1
|
Wang X, Bian Y, Chen W. Cross-disease transcriptomic analysis reveals DOK3 and PAPOLA as therapeutic targets for neuroinflammatory and tumorigenic processes. Front Immunol 2024; 15:1504629. [PMID: 39726593 PMCID: PMC11669587 DOI: 10.3389/fimmu.2024.1504629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Objective Subarachnoid hemorrhage (SAH) and tumorigenesis share numerous biological complexities; nevertheless, the specific gene expression profiles and underlying mechanisms remain poorly understood. This study aims to identify differentially expressed genes (DEGs) that could serve as biomarkers for diagnosis and prognosis. Methods Gene expression datasets (GSE122063, GSE13353, GSE161870) were analyzed using machine learning algorithms and logistic regression to identify DEGs associated with both SAH and tumorigenesis. Lasso regression and receiver operating characteristic (ROC) curve analysis were employed to evaluate the classification accuracy of these genes. Validation of critical DEGs was performed through pan-cancer analysis and experimental studies, focusing on the role of DOK3 in modulating inflammation and oxidative stress in U251MG glioblastoma and BV2 microglia cells. Results Fifteen common DEGs were identified, with DOK3 and PAPOLA highlighted as crucial genes implicated in SAH and neurodegenerative processes. Experimental validation demonstrated that DOK3 overexpression significantly reduced pro-inflammatory cytokine levels and oxidative stress markers while enhancing antioxidant enzyme activity. Additionally, DOK3 influenced tumorigenic processes such as apoptosis, cell cycle regulation, and proliferation, effectively mitigating LPS-induced cytotoxicity and inflammation in BV2 microglial cells. Conclusions DOK3 and PAPOLA play critical roles in both SAH and related neurodegeneration, presenting themselves as potential prognostic biomarkers and therapeutic targets. Notably, DOK3 exhibits potential as an antitumor agent with anti-inflammatory and antioxidative properties, offering therapeutic benefits for both cancer and neuroinflammatory conditions.
Collapse
Affiliation(s)
| | | | - Weiguang Chen
- Emergency Department, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
2
|
Liu N, Li C, Yan C, Yan HC, Jin BX, Yang HR, Jiang GY, Gong HD, Li JY, Ma SJ, Liu HL, Gao C. BCAT1 alleviates early brain injury by inhibiting ferroptosis through PI3K/AKT/mTOR/GPX4 pathway after subarachnoid hemorrhage. Free Radic Biol Med 2024; 222:173-186. [PMID: 38871197 DOI: 10.1016/j.freeradbiomed.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Regulation of the redox system by branched-chain amino acid transferase 1 (BCAT1) is of great significance in the occurrence and development of diseases, but the relationship between BCAT1 and subarachnoid hemorrhage (SAH) is still unknown. Ferroptosis, featured by iron-dependent lipid peroxidation accompanied by the depletion of glutathione peroxidase 4 (GPX4), has been implicated in the pathological process of early brain injury after subarachnoid hemorrhage. This study established SAH model by endovascular perforation and adding oxyhemoglobin (Hb) to HT22 cells and delved into the mechanism of BCAT1 in SAH-induced ferroptotic neuronal cell death. It was found that SAH-induced neuronal ferroptosis could be inhibited by BCAT1 overexpression (OE) in rats and HT22 cells, and BCAT1 OE alleviated neurological deficits and cognitive dysfunction in rats after SAH. In addition, the effect of BCAT1 could be reversed by the Ly294002, a specific inhibitor of the PI3K pathway. In summary, our present study indicated that BCAT1 OE alleviated early brain injury EBI after SAH by inhibiting neuron ferroptosis via activation of PI3K/AKT/mTOR pathway and the elevation of GPX4. These results suggested that BCAT1 was a promising therapeutic target for subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Nan Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Chen Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Cong Yan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Hao-Chen Yan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Bing-Xuan Jin
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Hong-Rui Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Guang-You Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Hai-Dong Gong
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Ji-Yi Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Sheng-Ji Ma
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Huai-Lei Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China.
