1
|
Hafiz A, Alvarino, Yanwirasti, Trimartani. Description of Clinical Facial Analysis of Down Syndrome Patients Using Rhinobase Software: An Anthropometric Study. Indian J Otolaryngol Head Neck Surg 2024; 76:5113-5118. [PMID: 39558995 PMCID: PMC11569097 DOI: 10.1007/s12070-024-04875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 11/20/2024] Open
Abstract
INTRODUCTION Patients with Down syndrome have distinctive facial characteristics. Physical abnormalities that have many similarities make people with Down syndrome very similar to each other. This study aimed to determine the clinical facial analysis of patients with Down syndrome using Rhinobase Software. METHODS A descriptive observational study was conducted on patients with Down syndrome aged 10-29 years who met the criteria. Data were obtained through history taking, general facial physical examination and ENT-HN examination. Facial analysis using Rhinobase software. RESULT The results obtained were analyzed using the SPSS program. The average age of the sample was 17.7 ± 4.8 years with 73% of the sample being male. In the vertical facial assessment, the proportion of LFH > UFH > MFH was obtained. In the horizontal face assessment, 96% of the samples have En-En < Al-Al ratios. The proportion of the lower face height of people with Down syndrome to the whole face is greater than the proportion of the upper and middle height of the face. CONCLUSION The value of the intercanthal distance is greater than the mean ideal intercanthal distance, and the highest proportion was the intercanthal distance which was smaller than the width of the ala nasi.
Collapse
Affiliation(s)
- Al Hafiz
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine Universitas Andalas, Padang, Indonesia
| | - Alvarino
- Department of Surgery, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Yanwirasti
- Department of Anatomy, Faculty of Medicine Universitas Andalas, Padang, Indonesia
| | - Trimartani
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
2
|
Amir M, Shafi S, Parveen S, Reshi AA, Ahmad A. Network Pharmacology Identifies Intersection Genes of Apigenin and Naringenin in Down Syndrome as Potential Therapeutic Targets. Pharmaceuticals (Basel) 2024; 17:1090. [PMID: 39204195 PMCID: PMC11359399 DOI: 10.3390/ph17081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Down Syndrome (DS), characterized by trisomy of chromosome 21, leads to the overexpression of several genes contributing to various pathologies, including cognitive deficits and early-onset Alzheimer's disease. This study aimed to identify the intersection genes of two polyphenolic compounds, apigenin and naringenin, and their potential therapeutic targets in DS using network pharmacology. Key proteins implicated in DS, comprising DYRK1A, APP, CBS, and ETS2, were selected for molecular docking and dynamics simulations to assess the binding affinities and stability of the protein-ligand interactions. Molecular docking revealed that naringenin exhibited the highest binding affinity to DYRK1A with a score of -9.3 kcal/mol, followed by CBS, APP, and ETS2. Moreover, molecular docking studies included positive control drugs, such as lamellarin D, valiltramiprosate, benserazide, and TK216, which exhibited binding affinities ranging from -5.5 to -8.9 kcal/mol. Apigenin showed strong binding to APP with a score of -8.8 kcal/mol, suggesting its potential in modulating amyloid-beta levels. These interactions were further validated through molecular dynamics simulations, demonstrating stable binding throughout the 100 ns simulation period. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) analyses indicated minimal fluctuations, confirming the stability of the complexes. The findings suggest that apigenin and naringenin could serve as effective therapeutic agents for DS by targeting key proteins involved in its pathology. Future studies should focus on in vivo validation, clinical trials, and exploring combination therapies to fully harness the therapeutic potential of these compounds for managing DS. This study underscores the promising role of network pharmacology in identifying novel therapeutic targets and agents for complex disorders like DS.
