1
|
Xue J, Ye C. The role of lipoylation in mitochondrial adaptation to methionine restriction. Bioessays 2024; 46:e2300218. [PMID: 38616332 DOI: 10.1002/bies.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Dietary methionine restriction (MR) is associated with a spectrum of health-promoting benefits. Being conducive to prevention of chronic diseases and extension of life span, MR can activate integrated responses at metabolic, transcriptional, and physiological levels. However, how the mitochondria of MR influence metabolic phenotypes remains elusive. Here, we provide a summary of cellular functions of methionine metabolism and an overview of the current understanding of effector mechanisms of MR, with a focus on the aspect of mitochondria-mediated responses. We propose that mitochondria can sense and respond to MR through a modulatory role of lipoylation, a mitochondrial protein modification sensitized by MR.
Collapse
Affiliation(s)
- Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
2
|
Daniels SD, Boison D. Bipolar mania and epilepsy pathophysiology and treatment may converge in purine metabolism: A new perspective on available evidence. Neuropharmacology 2023; 241:109756. [PMID: 37820933 PMCID: PMC10841508 DOI: 10.1016/j.neuropharm.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Decreased ATPergic signaling is an increasingly recognized pathophysiology in bipolar mania disease models. In parallel, adenosine deficit is increasingly recognized in epilepsy pathophysiology. Under-recognized ATP and/or adenosine-increasing mechanisms of several antimanic and antiseizure therapies including lithium, valproate, carbamazepine, and ECT suggest a fundamental pathogenic role of adenosine deficit in bipolar mania to match the established role of adenosine deficit in epilepsy. The depletion of adenosine-derivatives within the purine cycle is expected to result in a compensatory increase in oxopurines (uric acid precursors) and secondarily increased uric acid, observed in both bipolar mania and epilepsy. Cortisol-based inhibition of purine conversion to adenosine-derivatives may be reflected in observed uric acid increases and the well-established contribution of cortisol to both bipolar mania and epilepsy pathology. Cortisol-inhibited conversion from IMP to AMP as precursor of both ATP and adenosine may represent a mechanism for treatment resistance common in both bipolar mania and epilepsy. Anti-cortisol therapies may therefore augment other treatments both in bipolar mania and epilepsy. Evidence linking (i) adenosine deficit with a decreased need for sleep, (ii) IMP/cGMP excess with compulsive hypersexuality, and (iii) guanosine excess with grandiose delusions may converge to suggest a novel theory of bipolar mania as a condition characterized by disrupted purine metabolism. The potential for disease-modification and prevention related to adenosine-mediated epigenetic changes in epilepsy may be mirrored in mania. Evaluating the purinergic effects of existing agents and validating purine dysregulation may improve diagnosis and treatment in bipolar mania and epilepsy and provide specific targets for drug development.
Collapse
Affiliation(s)
- Scott D Daniels
- Hutchings Psychiatric Center, New York State Office of Mental Health, Syracuse, NY, 13210, USA
| | - Detlev Boison
- Dept. of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Devi V, Bhushan B, Gupta M, Sethi M, Kaur C, Singh A, Singh V, Kumar R, Rakshit S, Chaudhary DP. Genetic and molecular understanding for the development of methionine-rich maize: a holistic approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1249230. [PMID: 37794928 PMCID: PMC10546030 DOI: 10.3389/fpls.2023.1249230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Maize (Zea mays) is the most important coarse cereal utilized as a major energy source for animal feed and humans. However, maize grains are deficient in methionine, an essential amino acid required for proper growth and development. Synthetic methionine has been used in animal feed, which is costlier and leads to adverse health effects on end-users. Bio-fortification of maize for methionine is, therefore, the most sustainable and environmental friendly approach. The zein proteins are responsible for methionine deposition in the form of δ-zein, which are major seed storage proteins of maize kernel. The present review summarizes various aspects of methionine including its importance and requirement for different subjects, its role in animal growth and performance, regulation of methionine content in maize and its utilization in human food. This review gives insight into improvement strategies including the selection of natural high-methionine mutants, molecular modulation of maize seed storage proteins and target key enzymes for sulphur metabolism and its flux towards the methionine synthesis, expression of synthetic genes, modifying gene codon and promoters employing genetic engineering approaches to enhance its expression. The compiled information on methionine and essential amino acids linked Quantitative Trait Loci in maize and orthologs cereals will give insight into the hotspot-linked genomic regions across the diverse range of maize germplasm through meta-QTL studies. The detailed information about candidate genes will provide the opportunity to target specific regions for gene editing to enhance methionine content in maize. Overall, this review will be helpful for researchers to design appropriate strategies to develop high-methionine maize.
