1
|
Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2022; 200:2069-2083. [PMID: 34365573 PMCID: PMC8349466 DOI: 10.1007/s12011-021-02851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation of selenoproteins dependent on the Sec insertion sequence element in the 3'UTR of mRNA at the UGA codon through a novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict the potential health risk of the human body in the physiological adaptation state of low selenium based on the results of animal experiments.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China.
| |
Collapse
|
2
|
Sato W, Furuta C, Akomo P, Bahwere P, Collins S, Sadler K, Banda C, Maganga E, Kathumba S, Murakami H. Amino acid-enriched plant-based RUTF treatment was not inferior to peanut-milk RUTF treatment in restoring plasma amino acid levels among patients with oedematous or non-oedematous malnutrition. Sci Rep 2021; 11:12582. [PMID: 34131186 PMCID: PMC8206220 DOI: 10.1038/s41598-021-91807-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/31/2021] [Indexed: 01/20/2023] Open
Abstract
Ready-to-use therapeutic food (RUTF) with adequate quality protein is used to treat children with oedematous and non-oedematous severe acute malnutrition (SAM). The plasma amino acid (AA) profile reflects the protein nutritional status; hence, its assessment during SAM treatment is useful in evaluating AA delivery from RUTFs. The objective was to evaluate the plasma AAs during the treatment of oedematous and non-oedematous SAM in community-based management of acute malnutrition (CMAM) using amino acid-enriched plant-based RUTFs with 10% milk (MSMS-RUTF) or without milk (FSMS-RUTF) compared to peanut milk RUTF (PM-RUTF). Plasma AA was measured in a non-blinded, 3-arm, parallel-group, simple randomized controlled trial conducted in Malawi. The RUTFs used for SAM were FSMS-RUTF, MSMS-RUTF or PM-RUTF. A non-inferiority hypothesis was tested to compare plasma AA levels from patients treated with FSMS-RUTF or MSMS-RUTF with those from patients treated with PM-RUTF at discharge. For both types of SAM, FSMS-RUTF and MSMS-RUTF treatments were non-inferior to the PM-RUTF treatment in restoration of the EAA and cystine except that for FSMS-RUTF, methionine and tryptophan partially satisfied the non-inferiority criteria in the oedematous group. Amino-acid-enriched milk-free plant-source-protein RUTF has the potential to restore all the EAA, but it is possible that enrichment with amino acids may require more methionine and tryptophan for oedematous children.
Collapse
Affiliation(s)
- Wataru Sato
- Ajinomoto Co. Inc., Research Institute for Bioscience Products & Fine Chemicals, Kawasaki, Japan
| | - Chie Furuta
- Ajinomoto Co. Inc., Institute of Food Science and Technologies, Suzukicho 1-1, Kawasaki-ku, Kawasaki, Kanagawa, 210-8681, Japan
| | | | - Paluku Bahwere
- Valid International, Oxford, UK
- Center for Epidemiology, Biostatistics, and Clinical Research, School of Public Health, Free University of Brussels, Brussels, Belgium
| | - Steve Collins
- Valid Nutrition, Cork, Ireland
- Valid International, Oxford, UK
| | | | | | | | | | - Hitoshi Murakami
- Ajinomoto Co. Inc., Institute of Food Science and Technologies, Suzukicho 1-1, Kawasaki-ku, Kawasaki, Kanagawa, 210-8681, Japan.
| |
Collapse
|
3
|
Schwinger C, Chowdhury R, Sharma S, Bhandari N, Taneja S, Ueland PM, Strand TA. Association of Plasma Total Cysteine and Anthropometric Status in 6-30 Months Old Indian Children. Nutrients 2020; 12:nu12103146. [PMID: 33076294 PMCID: PMC7602373 DOI: 10.3390/nu12103146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/21/2022] Open
Abstract
High-quality protein has been associated with child growth; however, the role of the amino acid cysteine remains unclear. The aim was to measure the extent to which plasma total cysteine (tCys) concentration is associated with anthropometric status in children aged 6–30 months living in New Delhi, India. The study was a prospective cohort study including 2102 children. We calculated Z-scores for height-for-age (HAZ), weight-for-height (WHZ), or weight-for-age (WAZ) according to the WHO Child Growth Standards. We used multiple regression models to estimate the association between tCys and the anthropometric indices. A high proportion of the children were categorized as malnourished at enrolment; 41% were stunted (HAZ ≤ −2), 19% were wasted (WHZ ≤ −2) and 42% underweight (WAZ ≤ −2). Plasma total cysteine (tCys) was significantly associated with HAZ, WHZ and WAZ after adjusting for relevant confounders (p < 0.001). Low tCys (≤25th percentile) was associated with a decrease of 0.28 Z-scores for HAZ, 0.10 Z-scores for WHZ, and 0.21 Z-scores for WAZ compared to being >25th percentile. In young Indian children from low-to-middle socioeconomic neighborhoods, a low plasma total cysteine concentration was associated with an increased risk of poor anthropometric status.