Collapse
Affiliation(s)
- Mohd Amir
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shabana Shafi
- Department of Computer Science, College of Computer Science and Engineering, Taibah University, Madinah 42353, Saudi Arabia;
| | - Shahida Parveen
- Department of Nursing, College of Pharmacy and Applied Medical Sciences (CPAMS), Dar Al Uloom University, Riyadh 13314, Saudi Arabia;
| | - Aijaz Ahmad Reshi
- Department of Computer Science, College of Computer Science and Engineering, Taibah University, Madinah 42353, Saudi Arabia;
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Llambrich S, Tielemans B, Saliën E, Atzori M, Wouters K, Van Bulck V, Platt M, Vanherp L, Gallego Fernandez N, Grau de la Fuente L, Poptani H, Verlinden L, Himmelreich U, Croitor A, Attanasio C, Callaerts-Vegh Z, Gsell W, Martínez-Abadías N, Vande Velde G. Pleiotropic effects of trisomy and pharmacologic modulation on structural, functional, molecular, and genetic systems in a Down syndrome mouse model. eLife 2024; 12:RP89763. [PMID: 38497812 PMCID: PMC10948151 DOI: 10.7554/elife.89763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Birger Tielemans
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Ellen Saliën
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Marta Atzori
- Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Kaat Wouters
- Laboratory of Biological Psychology, KU LeuvenLeuvenBelgium
| | | | - Mark Platt
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Laure Vanherp
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Nuria Gallego Fernandez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Laura Grau de la Fuente
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, KU LeuvenLeuvenBelgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Anca Croitor
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | | | | | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | | |
Collapse
|
4
|
Kong MW, Li YJ, Li J, Pei ZY, Xie YY, He GX. Down syndrome child with multiple heart diseases: A case report. World J Cardiol 2023; 15:615-622. [PMID: 38058402 PMCID: PMC10696207 DOI: 10.4330/wjc.v15.i11.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Down syndrome, also known as trisomy 21 syndrome, is commonly associated with congenital heart disease, and can often result in early formation of pulmonary hypertension. The development of pulmonary hypertension can result from factors such as intracardiac and macrovascular shunts, and upper airway obstruction or hypoplasia of lung tissue. Individuals with Down syndrome and congenital heart disease have a significantly lower average life expectancy, with surgical intervention being the most viable treatment option to improve longevity. CASE SUMMARY We report the case of a 13-year-old boy with Down syndrome presenting with atrial septal defect and patent ductus arteriosus along with severe pulmonary hypertension. The electrocardiogram shows sinus rhythm and right ventricular hypertrophy. The echocardiogram shows an atrial septal defect with interrupted echo in the interatrial septum, measuring 0.813 cm in length. The patient was initially refused to be offered surgical treatment by many hospitals due to the high surgical risk and pulmonary artery resistance. After discussing the patient's diagnosis and treatment options, we ultimately recommended surgical treatment. However, the patient and their family declined this recommendation and chose to be discharged. During the follow-up period of 6 mo, there were no significant improvements or deteriorations in the patient's condition. CONCLUSION In conclusion, this case highlights the challenges faced by individuals with Down syndrome and congenital heart disease complicated by severe pulmonary hypertension. Timely intervention and a multidisciplinary approach are crucial for improving prognosis and life expectancy. Further research is needed to enhance our understanding and develop effective interventions for this population.
Collapse
Affiliation(s)
- Mo-Wei Kong
- Department of Cardiology, Guiqian International General Hospital, Guiyang 550018, Guizhou Province, China
| | - Yi-Jing Li
- Department of Cardiology, Guiqian International General Hospital, Guiyang 550018, Guizhou Province, China
| | - Jun Li
- Department of Cardiology, Guiqian International General Hospital, Guiyang 550018, Guizhou Province, China.
| | - Zhen-Ying Pei
- Department of Cardiology, Guiqian International General Hospital, Guiyang 550018, Guizhou Province, China
| | - Yu-Yu Xie
- Department of Dermatology, Guiqian International General Hospital, Guiyang 550018, Guizhou Province, China
| | - Guo-Xiang He
- Department of Cardiology, Guiqian International General Hospital, Guiyang 550018, Guizhou Province, China
| |
Collapse
|
5
|
de Oliveira LC, de Paula Faria D. Pharmacological Approaches to the Treatment of Dementia in Down Syndrome: A Systematic Review of Randomized Clinical Studies. Molecules 2022; 27:3244. [PMID: 35630721 PMCID: PMC9147973 DOI: 10.3390/molecules27103244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Down Syndrome (DS) is considered the most frequent form of Intellectual Disability, with important expressions of cognitive decline and early dementia. Studies on potential treatments for dementia in this population are still scarce. Thus, the current review aims to synthesize the different pharmacological approaches that already exist in the literature, which focus on improving the set of symptoms related to dementia in people with DS. A total of six studies were included, evaluating the application of supplemental antioxidant therapies, such as alpha-tocopherol; the use of acetylcholinesterase inhibitor drugs, such as donepezil; N-methyl-d-aspartate (NMDA) receptor antagonists, such as memantine; and the use of vitamin E and a fast-acting intranasal insulin. Two studies observed important positive changes related to some general functions in people with DS (referring to donepezil). In the majority of studies, the use of pharmacological therapies did not lead to improvement in the set of symptoms related to dementia, such as memory and general functionality, in the population with DS.