Collapse
Affiliation(s)
- Veena Devi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Bharat Bhushan
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Mamta Gupta
- Division of Biotechnology, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Mehak Sethi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Charanjeet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Alla Singh
- Division of Biotechnology, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Vishal Singh
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Ramesh Kumar
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Sujay Rakshit
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Dharam P. Chaudhary
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| |
Collapse
|
4
|
Antagonization of Ghrelin Suppresses Muscle Protein Deposition by Altering Gut Microbiota and Serum Amino Acid Composition in a Pig Model. BIOLOGY 2022; 11:biology11060840. [PMID: 35741361 PMCID: PMC9220191 DOI: 10.3390/biology11060840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 01/03/2023]
Abstract
Simple Summary This study investigated the effects of the antagonization of ghrelin on muscle protein deposition, eating patterns and gut microbiota in pigs by injecting ghrelin antagonist ([D-Lys3]-GHRP-6) in a short term. We found that the antagonization of ghrelin affected the eating patterns of animals, which resulted in changes in the absorption of amino acids and gut microbiota, and it reduced protein deposition in muscles. We emphasize the important role of ghrelin in promoting muscle protein deposition and provide new clues for future research on improving muscle loss. Abstract Ghrelin is an appetite-stimulating hormone that can increase food intake and has been reported to prevent muscle loss; however, the mechanism is not yet fully understood. In this study, [D-Lys3]-GHRP-6 (GHRP) was used to investigate the effects of the antagonization of ghrelin on muscle protein deposition, eating patterns and gut microbiota in a pig model. We found that the growth performance and muscle fiber cross-sectional area of pigs treated with GHRP were significantly reduced compared with the control (CON) group. Moreover, the levels of serum isoleucine, methionine, arginine and tyrosine in the GHRP group were lower than that of the CON group. The abundance of acetate-producing bacteria (Oscillospiraceae UCG-005, Parabacteroides and Oscillospiraceae NK4A214 group) and acetate concentration in the colons of pigs treated with GHRP were significantly reduced. In addition, the injection of GHRP down-regulated the mRNA expression of MCT-1 and mTOR, and it up-regulated the mRNA expression of HDAC1, FOXO1 and Beclin-1. In summary, the antagonization of ghrelin reduced the concentration of important signal molecules (Arg, Met and Ile) that activate the mTOR pathway, concurrently reduce the concentration of HDAC inhibitors (acetate), promote autophagy and finally reduce protein deposition in muscles.
