1
|
Chavda VP, Vuppu S, Balar PC, Mishra T, Bezbaruah R, Teli D, Sharma N, Alom S. Propolis in the management of cardiovascular disease. Int J Biol Macromol 2024; 266:131219. [PMID: 38556227 DOI: 10.1016/j.ijbiomac.2024.131219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Propolis is a resinous compound that is obtained from honey bees. It consists of numerous chemical constituents that impart different therapeutic action. The heart is the core of the body and cardiovascular disease (CVD) is a burden for the human being. This article emphasizes how propolis is fruitful in the management of various CVDs. SCOPE AND APPROACH This review focuses on how various constituents of the propolis (such as terpenes, flavonoids, phenolics, etc.) impart cardio protective actions. KEY FINDING AND CONCLUSION With the support of various clinical trials and research outcomes, it was concluded that propolis owns niche cardio protective properties that can be a boon for various cardiac problems (both in preventive and therapeutic action) such as atherosclerosis, excessive angiogenesis, hypertension, and many more.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India.
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, Society Research lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Pankti C Balar
- Pharmacy Section, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, Society Research lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Rajashri Bezbaruah
- Institute of Pharmacy, Assam medical College and hospital, Dibrugarh, Assam, India
| | - Divya Teli
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Nikita Sharma
- Department of Biotechnology, Science, Innovation, Society Research lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shahnaz Alom
- Girijananda Chowdhury Institute of Pharmaceutical Science, Girijananda Chowdhury University, Tezpur, Sonitpur, Assam, India
| |
Collapse
|
2
|
Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms. Pharmaceuticals (Basel) 2023; 16:ph16030450. [PMID: 36986549 PMCID: PMC10059947 DOI: 10.3390/ph16030450] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Cancer is the second most life-threatening disease and has become a global health and economic problem worldwide. Due to the multifactorial nature of cancer, its pathophysiology is not completely understood so far, which makes it hard to treat. The current therapeutic strategies for cancer lack the efficacy due to the emergence of drug resistance and the toxic side effects associated with the treatment. Therefore, the search for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Propolis is a mixture of resinous compounds containing beeswax and partially digested exudates from plants leaves and buds. Its chemical composition varies widely depending on the bee species, geographic location, plant species, and weather conditions. Since ancient times, propolis has been used in many conditions and aliments for its healing properties. Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties. In recent years, extensive in vitro and in vivo studies have suggested that propolis possesses properties against several types of cancers. The present review highlights the recent progress made on the molecular targets and signaling pathways involved in the anticancer activities of propolis. Propolis exerts anticancer effects primarily by inhibiting cancer cell proliferation, inducing apoptosis through regulating various signaling pathways and arresting the tumor cell cycle, inducing autophagy, epigenetic modulations, and further inhibiting the invasion and metastasis of tumors. Propolis targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, β-catenin, ERK1/2, MAPK, and NF-κB. Possible synergistic actions of a combination therapy of propolis with existing chemotherapies are also discussed in this review. Overall, propolis, by acting on diverse mechanisms simultaneously, can be considered to be a promising, multi-targeting, multi-pathways anticancer agent for the treatment of various types of cancers.
Collapse
|
3
|
An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5901191. [PMID: 35754701 PMCID: PMC9232326 DOI: 10.1155/2022/5901191] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
Propolis is a natural compound collected by honeybees from different parts of plants. Honeybees produce a sticky component besides honey by mixing the tree resin and other botanical sources with saliva called propolis or bee glue. Propolis was traditionally used as a wound healing substance, cosmetic, medicine, and many other conditions. Till now, there is no definite curable treatment for most cancers and chemotherapeutic drugs and drugs used for targeted therapies have serious side effects. According to a recent research, natural products are becoming increasingly essential in cancer prevention. Natural products are a great source of potential therapeutic agents, especially in the treatment of cancer. Previous studies have reported that the presence of caffeic acid phenethyl ester (CAPE), artepillin C, and chrysin is responsible for the anticancer potential of propolis. Most of the previous studies suggested that propolis and its active compounds inhibit cancer progression by targeting multiple signaling pathways including phosphoinositide 3-kinases (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling molecules, and induce cell cycle arrest. Induction of apoptosis by propolis is mediated through extrinsic and intrinsic apoptotic pathways. The aim of this review is to highlight and summarize the molecular targets and anticancer potential of propolis and its active compounds on cell survival, proliferation, metastasis, and apoptosis in cancer cells.