| | - Cheng Gao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Hu J, Cheng M, Jiang C, Liu L, He Z, Liu L, Yao Y, Li Z, Wang Q. Deferoxamine Mitigates Ferroptosis and Inflammation in Hippocampal Neurons After Subarachnoid Hemorrhage by Activating the Nrf2/TXNRD1 Axis. Mol Neurobiol 2024; 61:1044-1060. [PMID: 37676391 DOI: 10.1007/s12035-023-03525-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/17/2023] [Indexed: 09/08/2023]
Abstract
Ferroptosis is a distinct peroxidation-driven form of cell death tightly involved in subarachnoid hemorrhage (SAH). This study delved into the mechanism of deferoxamine (DFO, an iron chelator) in SAH-induced ferroptosis and inflammation. SAH mouse models were established by endovascular perforation method and injected intraperitoneally with DFO, or intraventricularly injected with the Nrf2 pathway inhibitor ML385 before SAH, followed by detection of neurological function, blood-brain barrier (BBB) permeability, and brain water content. Apoptotic level of hippocampal neurons, symbolic changes of ferroptosis, and levels of pro-inflammatory cytokines were assessed using TUNEL staining, Western blotting, colorimetry, and ELISA. The localization and expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) were detected. HT22 cells were exposed to Hemin as in vitro SAH models and treated with FIN56 to induce ferroptosis, followed by evaluation of the effects of DFO on FIN56-treated HT22 cells. The regulation of Nrf2 in thioredoxin reductase 1 (TXNRD1) was analyzed by co-immunoprecipitation and Western blotting. Moreover, HT22 cells were treated with DFO and ML385 to identify the role of DFO in the Nrf2/TXNRD1 axis. DFO extenuated brain injury, and ferroptosis and inflammation in hippocampal neurons of SAH mice. Nrf2 localized at the CA1 region of hippocampal neurons, and DFO stimulated nuclear translocation of Nrf2 protein in hippocampal neurons of SAH mice. Additionally, DFO inhibited ferroptosis and inflammatory responses in FIN56-induced HT22 cells. Nrf2 positively regulated TXNRD1 protein expression. Indeed, DFO alleviated FIN56-induced ferroptosis and inflammation via activation of the Nrf2/TXNRD1 axis. DFO alleviated neurological deficits, BBB disruption, brain edema, and brain injury in mice after SAH by inhibiting hippocampal neuron ferroptosis via the Nrf2/TXNRD1 axis. DFO ameliorates SAH-induced ferroptosis and inflammatory responses in hippocampal neurons by activating the Nrf2/TXNRD1 axis.
Collapse
Affiliation(s)
- Junting Hu
- Department of Neurosurgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, Section 2, West 1St Ring Road, Chengdu, 610072, Sichuan, China
| | - Meixiong Cheng
- Department of Neurosurgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, Section 2, West 1St Ring Road, Chengdu, 610072, Sichuan, China
| | - Chonggui Jiang
- Department of Neurosurgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, Section 2, West 1St Ring Road, Chengdu, 610072, Sichuan, China
| | - Ling Liu
- Department of Neurosurgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, Section 2, West 1St Ring Road, Chengdu, 610072, Sichuan, China
| | - Zongze He
- Department of Neurosurgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, Section 2, West 1St Ring Road, Chengdu, 610072, Sichuan, China
| | - Lingtong Liu
- Department of Neurosurgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, Section 2, West 1St Ring Road, Chengdu, 610072, Sichuan, China
| | - Yuanpeng Yao
- Department of Neurosurgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, Section 2, West 1St Ring Road, Chengdu, 610072, Sichuan, China
| | - Zhili Li
- Department of Neurosurgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, Section 2, West 1St Ring Road, Chengdu, 610072, Sichuan, China.