Collapse
|
5
|
May T, de la Haye B, Nord G, Klatt K, Stephenson K, Adams S, Bollinger L, Hanchard N, Arning E, Bottiglieri T, Maleta K, Manary M, Jahoor F. One-carbon metabolism in children with marasmus and kwashiorkor. EBioMedicine 2022; 75:103791. [PMID: 35030356 PMCID: PMC8761690 DOI: 10.1016/j.ebiom.2021.103791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Kwashiorkor is a childhood syndrome of edematous malnutrition. Its precise nutritional precipitants remain uncertain despite nine decades of study. Remarkably, kwashiorkor's disturbances resemble the effects of experimental diets that are deficient in one-carbon nutrients. This similarity suggests that kwashiorkor may represent a nutritionally mediated syndrome of acute one-carbon metabolism dysfunction. Here we report findings from a cross-sectional exploration of serum one-carbon metabolites in Malawian children. METHODS Blood was collected from children aged 12-60 months before nutritional rehabilitation: kwashiorkor (N = 94), marasmic-kwashiorkor (N = 43) marasmus (N = 118), moderate acute malnutrition (N = 56) and controls (N = 46). Serum concentrations of 16 one-carbon metabolites were quantified using LC/MS techniques, and then compared across participant groups. FINDINGS Twelve of 16 measured one-carbon metabolites differed significantly between participant groups. Measured outputs of one-carbon metabolism, asymmetric dimethylarginine (ADMA) and cysteine, were lower in marasmic-kwashiorkor (median µmol/L (± SD): 0·549 (± 0·217) P = 0·00045 & 90 (± 40) P < 0·0001, respectively) and kwashiorkor (0·557 (± 0·195) P < 0·0001 & 115 (± 50) P < 0·0001), relative to marasmus (0·698 (± 0·212) & 153 (± 42)). ADMA and cysteine were well correlated with methionine in both kwashiorkor and marasmic-kwashiorkor. INTERPRETATION Kwashiorkor and marasmic-kwashiorkor were distinguished by evidence of one-carbon metabolism dysfunction. Correlative observations suggest that methionine deficiency drives this dysfunction, which is implicated in the syndrome's pathogenesis. The hypothesis that kwashiorkor can be prevented by fortifying low quality diets with methionine, along with nutrients that support efficient methionine use, such as choline, requires further investigation. FUNDING The Hickey Family Foundation, the American College of Gastroenterology, the NICHD, and the USDA/ARS.
Collapse
Affiliation(s)
- Thaddaeus May
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA.
| | | | | | - Kevin Klatt
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,Center for Precision Environmental Health, Baylor College of Medicine
| | | | | | - Lucy Bollinger
- Washington University in St. Louis School of Medicine, USA
| | - Neil Hanchard
- National Institutes of Health, USA,National Human Genome Research Institute, Nationl Institutes of Health
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | | | - Mark Manary
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,The University of Malawi College of Medicine, Malawi,Washington University in St. Louis School of Medicine, USA
| | - Farook Jahoor
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA
| |
Collapse
|
6
|
Suryawan A, El-Kadi SW, Nguyen HV, Fiorotto ML, Davis TA. Intermittent Bolus Compared With Continuous Feeding Enhances Insulin and Amino Acid Signaling to Translation Initiation in Skeletal Muscle of Neonatal Pigs. J Nutr 2021; 151:2636-2645. [PMID: 34159368 PMCID: PMC8417931 DOI: 10.1093/jn/nxab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nutrition administered as intermittent bolus feeds rather than continuously promotes greater protein synthesis rates in skeletal muscle and enhances lean growth in a neonatal piglet model. The molecular mechanisms responsible remain unclear. OBJECTIVES We aimed to identify the insulin- and/or amino acid-signaling components involved in the enhanced stimulation of skeletal muscle by intermittent bolus compared to continuous feeding in neonatal pigs born at term. METHODS Term piglets (2-3 days old) were fed equal amounts of sow milk replacer [12.8 g protein and 155 kcal/(kg body weight · d)] by orogastric tube as intermittent bolus meals every 4 hours (INT) or by continuous infusion (CTS). After 21 days, gastrocnemius muscle samples were collected from CTS, INT-0 (before a meal), and INT-60 (60 minutes after a meal) groups (n = 6/group). Insulin- and amino acid-signaling components relevant to mechanistic target of rapamycin complex (mTORC) 1 activation and protein translation were measured. RESULTS Phosphorylation of the insulin receptor, IRS-1, PDK1, mTORC2, pan-Akt, Akt1, Akt2, and TSC2 was 106% to 273% higher in the skeletal muscle of INT-60 piglets than in INT-0 and CTS piglets (P < 0.05), but phosphorylation of PTEN, PP2A, Akt3, ERK1/2, and AMPK did not differ among groups, nor did abundances of PHLPP, SHIP2, and Ubl4A. The association of GATOR2 with Sestrin1/2, but not CASTOR1, was 51% to 52% lower in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05), but the abundances of SLC7A5/LAT1, SLC38A2/SNAT2, SLC38A9, Lamtor1/2, and V-ATPase did not differ. Associations of mTOR with RagA, RagC, and Rheb and phosphorylation of S6K1 and 4EBP1, but not eIF2α and eEF2, were 101% to 176% higher in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05). CONCLUSIONS The enhanced rates of muscle protein synthesis and growth with intermittent bolus compared to continuous feeding in a neonatal piglet model can be explained by enhanced activation of both the insulin- and amino acid-signaling pathways that regulate translation initiation.