Collapse
Affiliation(s)
- Catherine Schwinger
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Correspondence: ; Tel.: +47-5558-9733
| | - Ranadip Chowdhury
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Society for Applied Studies, New Delhi 110016, India;
| | - Shakun Sharma
- Department of Child Health, Institute of Medicine, Tribuhvan University, Kathmandu 44613, Nepal;
| | - Nita Bhandari
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Society for Applied Studies, New Delhi 110016, India;
| | - Sunita Taneja
- Society for Applied Studies, New Delhi 110016, India;
| | - Per M. Ueland
- Department of Clinical Science, University of Bergen,5020 Bergen, Norway;
| | - Tor A. Strand
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Department of Research, Innlandet Hospital Trust, 2618 Lillehammer, Norway
| |
Collapse
|
4
|
Elango R. Methionine Nutrition and Metabolism: Insights from Animal Studies to Inform Human Nutrition. J Nutr 2020; 150:2518S-2523S. [PMID: 33000159 DOI: 10.1093/jn/nxaa155] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/16/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Methionine is a nutritionally indispensable amino acid, and is unique among indispensable amino acids due to its sulfur atom. Methionine is involved in cysteine synthesis via the transsulfuration pathway, which is rate limiting for the key antioxidant molecule, glutathione. Methionine is also the primary methyl donor in the body through S-adenosylmethionine via the transmethylation pathway, which is involved in the synthesis of several key metabolites including creatine and phosphatidylcholine. Methionine can also be remethylated from homocysteine, in the presence of betaine via choline and/or folate. Thus methionine demands from a dietary perspective are regulated not only by the presence of cysteine in the body, but also by the demands in vivo for the various metabolites formed from it, and also by the presence of these compounds in foods. Indeed, methionine, cysteine, and the various methyl donors/acceptors vary in human foods, and thus regulate methionine availability, especially under conditions of growth and development. Much of our understanding of methionine nutrition and metabolism arises from experiments in animal models. This is because most animal feed formulations are plant-based and plant sources are relatively low in methionine and cysteine amounts. Thus, this brief review will touch on some broad aspects of human methionine nutrition, including requirements in different life stages, disease, and bioavailability, with some examples from the insights/lessons learned from experiments initially conducted in animals.
Collapse
Affiliation(s)
- Rajavel Elango
- BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada; and the Department of Pediatrics, and School of Population and Public Health, University of British Columbia, British Columbia, Canada
| |
Collapse
|
5
|
Ligthart-Melis GC, Engelen MPKJ, Simbo SY, Ten Have GAM, Thaden JJ, Cynober L, Deutz NEP. Metabolic Consequences of Supplemented Methionine in a Clinical Context. J Nutr 2020; 150:2538S-2547S. [PMID: 33000166 DOI: 10.1093/jn/nxaa254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022] Open
Abstract
The central position of methionine (Met) in protein metabolism indicates the importance of this essential amino acid for growth and maintenance of lean body mass. Therefore, Met might be a tempting candidate for supplementation. However, because Met is also the precursor of homocysteine (Hcy), a deficient intake of B vitamins or excessive intake of Met may result in hyperhomocysteinemia (HHcy), which is a risk factor for cardiovascular disease. This review discusses the evidence generated in preclinical and clinical studies on the importance and potentially harmful effects of Met supplementation and elaborates on potential clinical applications of supplemental Met with reference to clinical studies performed over the past 20 y. Recently acquired knowledge about the NOAEL (no observed adverse effect level) of 46.3 mg · kg-1 · d-1 and the LOAEL (lowest observed adverse effect level) of 91 mg · kg-1 · d-1 of supplemented Met will guide the design of future studies to further establish the role of Met as a potential (safe) candidate for nutritional supplementation in clinical applications.
