWP-AFFS02 was isolated from the intestine of sea fish Rachycentron canadum, and the potential of its effect on growth, immunity, and intestinal microbiota of L. vannamei shrimp was investigated. Shrimps received feed with or without the addition of 8 log CFU/g L. fermentum SWP-AFFS02 thrice a day for 8 weeks. After 8-week treatment, weight gain, feed conversion rate, and survival rate of shrimp were greater in the L. fermentum SWP-AFFS02-feed group than in the control group. L. fermentum SWP-AFFS02 treatment increased the number of granular cells and semi-granular cells and decreased hyaline cell number when compared to the control group. L. fermentum SWP-AFFS02 promoted prophenoloxidase (PO) activity through increasing immune-associated gene expression in the hepatopancreas of shrimp. In addition, administration of feed containing L. fermentum SWP-AFFS02 regulated intestinal microbiota via decreasing the ratio of pathogenic bacteria, such as Vibrionaceae and Enterobacteriaceae, in the intestine of shrimp. This study demonstrated that administration of L. fermentum SWP-AFFS02 effectively prevented infection of L. vannamei shrimp by regulating intestinal microbiota and enhancing immunity in shrimp to increase the growth and improve their health status, which acted as a probiotic and provided beneficial effects on shrimp.
Collapse
|
9
|
Çakır Bayram L, Abay S, Satıcıoğlu İB, Güvenç T, Ekebaş G, Aydın F. The ocular pyogranulomatous lesion in a Gentoo penguin (Pygoscelis papua) from the Antarctic Peninsula: evaluation of microbiological and histopathological analysis outcomes. Vet Res Commun 2021; 45:143-158. [PMID: 34128178 DOI: 10.1007/s11259-021-09796-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
In this study, it was aimed to present the results of microbiological, cytological, histopathological, and immunohistochemical analyses of ocular samples from an Antarctic (Ardley Island, King George Island) Gentoo penguin chick (Pygoscelis papua) with a pyogranulomatous lesion in the right eye. Samples were taken from both the healthy left eye and the lesion in the right eye. Conventional culture methods and phenotypic and molecular tests were used for bacterial isolation and identification, respectively. None of the isolates could be identified phenotypically. As a result, four of the five isolates obtained from the right eye were considered to belong to putative novel bacterial species and taxa as their similarity to GenBank data was below 98.75%. The isolates were considered to be Pasteurellaceae bacterium, Corynebacterium ciconiae, Cardiobacteriaceae bacterium, Actinomyces sp., and Dermabacteraceae bacterium. The only isolate from the left eye was identified as Psychrobacter pygoscelis. The cytological analysis demonstrated cell infiltrates composed mostly of degenerate heterophils, reactive macrophages, plasma cells, lymphocytes, and eosinophils. Based on histopathological findings, the lesion was defined as a typical pyogranulomatous lesion. Immunohistochemistry demonstrated that the granuloma was positive for TNF-α, IL-4, MMP-9, IL-1β, and IL-6. This is the first documented report of the unilateral pyogranulomatous ocular lesion in a Gentoo penguin chick, living in its natural habitat in Antarctica. This report also describes the isolation of four bacteria from the infected eye, which are considered to belong to novel Genus, species, or taxa. The primary bacterial pathogen that caused the ocular lesion was not able to be detected and remains unclear.
Collapse
Affiliation(s)
- Latife Çakır Bayram
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Seçil Abay
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - İzzet Burçin Satıcıoğlu
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Tolga Güvenç
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Görkem Ekebaş
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Fuat Aydın
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Möller J, Busch A, Berens C, Hotzel H, Burkovski A. Newly Isolated Animal Pathogen Corynebacterium silvaticum Is Cytotoxic to Human Epithelial Cells. Int J Mol Sci 2021; 22:ijms22073549. [PMID: 33805570 PMCID: PMC8037504 DOI: 10.3390/ijms22073549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/03/2022] Open
Abstract
Corynebacterium silvaticum is a newly identified animal pathogen of forest animals such as roe deer and wild boars. The species is closely related to the emerging human pathogen Corynebacterium ulcerans and the widely distributed animal pathogen Corynebacterium pseudotuberculosis. In this study, Corynebacterium silvaticum strain W25 was characterized with respect to its interaction with human cell lines. Microscopy, measurement of transepithelial electric resistance and cytotoxicity assays revealed detrimental effects of C. silvaticum to different human epithelial cell lines and to an invertebrate animal model, Galleria mellonella larvae, comparable to diphtheria toxin-secreting C. ulcerans. Furthermore, the results obtained may indicate a considerable zoonotic potential of this newly identified species.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Anne Busch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, 07743 Jena, Germany; (A.B.); (H.H.)
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute, 007743 Jena, Germany;
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, 07743 Jena, Germany; (A.B.); (H.H.)