Collapse
Affiliation(s)
- Agus Suryawan
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Samer W El-Kadi
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Hanh V Nguyen
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Marta L Fiorotto
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Teresa A Davis
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Bertolo RF. The multifactorial consequences of sulfur amino acid deficiency. Am J Clin Nutr 2021; 114:839-840. [PMID: 34113964 DOI: 10.1093/ajcn/nqab197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
8
|
Elango R. Methionine Nutrition and Metabolism: Insights from Animal Studies to Inform Human Nutrition. J Nutr 2020; 150:2518S-2523S. [PMID: 33000159 DOI: 10.1093/jn/nxaa155] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/16/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Methionine is a nutritionally indispensable amino acid, and is unique among indispensable amino acids due to its sulfur atom. Methionine is involved in cysteine synthesis via the transsulfuration pathway, which is rate limiting for the key antioxidant molecule, glutathione. Methionine is also the primary methyl donor in the body through S-adenosylmethionine via the transmethylation pathway, which is involved in the synthesis of several key metabolites including creatine and phosphatidylcholine. Methionine can also be remethylated from homocysteine, in the presence of betaine via choline and/or folate. Thus methionine demands from a dietary perspective are regulated not only by the presence of cysteine in the body, but also by the demands in vivo for the various metabolites formed from it, and also by the presence of these compounds in foods. Indeed, methionine, cysteine, and the various methyl donors/acceptors vary in human foods, and thus regulate methionine availability, especially under conditions of growth and development. Much of our understanding of methionine nutrition and metabolism arises from experiments in animal models. This is because most animal feed formulations are plant-based and plant sources are relatively low in methionine and cysteine amounts. Thus, this brief review will touch on some broad aspects of human methionine nutrition, including requirements in different life stages, disease, and bioavailability, with some examples from the insights/lessons learned from experiments initially conducted in animals.
Collapse
Affiliation(s)
- Rajavel Elango
- BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada; and the Department of Pediatrics, and School of Population and Public Health, University of British Columbia, British Columbia, Canada
| |
Collapse
|
9
|
Kožich V, Stabler S. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism. J Nutr 2020; 150:2506S-2517S. [PMID: 33000152 DOI: 10.1093/jn/nxaa134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 μmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine β-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Sally Stabler
- Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Ligthart-Melis GC, Engelen MPKJ, Simbo SY, Ten Have GAM, Thaden JJ, Cynober L, Deutz NEP. Metabolic Consequences of Supplemented Methionine in a Clinical Context. J Nutr 2020; 150:2538S-2547S. [PMID: 33000166 DOI: 10.1093/jn/nxaa254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022] Open
Abstract
The central position of methionine (Met) in protein metabolism indicates the importance of this essential amino acid for growth and maintenance of lean body mass. Therefore, Met might be a tempting candidate for supplementation. However, because Met is also the precursor of homocysteine (Hcy), a deficient intake of B vitamins or excessive intake of Met may result in hyperhomocysteinemia (HHcy), which is a risk factor for cardiovascular disease. This review discusses the evidence generated in preclinical and clinical studies on the importance and potentially harmful effects of Met supplementation and elaborates on potential clinical applications of supplemental Met with reference to clinical studies performed over the past 20 y. Recently acquired knowledge about the NOAEL (no observed adverse effect level) of 46.3 mg · kg-1 · d-1 and the LOAEL (lowest observed adverse effect level) of 91 mg · kg-1 · d-1 of supplemented Met will guide the design of future studies to further establish the role of Met as a potential (safe) candidate for nutritional supplementation in clinical applications.