| | - Qi Wang
- Department of Neurosurgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, Section 2, West 1St Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
4
|
Wu Z, Liang L, Huang Q. Potential significance of high-mobility group protein box 1 in cerebrospinal fluid. Heliyon 2023; 9:e21926. [PMID: 38027583 PMCID: PMC10661089 DOI: 10.1016/j.heliyon.2023.e21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
High-mobility group protein box 1 (HMGB1) is a cytokine with multiple functions (according to its subcellular location) that serves a marker of inflammation. CSF HMGB1 could be the part of pathological mechanisms that underlie the complications associated with CNS diseases. HMGB1 actively or passively released into the CSF is detected in the CSF in many diseases of the central nervous system (CNS) and thus may be useful as a biomarker. Pathological alterations in distant areas were observed due to lesions in a specific region, and the level of HMGB1 in the CSF was found to be elevated. Reducing the HMGB1 level via intraventricular injection of anti-HMGB1 neutralizing antibodies can improve the outcomes of CNS diseases. The results indicated that CSF HMGB1 could serve as a biomarker for predicting disease progression and may also act as a pathogenic factor contributing to pathological alterations in distant areas following focal lesions in the CNS. In this mini-review, the characteristics of HMGB1 and progress in research on CSF HMGB1 as a biomarker of CNS diseases were discussed. CSF HMGB1 is useful not only as a biomarker of CNS diseases but may also be involved in interactions between different brain regions and the spinal cord.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Liping Liang
- Department of Science and Education, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| |
Collapse
|
5
|
Small C, Scott K, Smart D, Sun M, Christie C, Lucke-Wold B. Microglia and Post-Subarachnoid Hemorrhage Vasospasm: Review of Emerging Mechanisms and Treatment Modalities. CLINICAL SURGERY JOURNAL 2022; 3:INF1000213. [PMID: 36081602 PMCID: PMC9450560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Vasospasm is a potentially severe complication of subarachnoid hemorrhage. It can be attributed to neuroinflammation and the robust recruitment of microglia. Emerging evidence has linked this sustained inflammation to the development of delayed cerebral ischemia following subarachnoid hemorrhage. In this focused review, we provide an overview of the historical understanding of vasospasm. We then delve into the role of neuroinflammation and the activation of microglia. These activated microglia releases a host of inflammatory cytokines contributing to an influx of peripheral macrophages. This thereby opens a new and innovative treatment strategy to prevent vasospasm. Pre-clinical work has been promising, and the transition to clinical trials is warranted. Finally, some of the key mechanistic targets are outlined with emphasis on translation. This review will serve as a catalyst for researchers and clinicians alike in the quest to improve treatment options for vasospasm.
Collapse
Affiliation(s)
- Coulter Small
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| | - Kyle Scott
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| | - Derek Smart
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| | - Michael Sun
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| | - Carlton Christie
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Shikata E, Miyamoto T, Yamaguchi T, Yamaguchi I, Kagusa H, Gotoh D, Shimada K, Tada Y, Yagi K, Kitazato KT, Kanematsu Y, Takagi Y. An imbalance between RAGE/MR/HMGB1 and ATP1α3 is associated with inflammatory changes in rat brain harboring cerebral aneurysms prone to rupture. J Neuroinflammation 2022; 19:161. [PMID: 35725479 PMCID: PMC9210698 DOI: 10.1186/s12974-022-02526-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND PURPOSE An aneurysmal subarachnoid hemorrhage is a devastating event. To establish an effective therapeutic strategy, its pathogenesis must be clarified, particularly the pathophysiology of brain harboring intracranial aneurysms (IAs). To elucidate the pathology in brain harboring IAs, we examined the significance of the receptor for advanced glycation end-products (RAGE)/mineralocorticoid receptor (MR) pathway and Na+/K+-ATPase (ATP1α3). METHODS Ten-week-old female rats were subjected to oophorectomy as well as hypertension and hemodynamic changes to induce IAs, and were fed a high-salt diet. Brain damage in these rats was assessed by inflammatory changes in comparison to sham-operated rats fed a standard diet. RESULTS Six weeks after IA induction (n = 30), irregular morphological changes, i.e., an enlarged vessel diameter and vascular wall, were observed in all of the left posterior cerebral arteries (Lt PCAs) prone to rupture. Approximately 20% of rats had ruptured IAs within 6 weeks. In brain harboring unruptured IAs at the PCA, the mRNA levels of RAGE and MR were higher, and that of ATP1α3 was lower than those in the sham-operated rats (p < 0.05, each). Immunohistochemically, elevated expression of RAGE and MR, and decreased expression of ATP1α3 were observed in the brain parenchyma adjacent to the Lt PCA, resulting in increased Iba-1 and S100B expression that reflected the inflammatory changes. There was no difference between the unruptured and ruptured aneurysm rat groups. Treatment with the MR antagonist esaxerenone abrogated these changes, and led to cerebral and vascular normalization and prolonged subarachnoid hemorrhage-free survival (p < 0.05). CONCLUSIONS Regulation of the imbalance between the RAGE/MR pathway and ATP1α3 may help attenuate the damage in brain harboring IAs, and further studies are warranted to clarify the significance of the down-regulation of the MR/RAGE pathway and the up-regulation of ATP1α3 for attenuating the pathological changes in brain harboring IAs.