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Correspondence: ; Tel.: +49-9131-852-8086
| |
Collapse
|
11
|
Stern RA, Mahmoudi N, Buckee CO, Schartup AT, Koutrakis P, Ferguson ST, Wolfson JM, Wofsy SC, Daube BC, Sunderland EM. The Microbiome of Size-Fractionated Airborne Particles from the Sahara Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1487-1496. [PMID: 33474936 DOI: 10.1021/acs.est.0c06332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diverse airborne microbes affect human health and biodiversity, and the Sahara region of West Africa is a globally important source region for atmospheric dust. We collected size-fractionated (>10, 10-2.5, 2.5-1.0, 1.0-0.5, and <0.5 μm) atmospheric particles in Mali, West Africa and conducted the first cultivation-independent study of airborne microbes in this region using 16S rRNA gene sequencing. Abundant and diverse microbes were detected in all particle size fractions at levels higher than those previously hypothesized for desert regions. Average daily abundance was 1.94 × 105 16S rRNA copies/m3. Daily patterns in abundance for particles <0.5 μm differed significantly from other size fractions likely because they form mainly in the atmosphere and have limited surface resuspension. Particles >10 μm contained the greatest fraction of daily abundance (51-62%) and had significantly greater diversity than smaller particles. Greater bacterial abundance of particles >2.5 μm that are bigger than the average bacterium suggests that most airborne bacteria are present as aggregates or attached to particles rather than as free-floating cells. Particles >10 μm have very short atmospheric lifetimes and thus tend to have more localized origins. We confirmed the presence of several potential pathogens using polymerase chain reaction that are candidates for viability and strain testing in future studies. These species were detected on all particle sizes tested, including particles <2.5 μm that are expected to undergo long-range transport. Overall, our results suggest that the composition and sources of airborne microbes can be better discriminated by collecting size-fractionated samples.
Collapse
Affiliation(s)
- Rebecca A Stern
- Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 0E8, Canada
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Amina T Schartup
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Scripps Institution of Oceanography, La Jolla, California 92037, United States
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Stephen T Ferguson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Jack M Wolfson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Steven C Wofsy
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Bruce C Daube
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Kharseeva GG, Tyukavkina SY, Mironov AY. Diphtheria: characteristics of the pathogen and laboratory diagnostics (lecture). Klin Lab Diagn 2020; 65:699-706. [PMID: 33301660 DOI: 10.18821/0869-2084-2020-65-11-699-706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The problem of diphtheria infection remains relevant, since the circulation of toxigenic strains of Corynebacterium diphtheriae persists in the body of bacterial carriers, despite ongoing vaccination. The lecture presents modern ideas about the properties of the pathogen, its pathogenicity factors (toxin, pili, surface proteins (67-72P (or DIP0733), DIP1281, etc.) and their role in the pathogenesis of the disease.. Information about the clinical and epidemiological characteristics and modern methods of laboratory diagnostics of diphtheria is presented. The algorithm of bacteriological research and methods for determining the toxigenic properties of the pathogen are described. The basics of diphtheria vaccination as the only effective means of preventing mass outbreaks of this disease are considered in the framework of the proposed lecture. Knowledge of the peculiarities of the circulation of strains of Corynebacterium diphtheria in modern conditions, pathogenetic and clinical-epidemiological features of diphtheria, as well as modern methods of laboratory diagnostics is important and necessary for students of medical schools and infectious diseases doctors, pediatricians, bacteriologists, therapists, pulmonologists, epidemiologists, etc.
Collapse
Affiliation(s)
- G G Kharseeva
- SBEI HPE «Rostov state medical university» Ministry of Health Protection of Russia
| | - S Yu Tyukavkina
- SBEI HPE «Rostov state medical university» Ministry of Health Protection of Russia
| | - A Yu Mironov
- Federal State Institution of Science «Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology», of Federal Service of Surveillance on Consumer' Rights Protection and Human Wellbeing, Departament for microbiology
| |
Collapse
|
13
|
18F-labelled triazolyl-linked argininamides targeting the neuropeptide Y Y 1R for PET imaging of mammary carcinoma. Sci Rep 2019; 9:12990. [PMID: 31506520 PMCID: PMC6736837 DOI: 10.1038/s41598-019-49399-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide Y Y1 receptors (Y1R) have been found to be overexpressed in a number of different tumours, such as breast, ovarian or renal cell cancer. In mammary carcinoma the high Y1R density together with its high incidence of 85% in primary human breast cancers and 100% in breast cancer derived lymph node metastases attracted special attention. Therefore, the aim of this study was the development of radioligands for Y1R imaging by positron emission tomography (PET) with a special emphasis on imaging agents with reduced lipophilicity to provide a PET ligand with improved biodistribution in comparison with previously published tracers targeting the Y1R. Three new radioligands based on BIBP3226, bearing an 18F-fluoroethoxy linker (12), an 18F-PEG-linker (13) or an 18F-fluoroglycosyl moiety (11) were radiosynthesised in high radioactivity yields. The new radioligands displayed Y1R affinities of 2.8 nM (12), 29 nM (13) and 208 nM (11) and were characterised in vitro regarding binding to human breast cancer MCF-7-Y1 cells and slices of tumour xenografts. In vivo, small animal PET studies were conducted in nude mice bearing MCF-7-Y1 tumours. The binding to tumours, solid tumour slices and tumour cells correlated well with the Y1R affinities. Although 12 and 13 showed displaceable and specific binding to Y1R in vitro and in vivo, the radioligands still need to be optimised to achieve higher tumour-to-background ratios for Y1R imaging by PET. Yet the present study is another step towards an optimized PET radioligand for imaging of Y1R in vivo.
Collapse
|