Collapse
Affiliation(s)
- Gerdien C Ligthart-Melis
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Sunday Y Simbo
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Gabrie A M Ten Have
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - John J Thaden
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Luc Cynober
- Department of Clinical Chemistry, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Manta-Vogli PD, Schulpis KH, Loukas YL, Dotsikas Y. Birth weight related essential, non-essential and conditionally essential amino acid blood concentrations in 12,000 breastfed full-term infants perinatally. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:571-579. [DOI: 10.1080/00365513.2020.1818280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Penelope D. Manta-Vogli
- Department of Clinical Nutrition & Dietetics, Agia Sofia Children’s Hospital, Athens, Greece
| | | | - Yannis L. Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
The Effects of Maternal and Postnatal Dietary Methyl Nutrients on Epigenetic Changes that Lead to Non-Communicable Diseases in Adulthood. Int J Mol Sci 2020; 21:ijms21093290. [PMID: 32384688 PMCID: PMC7246552 DOI: 10.3390/ijms21093290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
The risk for non-communicable diseases in adulthood can be programmed by early nutrition. This programming is mediated by changes in expression of key genes in various metabolic pathways during development, which persist into adulthood. These developmental modifications of genes are due to epigenetic alterations in DNA methylation patterns. Recent studies have demonstrated that DNA methylation can be affected by maternal or early postnatal diets. Because methyl groups for methylation reactions come from methionine cycle nutrients (i.e., methionine, choline, betaine, folate), deficiency or supplementation of these methyl nutrients can directly change epigenetic regulation of genes permanently. Although many studies have described the early programming of adult diseases by maternal and infant nutrition, this review discusses studies that have associated early dietary methyl nutrient manipulation with direct effects on epigenetic patterns that could lead to chronic diseases in adulthood. The maternal supply of methyl nutrients during gestation and lactation can alter epigenetics, but programming effects vary depending on the timing of dietary intervention, the type of methyl nutrient manipulated, and the tissue responsible for the phenotype. Moreover, the postnatal manipulation of methyl nutrients can program epigenetics, but more research is needed on whether this approach can rescue maternally programmed offspring.
Collapse
|
13
|
Rasch I, Görs S, Tuchscherer A, Htoo JK, Kuhla B, Metges CC. Substitution of Dietary Sulfur Amino Acids by DL-2-hydroxy-4-Methylthiobutyric Acid Increases Remethylation and Decreases Transsulfuration in Weaned Piglets. J Nutr 2019; 149:432-440. [PMID: 30770540 PMCID: PMC6398387 DOI: 10.1093/jn/nxy296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/29/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND DL-2-hydroxy-4-methylthiobutyric acid (DL-HMTBA), an L-methionine (L-Met) hydroxyl analogue, has been suggested to be a dietary L-Met source. How dietary DL-HMTBA compared with L-Met affects whole-body L-Met kinetics in growing individuals is unknown. OBJECTIVES We determined to what extent DL-HMTBA supplementation of an L-Met-deficient diet affects whole-body L-Met and L-cysteine (L-Cys) kinetics, protein synthesis (PS), and the L-Met incorporation rate in liver protein (L-MetInc) compared with L-Met and DL-Met supplementation in a piglet model. METHODS Forty-five, 28-d-old weaned piglets (male, German Landrace) were allocated to 4 dietary groups: L-Met-deficient diet [Control: 69% of recommended L-Met plus L-Cys supply; 0.22% standardized ileal digestible (SID) L-Met; 0.27% SID L-Cys; n = 12] and Control diet supplemented equimolarly to 100% of recommended intake with either L-Met (n = 12; LMET), DL-Met (n = 11; DLMET), or DL-HMTBA (n = 10; DLHMTBA). At 47 d of age, the piglets were infused with L-[1-13C; methyl-2H3]-Met and [3,3-2H2]-Cys to determine the kinetics and PS rates. Plasma amino acid (AA) concentrations, hepatic mRNA abundances of L-Met cycle and transsulfuration (TS) enzymes, and L-MetInc were measured. RESULTS During feed deprivation, L-Met kinetics did not differ between groups, and were ≤3 times higher in the fed state (P < 0.01). Remethylation (RM) was 31% and 45% higher in DLHMTBA than in DLMET and Control pigs, respectively, and the RM:transmethylation (TM) ratio was 50% higher in DLHMTBA than in LMET (P < 0.05). Furthermore, TS and the TS:TM ratio were 32% lower in DLHMTBA than in LMET (P < 0.05). L-MetInc was 42% lower in DLMET and DLHMTBA than in L-Met-deficient Control pigs, whereas plasma AA and hepatic mRNA abundances were similar among DL-HMTBA-, L-Met-, and DL-Met-supplemented pigs. CONCLUSIONS In piglets, DL-HMTBA compared with L-Met and DL-Met supplementation increases RM and reduces the TS rate to conserve L-Met, but all 3 Met isomers support growth at a comparable rate.