Collapse
Affiliation(s)
- Gerdien C Ligthart-Melis
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Sunday Y Simbo
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Gabrie A M Ten Have
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - John J Thaden
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Luc Cynober
- Department of Clinical Chemistry, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Rasch I, Görs S, Tuchscherer A, Viergutz T, Metges CC, Kuhla B. Substitution of Dietary Sulfur Amino Acids by dl-2-Hydroxy-4-Methylthiobutyric Acid Reduces Fractional Glutathione Synthesis in Weaned Piglets. J Nutr 2020; 150:722-729. [PMID: 31773161 PMCID: PMC7138682 DOI: 10.1093/jn/nxz272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/23/2019] [Accepted: 10/10/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Cys is limiting for reduced glutathione (GSH) synthesis and can be synthesized from Met. We hypothesized that the dietary Met hydroxyl analogue dl-2-hydroxy-4-methylthiobutyric acid (dl-HMTBA) affects Cys and GSH metabolism and oxidative stress defense differently than Met. OBJECTIVE The objective was to elucidate whether dl-HMTBA supplementation of a Met-deficient diet affects Cys flux, GSH fractional synthetic rate (FSR), and the basal oxidative stress level relative to Met supplementation in pigs. METHODS Twenty-nine male German Landrace piglets aged 28 d were allocated to 3 dietary groups: a basal diet limiting in Met (69% of Met plus Cys requirement) supplemented with either 0.15% l-Met (LMET; n = 9), 0.15% dl-Met (DLMET; n = 11), or 0.17% dl-HMTBA (DLHMTBA; n = 9) on an equimolar basis. At age 54 d the pigs received a continuous infusion of [1-13C]-Cys to calculate Cys flux and Cys oxidation. After 3 d, GSH FSR was determined by [2,2-2H2]-glycine infusion, and RBC GSH and oxidized GSH concentrations were measured. At age 62 d the animals were killed to determine hepatic mRNA abundances of enzymes involved in GSH metabolism, GSH concentrations, and plasma oxidative stress defense markers. RESULTS The Cys oxidation was 21-39% and Cys flux 5-15% higher in the fed relative to the feed-deprived state (P < 0.001). On average, GSH FSR was 49% lower (P < 0.01), and RBC GSH and total GSH concentrations were 12% and 9% lower, respectively, in DLHMTBA and DLMET relative to LMET pigs (P < 0.05). In the feed-deprived state, Gly flux, the GSH:oxidized glutathione (GSSG) ratio, RBC GSSG concentrations, plasma oxidative stress markers, and the hepatic GSH content did not differ between groups. CONCLUSIONS Although GSH FSR was higher in LMET compared with DLMET or DLHMTBA feed-deprived pigs, these differences were not reflected by lower oxidative stress markers and antioxidant defense enzymes in LMET pigs.
Collapse
Affiliation(s)
- Ilka Rasch
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Solvig Görs
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Chair of Nutritional Physiology and Animal Nutrition, Faculty of Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
7
|
Schulze KV, Swaminathan S, Howell S, Jajoo A, Lie NC, Brown O, Sadat R, Hall N, Zhao L, Marshall K, May T, Reid ME, Taylor-Bryan C, Wang X, Belmont JW, Guan Y, Manary MJ, Trehan I, McKenzie CA, Hanchard NA. Edematous severe acute malnutrition is characterized by hypomethylation of DNA. Nat Commun 2019; 10:5791. [PMID: 31857576 PMCID: PMC6923441 DOI: 10.1038/s41467-019-13433-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Edematous severe acute childhood malnutrition (edematous SAM or ESAM), which includes kwashiorkor, presents with more overt multi-organ dysfunction than non-edematous SAM (NESAM). Reduced concentrations and methyl-flux of methionine in 1-carbon metabolism have been reported in acute, but not recovered, ESAM, suggesting downstream DNA methylation changes could be relevant to differences in SAM pathogenesis. Here, we assess genome-wide DNA methylation in buccal cells of 309 SAM children using the 450 K microarray. Relative to NESAM, ESAM is characterized by multiple significantly hypomethylated loci, which is not observed among SAM-recovered adults. Gene expression and methylation show both positive and negative correlation, suggesting a complex transcriptional response to SAM. Hypomethylated loci link to disorders of nutrition and metabolism, including fatty liver and diabetes, and appear to be influenced by genetic variation. Our epigenetic findings provide a potential molecular link to reported aberrant 1-carbon metabolism in ESAM and support consideration of methyl-group supplementation in ESAM.