Collapse
|
4
|
Freitas AS, Costa M, Pontes O, Seidel V, Proença F, Cardoso SM, Oliveira R, Baltazar F, Almeida-Aguiar C. Selective Cytotoxicity of Portuguese Propolis Ethyl Acetate Fraction towards Renal Cancer Cells. Molecules 2022; 27:molecules27134001. [PMID: 35807247 PMCID: PMC9268251 DOI: 10.3390/molecules27134001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Renal cell carcinoma is the most lethal cancer of the urological system due to late diagnosis and treatment resistance. Propolis, a beehive product, is a valuable natural source of compounds with bioactivities and may be a beneficial addition to current anticancer treatments. A Portuguese propolis sample, its fractions (n-hexane, ethyl acetate, n-butanol and water) and three subfractions (P1–P3), were tested for their toxicity on A498, 786-O and Caki-2 renal cell carcinoma cell lines and the non-neoplastic HK2 kidney cells. The ethyl acetate fraction showed the strongest toxicity against A498 (IC50 = 0.162 µg mL−1) and 786-O (IC50 = 0.271 µg mL−1) cells. With similar toxicity against 786-O, P1 (IC50 = 3.8 µg mL−1) and P3 (IC50 = 3.1 µg mL−1) exhibited greater effect when combined (IC50 = 2.5 µg mL−1). Results support the potential of propolis and its constituents as promising coadjuvants in renal cell carcinoma treatment.
Collapse
Affiliation(s)
- Ana Sofia Freitas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057 Braga, Portugal;
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (M.C.); (O.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/806-909 Guimarães, Portugal
| | - Olívia Pontes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (M.C.); (O.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/806-909 Guimarães, Portugal
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Fernanda Proença
- Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rui Oliveira
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (M.C.); (O.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/806-909 Guimarães, Portugal
- Correspondence: (F.B.); (C.A.-A.); Tel.: +351-253601513 (C.A.-A.)
| | - Cristina Almeida-Aguiar
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
- Correspondence: (F.B.); (C.A.-A.); Tel.: +351-253601513 (C.A.-A.)
| |
Collapse
|
5
|
Cao H, Yang L, Tian R, Wu H, Gu Z, Li Y. Versatile polyphenolic platforms in regulating cell biology. Chem Soc Rev 2022; 51:4175-4198. [PMID: 35535743 DOI: 10.1039/d1cs01165k] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyphenolic materials are a class of fascinating and versatile bioinspired materials for biointerfacial engineering. In particular, due to the presence of active chemical groups, a series of unique physicochemical properties become accessible and tunable of the as-prepared polyphenolic platforms, which could delicately regulate the cell activities via cell-material contact-dependent interactions. More interestingly, polyphenols could also affect the cell behaviors via cell-material contact-independent manner, which arise due to their intrinsically functional characteristics (e.g., antioxidant and photothermal behaviors). As such, a comprehensive understanding on the relationship between material properties and desired biomedical applications, as well as the underlying mechanism at the cellular and molecular level would provide material design principles and accelerate the lab-to-clinic translation of polyphenolic platforms. In this review, we firstly give a brief overview of cell hallmarks governed by surrounding cues, followed by the introduction of polyphenolic material engineering strategies. Subsequently, a detailed discussion on cell-polyphenols contact-dependent interfacial interaction and contact-independent interaction was also carefully provided. Lastly, their biomedical applications were elaborated. We believe that this review could provide guidances for the rational material design of multifunctional polyphenols and extend their application window.