Collapse
Affiliation(s)
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil;
| |
Collapse
|
6
|
Novel Approaches to an Integrated Route for Trisomy 21 Evaluation. Biomolecules 2021; 11:biom11091328. [PMID: 34572541 PMCID: PMC8465311 DOI: 10.3390/biom11091328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Trisomy 21 (T21) is one of the most commonly occurring genetic disorders, caused by the partial or complete triplication of chromosome 21. Despite the significant progress in the diagnostic tools applied for prenatal screening, commonly used methods are still imprecise and involve invasive diagnostic procedures that are related to a maternal risk of miscarriage. In this case, novel prenatal biomarkers are still being evaluated using highly specialized techniques, which could increase the diagnostic usefulness of biochemical prenatal screening for T21. From the other hand, the T21′s pathogenesis, caused by the improper division of genetic material, disrupting many metabolic pathways, could be further evaluated with the use of omics methods, which could result in bringing relevant insights for the evaluation of potential medical targets. Accordingly, a literature search was undertaken to collect novel information about prenatal screening for Down syndrome with the use of advanced technology, with a particular emphasis on the evaluation of novel screening biomarkers and the discovery of potential medical targets. These meta-analyses are focused on novel approaches designed with the use of omics techniques, representing the most rapidly developing and promising field in research today. Considering the limitations and progress of these methods, the use of omics techniques in evaluating T21 pathogenesis could bring beneficial results in prenatal screening, simultaneously uncovering novel potential medical targets.
Collapse
|
7
|
Kida E, Walus M, Albertini G, Golabek AA. Long-term voluntary running modifies the levels of proteins of the excitatory/inhibitory system and reduces reactive astrogliosis in the brain of Ts65Dn mouse model for Down syndrome. Brain Res 2021; 1766:147535. [PMID: 34043998 DOI: 10.1016/j.brainres.2021.147535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 09/30/2022]
Abstract
We showed previously that voluntary long-term running improved cognition and motor skills, but in an age-dependent manner, in the Ts65Dn mouse model for Down syndrome (DS). Presently, we investigated the effect of running on the levels of some key proteins of the excitatory/inhibitory system, which is impaired in the trisomic brain, and on astroglia, a vital component of this system. Ts65Dn mice had free access to a running wheel for 9-13 months either from weaning or from the age of 7 months. Sedentary Ts65Dn mice served as controls. We found that running modified the levels of four of the seven proteins we tested that are associated with the glutamatergic/GABA-ergic system. Thus, Ts65Dn runners demonstrated increased levels of glutamine synthetase and metabotropic glutamate receptor 1 and decreased levels of glutamate transporter 1 and glutamic acid decarboxylase 65 (GAD65) versus sedentary mice, but of metabotropic glutamate receptor 1 and GAD65 only in the post-weaning cohort. GAD67, ionotropic N-methyl-D-aspartate type receptor subunit 1, and GABAAα5 receptors' levels were similar in runners and sedentary animals. The number of glial fibrillary acidic protein (GFAP)-positive astrocytes and the levels of GFAP were significantly reduced in runners relative to sedentary mice. Our study provides new insight into the mechanisms underlying the beneficial effect of voluntary, sustained running on function of the trisomic brain by identifying the involvement of proteins associated with glutamatergic and GABAergic systems and reduction in reactive astrogliosis.
Collapse
Affiliation(s)
- Elizabeth Kida
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Marius Walus
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Giorgio Albertini
- Child Development Department, IRCCS San Raffaele Pisana, Rome and San Raffaele Cassino, Italy
| | - Adam A Golabek
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| |
Collapse
|
8
|
Rondal JA. From the lab to the people: major challenges in the biological treatment of Down syndrome. AIMS Neurosci 2021; 8:284-294. [PMID: 33709029 PMCID: PMC7940110 DOI: 10.3934/neuroscience.2021015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Down syndrome (DS) refers to a genetic condition due to the triplication of human chromosome 21. It is the most frequent autosomal trisomy. In recent years, experimental work has been conducted with the aim of removing or silencing the extra chromosome 21 (C21) in cells and normalizing genetic expression. This paper examines the feasibility of the move from laboratory studies to biologically treating “bone and flesh” people with DS. A chromosome or a gene therapy for humans is fraught with practical and ethical difficulties. To prevent DS completely, genome editing would have to be performed early on embryos in the womb. New in vitro findings point toward the possibility of epigenetic silencing the extra C21 in later embryonic or fetal life, or even postnatally for some aspects of neurogenesis. These possibilities are far beyond what is possible or allowed today. Another approach is through epigenetic regulation of the overexpression of particular genes in C21. Research with mouse modeling of DS is yielding promising results. Human applications have barely begun and are questioned on ethical grounds.
Collapse
|