Collapse
Affiliation(s)
- Eiji Shikata
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Takeshi Miyamoto
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tadashi Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Izumi Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroshi Kagusa
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Daiki Gotoh
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kenji Shimada
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yoshiteru Tada
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kenji Yagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Keiko T Kitazato
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yasuhisa Kanematsu
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
7
|
Involvement of Microglia in the Pathophysiology of Intracranial Aneurysms and Vascular Malformations-A Short Overview. Int J Mol Sci 2021; 22:ijms22116141. [PMID: 34200256 PMCID: PMC8201350 DOI: 10.3390/ijms22116141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysms and vascular malformations of the brain represent an important source of intracranial hemorrhage and subsequent mortality and morbidity. We are only beginning to discern the involvement of microglia, the resident immune cell of the central nervous system, in these pathologies and their outcomes. Recent evidence suggests that activated proinflammatory microglia are implicated in the expansion of brain injury following subarachnoid hemorrhage (SAH) in both the acute and chronic phases, being also a main actor in vasospasm, considerably the most severe complication of SAH. On the other hand, anti-inflammatory microglia may be involved in the resolution of cerebral injury and hemorrhage. These immune cells have also been observed in high numbers in brain arteriovenous malformations (bAVM) and cerebral cavernomas (CCM), although their roles in these lesions are currently incompletely ascertained. The following review aims to shed a light on the most significant findings related to microglia and their roles in intracranial aneurysms and vascular malformations, as well as possibly establish the course for future research.
Collapse
|
8
|
Liu J, Zhao HW, Tian YP, Yang Y, Wu JX. A Cu(II) complex: treatment activity on intracerebral hemorrhage via inhibiting inflammatory response in vascular endothelial cells. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1793360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jing Liu
- Department of Neurosurgery, Tangshan Worker’s Hospital, Tangshan, Hebei, China
| | - Hong-Wei Zhao
- Static Distribution Center, Yantai Mountain Hospital Nanyuan District, Yantai, Shandong, China
| | - Yong-Pan Tian
- Department of Neurology, The People’s Hospital of Dazu District, Chongqing, China
| | - Yu Yang
- Department of Medicine, Second Hospital, Xingtai, Hebei, China
| | - Ji-Xiang Wu
- Department of Neurology, The People’s Hospital of Dazu District, Chongqing, China
| |
Collapse
|
9
|
Han Y, Tong Z, Wang C, Li X, Liang G. Oleanolic acid exerts neuroprotective effects in subarachnoid hemorrhage rats through SIRT1-mediated HMGB1 deacetylation. Eur J Pharmacol 2021; 893:173811. [PMID: 33345851 DOI: 10.1016/j.ejphar.2020.173811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Anti-inflammatory therapy for early brain injury after subarachnoid hemorrhage is a promising treatment for improving the prognosis. HMGB1 is the initiator of early inflammation after subarachnoid hemorrhage. Oleanolic acid is a natural pentacyclic triterpenoid compound with strong anti-inflammatory activity. It can relieve early brain injury in subarachnoid hemorrhage rats, but its mechanism is not very clear. Here, we study the potential mechanism of Oleanolic acid in the treatment of subarachnoid hemorrhage. First, we demonstrated that oleanolic acid alleviated early brain injury after subarachnoid hemorrhage, including improvement of grading score, neurological score, brain edema and permeability of brain blood barrier. Then we found that oleanolic acid could inhibit the transfer of HMGB1 from nucleus to cytoplasm and reduce the level of serum