Collapse
Affiliation(s)
- Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Lei Yang
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Rong Tian
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Gu
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Yiwen Li
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Silva H, Francisco R, Saraiva A, Francisco S, Carrascosa C, Raposo A. The Cardiovascular Therapeutic Potential of Propolis-A Comprehensive Review. BIOLOGY 2021; 10:biology10010027. [PMID: 33406745 PMCID: PMC7823408 DOI: 10.3390/biology10010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Propolis, also described as bee glue, is a natural component made up of a resinous mixture of honeybee compounds from multiple botanical sources. The literature has demonstrated a variety of medicinal properties attributed to propolis due to its chemical complexity. However, the positive effects of propolis on cardiovascular health have gained little coverage. Therefore, we aimed to provide an accurate and up-to-date review of the main cardiovascular health benefits of propolis. In particular, we intend to establish the key varieties of propolis and pharmacological compounds with the therapeutic effects that are most encouraging, as well as the physiological processes by which those advantages are accomplished. The Brazilian green and red varieties reveal the greatest number of beneficial activities among the varieties of propolis studied. While much of the cardiovascular beneficial effects appear to derive from the cumulative actions of several compounds working via multiple signaling mechanisms, some individual compounds that may enhance the existing therapeutic arsenal have also shown significant results. It is also worth exploring the prospect of using propolis as food supplements. Abstract Owing to its chemical richness, propolis has a myriad of therapeutic properties. To the authors’ knowledge, this is the first comprehensive review paper on propolis to focus exclusively on its major effects for cardiovascular health. The propolis compound varieties with the most promising therapeutic benefits and their respective physiological mechanisms will be discussed. Propolis displays an anti-atherosclerotic activity, attained through modulation of the plasma lipid profile and through stabilization of the fatty plaque by inhibiting macrophage apoptosis, vascular smooth muscle proliferation and metalloproteinase activity. The antihypertensive effects of propolis probably arise through the combination of several mechanisms, including the suppression of catecholamine synthesis, stimulation of endothelium-dependent vasorelaxation and vascular anti-inflammatory activity. The anti-hemostatic activity of propolis is attributed to the inhibition of platelet plug formation and antifibrinolytic activity. By inhibiting the secretion of proangiogenic factors, propolis suppresses endothelial cell migration and tubulogenesis, exerting antiangiogenic activity. The antioxidant and anti-inflammatory activities are responsible for protection against vascular endothelial and cardiomyocyte dysfunction, mostly by the prevention of oxidative stress. Among the reviewed propolis varieties, the Brazilian green and red varieties show the largest number of beneficial activities. Further research, especially preclinical, should be conducted to assess the cardiovascular benefits of the given varieties with different compositions.
Collapse
Affiliation(s)
- Henrique Silva
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Correspondence: (H.S.); (A.R.)
| | - Rafaela Francisco
- Pharmacological Sciences Department, Faculty of Pharmacy, Universidade de Lisboa, Av Prof Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - Simone Francisco
- Faculty of Medicine, Nutrition Lab—Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Correspondence: (H.S.); (A.R.)
| |
Collapse
|
7
|
Juanes CDC, Souza SMD, Braga VNL, Barreto FS, Aguiar GR, Pimentel KDG, Fechine FV, Dornelas CA. Red propolis and L-lysine on angiogenesis and tumor growth in a new model of hamster cheek pouch inoculated with Walker 256 tumor cells. EINSTEIN-SAO PAULO 2019; 17:eAO4576. [PMID: 31066794 PMCID: PMC6497124 DOI: 10.31744/einstein_journal/2019ao4576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/03/2018] [Indexed: 11/07/2022] Open
Abstract
Objective: To evaluate the effect of red propolis and L-lysine on angiogenesis and tumor growth in a new model of hamster cheek pouch inoculated with Walker 256 tumor cells. Methods: The study consisted of two experiments with four groups each (total: 57 hamsters). In the experiment 1, the animals were inoculated with Walker tumor cells, followed by administration of test substances (red propolis 200mg/5mL/kg or L-lysine 150mg/kg) or control substances (gum arabic 5mL/kg or water 5mL/kg) for 10 days. The animals in the experiment 2 received red propolis, L-lysine, gum arabic or water at the same doses, for 33 days prior to inoculation of Walker tumor cells, followed by 10 days of treatment with the same substances. Based on single-plane images, angiogenesis was quantified (mean vascular area), in percentage, and tumor area (mm2) and perimeter (mm). Results: In the experiment 1, compared to animals receiving water, the mean vascular area expressed in percentage was significantly smaller in animal treated with propolis (p<0.05) and L-lysine (p<0.001). Conclusion: Both red propolis and L-lysine inhibited tumor angiogenesis in the new hamster cheek pouch model when administered after tumor inoculation.