Collapse
Affiliation(s)
- Ilka Rasch
- Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Solvig Görs
- Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology, Dummerstorf, Germany,Nutritional Physiology and Animal Nutrition, Faculty of Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany,Address correspondence to CCM (e-mail: )
| |
Collapse
|
14
|
Robinson JL, McBreairty LE, Randell EW, Harding SV, Bartlett RK, Brunton JA, Bertolo RF. Betaine or folate can equally furnish remethylation to methionine and increase transmethylation in methionine-restricted neonates. J Nutr Biochem 2018; 59:129-135. [PMID: 29986307 DOI: 10.1016/j.jnutbio.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/01/2022]
Abstract
Methionine partitioning between protein turnover and a considerable pool of transmethylation precursors is a critical process in the neonate. Transmethylation yields homocysteine, which is either oxidized to cysteine (i.e., transsulfuration), or is remethylated to methionine by folate- or betaine- (from choline) mediated remethylation pathways. The present investigation quantifies the individual and synergistic importance of folate and betaine for methionine partitioning in neonates. To minimize whole body remethylation, 4-8-d-old piglets were orally fed an otherwise complete diet without remethylation precursors folate, betaine and choline (i.e. methyl-deplete, MD-) (n=18). Dietary methionine was reduced from 0.3 to 0.2 g/(kg∙d) on day-5 to limit methionine availability, and methionine kinetics were assessed during a gastric infusion of [13C1]methionine and [2H3-methyl]methionine. Methionine kinetics were reevaluated 2 d after pigs were rescued with either dietary folate (38 μg/(kg∙d)) (MD + F) (n=6), betaine (235 mg/(kg∙d)) (MD + B) (n=6) or folate and betaine (MD + FB) (n=6). Plasma choline, betaine, dimethylglycine (DMG), folate and cysteine were all diminished or undetectable after 7 d of methyl restriction (P<.05). Post-rescue, plasma betaine and folate concentrations responded to their provision, and homocysteine and glycine concentrations were lower (P<.05). Post-rescue, remethylation and transmethylation rates were~70-80% higher (P<.05), and protein breakdown was spared by 27% (P<.05). However, rescue did not affect transsulfuration (oxidation), plasma methionine, protein synthesis or protein deposition (P>.05). There were no differences among rescue treatments; thus betaine was as effective as folate at furnishing remethylation. Supplemental betaine or folate can furnish the transmethylation requirement during acute protein restriction in the neonate.
Collapse
Affiliation(s)
- Jason L Robinson
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9
| | - Laura E McBreairty
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9
| | - Edward W Randell
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9; Department of Laboratory Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3V6
| | - Scott V Harding
- Diabetes & Nutritional Sciences Division, King's College, London, United Kingdom SE1 9NH
| | - Renee K Bartlett
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9
| | - Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9.
| |
Collapse
|