HMGB1. Furthermore, we found that oleanolic acid decreased the acetylation level of HMGB1 by increasing SIRT1 expression rather than by inhibiting JAK/STAT3 pathway. SIRT1 inhibitor sirtinol eliminated all beneficial effects of oleanolic acid on subarachnoid hemorrhage, which indicated that oleanolic acid inhibited the acetylation of HMGB1 by up regulating SIRT1. In addition, oleanolic acid treatment also reduced the levels of TLR4 and apoptosis related factors and reduced neuronal apoptosis after subarachnoid hemorrhage. In summary, our findings suggest that oleanolic acid may activate SIRT1 by acting as an activator of SIRT1, thereby reducing the acetylation of HMGB1, thus playing an anti-inflammatory role to alleviate early brain injury after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Yuwei Han
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China; China Medical University, Shenyang, China
| | - Zhenhua Tong
- Department of Science Training, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenchen Wang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoming Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
10
|
Kianian F, Kadkhodaee M, Sadeghipour HR, Karimian SM, Seifi B. An overview of high-mobility group box 1, a potent pro-inflammatory cytokine in asthma. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2019-0363. [PMID: 32651983 DOI: 10.1515/jbcpp-2019-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
High-mobility group box 1 (HMGB1), also called amphoterin, HMG1 and p30, is a highly conserved protein between different species that has various functions in nucleus such as stabilization of nucleosome formation, facilitation of deoxyribonucleic acid (DNA) bending and increasing the DNA transcription, replication and repair. It has also been indicated that HMGB1 acts as a potent pro-inflammatory cytokine with increasing concentrations in acute and chronic inflammatory diseases. Asthma is a common chronic respiratory disease associated with high morbidity and mortality rates. One central characteristic in its pathogenesis is airway inflammation. Considering the inflammatory role of HMGB1 and importance of inflammation in asthma pathogenesis, a better understanding of this protein is vital. This review describes the structure, cell surface receptors, signaling pathways and intracellular and extracellular functions of HMGB1, but also focuses on its inflammatory role in asthma. Moreover, this manuscript reviews experimental and clinical studies that investigated the pathologic role of HMGB1.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF. HMGB1-Mediated Neuroinflammatory Responses in Brain Injuries: Potential Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2020; 21:ijms21134609. [PMID: 32610502 PMCID: PMC7370155 DOI: 10.3390/ijms21134609] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Brain injuries are devastating conditions, representing a global cause of mortality and morbidity, with no effective treatment to date. Increased evidence supports the role of neuroinflammation in driving several forms of brain injuries. High mobility group box 1 (HMGB1) protein is a pro-inflammatory-like cytokine with an initiator role in neuroinflammation that has been implicated in Traumatic brain injury (TBI) as well as in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Herein, we discuss the implication of HMGB1-induced neuroinflammatory responses in these brain injuries, mediated through binding to the receptor for advanced glycation end products (RAGE), toll-like receptor4 (TLR4) and other inflammatory mediators. Moreover, we provide evidence on the biomarker potential of HMGB1 and the significance of its nucleocytoplasmic translocation during brain injuries along with the promising neuroprotective effects observed upon HMGB1 inhibition/neutralization in TBI and EBI induced by SAH. Overall, this review addresses the current advances on neuroinflammation driven by HMGB1 in brain injuries indicating a future treatment opportunity that may overcome current therapeutic gaps.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| |
Collapse
|