Collapse
|
8
|
Vitali M, Sirri R, Zappaterra M, Zambonelli P, Giannini G, Lo Fiego DP, Davoli R. Functional analysis finds differences on the muscle transcriptome of pigs fed an n-3 PUFA-enriched diet with or without antioxidant supplementations. PLoS One 2019; 14:e0212449. [PMID: 30785965 PMCID: PMC6382273 DOI: 10.1371/journal.pone.0212449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Supplementing pig diets with n-3 polyunsaturated fatty acids (n-3 PUFA) may produce meat products with an increased n-3 fatty acid content, and the combined antioxidants addition could prevent lipid oxidation in the feed. However, to date, the effects of these bioactive compounds at the molecular level in porcine skeletal muscle are mostly unknown. This study aimed to analyse changes in the Longissimus thoracis transcriptome of 35 pigs fed three diets supplemented with: linseed (L); linseed, vitamin E and Selenium (LES) or linseed and plant-derived polyphenols (LPE). Pigs were reared from 80.8 ± 5.6 kg to 151.8 ± 9.9 kg. After slaughter, RNA-Seq was performed and 1182 differentially expressed genes (DEGs) were submitted to functional analysis. The L vs LES comparison did not show differences, while L vs LPE showed 1102 DEGs and LES vs LPE 80 DEGs. LPE compared to the other groups showed the highest number of up-regulated genes involved in preserving muscle metabolism and structure. Results enlighten that the combined supplementation of bioactive lipids (n-3 PUFA from linseed) with plant extracts as a source of polyphenols increases, compared to the only addition of linseed, the expression of genes involved in mRNA metabolic processes and transcriptional regulation, glucose uptake and, finally, in supporting muscle development and physiology. These results improve the knowledge of the biological effect of bioactive compounds in Longissimus thoracis muscle, and sustain the growing interest over their use in pig production.
Collapse
Affiliation(s)
- Marika Vitali
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
| | - Rubina Sirri
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Paolo Zambonelli
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Giulia Giannini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
- Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Roberta Davoli
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
da Silva RC, Batista A, Costa DCFD, Moura-Nunes N, Koury JC, da Costa CA, Resende ÂC, Daleprane JB. Açai (Euterpe oleracea Mart.) seed flour prevents obesity-induced hepatic steatosis regulating lipid metabolism by increasing cholesterol excretion in high-fat diet-fed mice. Food Res Int 2018; 111:408-415. [DOI: 10.1016/j.foodres.2018.05.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 12/12/2022]
|
10
|
Chemical characterization and cytotoxic activity evaluation of Lebanese propolis. Biomed Pharmacother 2017; 95:298-307. [PMID: 28850929 DOI: 10.1016/j.biopha.2017.08.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/28/2017] [Accepted: 08/13/2017] [Indexed: 12/14/2022] Open
Abstract
Chemical composition, anti-proliferative and proapoptotic activity as well as the effect of various fractions of Lebanese propolis on the cell cycle distribution were evaluated on Jurkat leukemic T-cells, glioblastoma U251 cells, and breast adenocarcinoma MDA-MB-231 cells using cytotoxic assays, flow cytometry as well as western blot analysis. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that ferulic acid, chrysin, pinocembrin, galangin are major constituents of the ethanolic crude extract of the Lebanese propolis, while the hexane fraction mostly contains chrysin, pinocembrin, galangin but at similar levels. Furthermore chemical analysis was performed using gas chromatography-mass spectrometry (GC-MS) to identify major compounds in the hexane fraction. Reduction of cell viability was observed in Jurkat cells exposed to the ethanolic crude extract and the hexane fraction, while viability of U251 and MDA-MB-231 cells was only affected upon exposure to the hexane fraction; the other fractions (aqueous phase, methylene chloride, and ethyl acetate) were without effect. Maximum toxic effect was obtained when Jurkat cells were cultivated with 90μg/ml of both the crude extract and hexane faction. Toxicity started early after 24h of incubation and remained till 72h. Interestingly, the decrease in cell viability was accompanied by a significant increase in p53 protein expression levels and PARP cleavage. Cell cycle distribution showed an increase in the SubG0 fraction in Jurkat, U251 and MDA-MB-231 cells after 24h incubation with the hexane fraction. This increase in SubG0 was further investigated in Jurkat cells by annexinV/PI and showed an increase in the percentage of cells in early and late apoptosis as well as necrosis. In conclusion, Lebanese propolis exhibited significant cytotoxicity and anti-proliferative activity promising enough that warrant further investigations on the molecular targets and mechanisms of action of Lebanese propolis.