Collapse
Affiliation(s)
- Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Shanker Swaminathan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Sharon Howell
- Tropical Metabolism Research Unit, Caribbean Institute for Health Research, University of the West Indies, Mona, Jamaica
| | - Aarti Jajoo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Natasha C Lie
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Orgen Brown
- Tropical Metabolism Research Unit, Caribbean Institute for Health Research, University of the West Indies, Mona, Jamaica
| | - Roa Sadat
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Nancy Hall
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Liang Zhao
- Precision Medicine Research Center, Taihe Hospital, Shiyan City, China
| | - Kwesi Marshall
- Tropical Metabolism Research Unit, Caribbean Institute for Health Research, University of the West Indies, Mona, Jamaica
| | - Thaddaeus May
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Marvin E Reid
- Tropical Metabolism Research Unit, Caribbean Institute for Health Research, University of the West Indies, Mona, Jamaica
| | - Carolyn Taylor-Bryan
- Tropical Metabolism Research Unit, Caribbean Institute for Health Research, University of the West Indies, Mona, Jamaica
| | - Xueqing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Yongtao Guan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Mark J Manary
- Departments of Paediatrics and Child Health and Community Health, University of Malawi, Blantyre, Malawi
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Indi Trehan
- Departments of Paediatrics and Child Health and Community Health, University of Malawi, Blantyre, Malawi
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Departments of Pediatrics and Global Health, University of Washington, Seattle, WA, USA
| | - Colin A McKenzie
- Tropical Metabolism Research Unit, Caribbean Institute for Health Research, University of the West Indies, Mona, Jamaica
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Kuang W, Zhang X, Zhu W, Lan Z. Ligustrazine modulates renal cysteine biosynthesis in rats exposed to cadmium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:125-132. [PMID: 28710931 DOI: 10.1016/j.etap.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to determine the effect of ligustrazine (TMP) on cadmium (Cd)-induced nephrotoxicity and its relevant mechanism. TMP (50mg/kg) was injected intraperitoneally (i.p.) into rats 1h prior to CdCl2 exposure (at a Cd dose of 0.6mg/kg). TMP reversed Cd-induced nephrotoxicity, evidenced by the relatively normal architecture of the renal cortex. Additionally, TMP alleviated renal oxidative stress of rats that were exposed to Cd, evidenced by the decreased levels of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), elevated levels of glutathione (GSH) and GSH/GSSG (glutathione disulfide) ratios. Furthermore, TMP also raised the decreased levels of S-adenosylmethionine (SAM) and cystathionine involved in cysteine biosynthesis in rats exposed to Cd. Further analysis revealed that TMP treatment upregulated expression of several proteins involved in cysteine biosynthesis including methionine adenosyltransferases (MATs) and cystathionine-beta-synthase (CBS). Taken together, these results suggest that TMP remodeled metabolomics of cysteine biosynthesis in rat kidneys and attenuated Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Wenhua Kuang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100016, China
| | - Xu Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zhou Lan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
9
|
Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, Li C, Li T, Yin Y, Hou Y, Kim SW, Wu G. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res 2015; 60:134-46. [PMID: 25929483 DOI: 10.1002/mnfr.201500031] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/08/2015] [Accepted: 04/23/2015] [Indexed: 01/17/2023]
Abstract
L-Cysteine is a nutritionally semiessential amino acid and is present mainly in the form of L-cystine in the extracellular space. With the help of a transport system, extracellular L-cystine crosses the plasma membrane and is reduced to L-cysteine within cells by thioredoxin and reduced glutathione (GSH). Intracellular L-cysteine plays an important role in cellular homeostasis as a precursor for protein synthesis, and for production of GSH, hydrogen sulfide (H(2)S), and taurine. L-Cysteine-dependent synthesis of GSH has been investigated in many pathological conditions, while the pathway for L-cysteine metabolism to form H(2)S has received little attention with regard to prevention and treatment of disease in humans. The main objective of this review is to highlight the metabolic pathways of L-cysteine catabolism to GSH, H(2)S, and taurine, with special emphasis on therapeutic and nutritional use of L-cysteine to improve the health and well-being of animals and humans.
Collapse
Affiliation(s)
- Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guan Yang
- Department of Animal Science, University of Florida, Gainesville, FL, USA
| | - Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingguo Huang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Rejun Fang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Chongyong Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Guoyao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|