Collapse
|
11
|
Teixeira TM, da Costa DC, Resende AC, Soulage CO, Bezerra FF, Daleprane JB. Activation of Nrf2-Antioxidant Signaling by 1,25-Dihydroxycholecalciferol Prevents Leptin-Induced Oxidative Stress and Inflammation in Human Endothelial Cells. J Nutr 2017; 147:506-513. [PMID: 28250190 DOI: 10.3945/jn.116.239475] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/26/2016] [Accepted: 02/08/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Obesity is associated with hyperleptinemia and endothelial dysfunction. Hyperleptinemia has been reported to induce both oxidative stress and inflammation by increasing reactive oxygen species production.Objective: The objective of this study was to determine the effects of 1,25-dihydroxycholecalciferol [1,25(OH)2D3] against leptin-induced oxidative stress and inflammation in human endothelial cells.Methods: Small interfering RNA (siRNA) were used to knock down the expression of vitamin D receptor (VDR) in human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 4 h with physiologic (10-10 M) or supraphysiologic (10-7 M) concentrations of 1,25(OH)2D3 and exposed to leptin (10 ng/mL). Superoxide anion production and translocation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and nuclear transcription factor κB (NF-κB) subunit p65 to the nucleus and the activation of their target genes were quantified.Results: Pretreatment of HUVECs with 1,25(OH)2D3 prevented the leptin-induced increase in superoxide anion production (P < 0.05). Pretreatment with 1,25(OH)2D3 further increased NRF2 translocation to the nucleus (by 3-fold; P < 0.05) and increased mRNA expression of superoxide dismutase 2 (SOD2; by 2-fold), glutathione peroxidase (GPX; by 3-fold), NAD(P)H dehydrogenase (quinone) 1 (NQO1; by 4-fold), and heme oxygenase 1 (HMOX1; by 2-fold) (P < 0.05). Leptin doubled the translocation of NF-κB (P < 0.05) to the nucleus and increased (P < 0.05) the upregulation of vascular inflammatory mediators such as monocyte chemoattractant protein 1 (MCP1; by 1-fold), transforming growth factor β (TGF β by 1-fold), and vascular cell adhesion molecule 1 (VCAM1; by 4-fold) (P < 0.05), which were prevented (P < 0.05) by pretreatment with 1,25(OH)2D3 Protective effects of 1,25(OH)2D3 were confirmed to be VDR dependent by using VDR siRNA.Conclusion: Pretreatment with 1,25(OH)2D3 in the presence of a high concentration of leptin has a beneficial effect on HUVECs through the regulation of mediators of antioxidant activity and inflammation.
Collapse
Affiliation(s)
| | | | - Angela C Resende
- Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil; and
| | | | | | | |
Collapse
|
12
|
Diniz C, Suliburska J, Ferreira IMPLVO. New insights into the antiangiogenic and proangiogenic properties of dietary polyphenols. Mol Nutr Food Res 2017; 61. [PMID: 27981783 DOI: 10.1002/mnfr.201600912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022]
Abstract
Polyphenols can be found in natural products of plant origin, including vegetables, fruits, and beverages. A large number of these plant origin compounds are an integral part of the human diet and in the past decade evidence has shown their beneficial properties in human health, by acting in several cell signaling pathways. Among other beneficial effects, polyphenols have been associated with angiogenesis. Increasing evidence highlighting the ability of dietary polyphenols to influence angiogenesis by interfering with multiple signaling pathways is debated. Particular emphasis is given to the mechanisms that ultimately may induce the formation of capillary-like structures (by increasing endothelial cell proliferation, migration, and invasion) or, conversely, may inhibit the steps of angiogenesis leading to the inhibition/regress of vascular development. Dietary polyphenols can, therefore, be viewed as promising nutraceuticals but important aspects have still to be further investigated, to deep knowledge concerning their concentration-mediated effects, effect of specific polyphenols, and respective metabolites, to ensure their appropriate and effective usefulness as proangiogenic or antiangiogenic nutraceuticals.
Collapse
Affiliation(s)
- Carmen Diniz
- LAQV/REQUIMTE-Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Poznan, Poland
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE-Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Martínez-Lara E, Peña A, Calahorra J, Cañuelo A, Siles E. Hydroxytyrosol decreases the oxidative and nitrosative stress levels and promotes angiogenesis through HIF-1 independent mechanisms in renal hypoxic cells. Food Funct 2016; 7:540-8. [PMID: 26608793 DOI: 10.1039/c5fo00928f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the kidney, tissue oxygen tension is comparatively low and this renders this organ more prone to hypoxic injury. In fact, hypoxia has a central role in the development and progression of renal disease. The recovery from this situation is dependent on the degree to which sublethally damaged cells restore normal function. The master regulator of the hypoxic response is hypoxia-inducible factor-1 (HIF-1). HIF-1 activity depends on the HIF-1α subunit level which is regulated by oxygen, nitric oxide (NO), reactive oxygen species and mTOR. Given the antioxidant and antinitrosative properties ascribed to hydroxytyrosol (HT), this study evaluates the impact of this olive oil polyphenol on the response to hypoxia in kidney cells. For this purpose, the human embryonic kidney HEK293T cell line was treated with HT and cultured under sublethal hypoxic conditions. Our results demonstrate that HT treatment decreases both, post-hypoxic reactive oxygen species and NO levels and, consequently, HIF-1α accumulation. However, HT does not affect mTOR activation or the factor inhibiting HIF level but promotes the expression of angiogenic proteins, suggesting that HT activates an adaptive response to hypoxia in a HIF-1α-independent pathway. In fact, this effect could be ascribed to the up-regulation of estrogen-related receptor α. In conclusion, our results suggest that in renal hypoxia, HT treatment might act as an effective preventive therapeutic approach to decrease stress and to improve the adaptive response to this pathological situation.
Collapse
Affiliation(s)
- Esther Martínez-Lara
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Ana Peña
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Jesús Calahorra
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Ana Cañuelo
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Eva Siles
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| |
Collapse
|
14
|
ERK1/2 and HIF1α Are Involved in Antiangiogenic Effect of Polyphenols-Enriched Fraction from Chilean Propolis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:187575. [PMID: 26347785 PMCID: PMC4546973 DOI: 10.1155/2015/187575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/21/2015] [Indexed: 12/04/2022]
Abstract
Propolis has been shown to modulate the angiogenesis in both in vitro and in vivo models. Thus, we aimed to evaluate the antiangiogenic properties of an ethanolic extract of Chilean propolis (EEP) and Pinocembrin (Pn). Migration, formation of capillary-like structures of endothelial cells, and sprouting from rat aortic rings were used to assess the antiangiogenic properties of EEP or Pn. In addition, microRNAs and VEGFA mRNA expression were studied by qPCR. ERK1/2 phosphorylation and HIF1α stabilization were assessed by western blot. EEP or Pn attenuated the migration, the capillary-like tube formation, and the sprouting in the in vitro assays. In addition, the activation of HIF1α and ERK1/2 and the VEGFA mRNA expression was significantly inhibited in a dose-dependent manner. In summary, these results suggest that HIF1α and ERK1/2 phosphorylation could be involved in the antiangiogenic effect of Chilean propolis, but more studies are needed to corroborate these findings.
Collapse
|
15
|
Lopez BC, de Lourenço C, Alves D, Machado D, Lancellotti M, Sawaya A. Antimicrobial and cytotoxic activity of red propolis: an alert for its safe use. J Appl Microbiol 2015; 119:677-87. [DOI: 10.1111/jam.12874] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/25/2015] [Accepted: 06/09/2015] [Indexed: 01/26/2023]
Affiliation(s)
- B.G.-C. Lopez
- Bioscience and Technology of Bioactive Products Postgraduate Program; Pharmacy Course; Department of Plant Biology; Institute of Biology; State University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - C.C. de Lourenço
- Plant Biology Postgraduate Program; Department of Plant Biology; Institute of Biology - State University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - D.A. Alves
- Bioscience and Technology of Bioactive Products Postgraduate Program; Pharmacy Course; Department of Plant Biology; Institute of Biology; State University of Campinas (UNICAMP); Campinas São Paulo Brazil
- LABIOTEC - Biotechnology Laboratory; Department of Biochemistry; Institute of Biology; University of Campinas - UNICAMP; Campinas São Paulo Brazil
| | - D. Machado
- LABIOTEC - Biotechnology Laboratory; Department of Biochemistry; Institute of Biology; University of Campinas - UNICAMP; Campinas São Paulo Brazil
| | - M. Lancellotti
- Bioscience and Technology of Bioactive Products Postgraduate Program; Pharmacy Course; Department of Plant Biology; Institute of Biology; State University of Campinas (UNICAMP); Campinas São Paulo Brazil
- LABIOTEC - Biotechnology Laboratory; Department of Biochemistry; Institute of Biology; University of Campinas - UNICAMP; Campinas São Paulo Brazil
| | - A.C.H.F. Sawaya
- Bioscience and Technology of Bioactive Products Postgraduate Program; Pharmacy Course; Department of Plant Biology; Institute of Biology; State University of Campinas (UNICAMP); Campinas São Paulo Brazil
| |
Collapse
|
16
|
Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:206439. [PMID: 26106433 PMCID: PMC4461776 DOI: 10.1155/2015/206439] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 01/13/2023]
Abstract
The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.
Collapse
|
17
|
Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:639856. [PMID: 25530785 PMCID: PMC4235187 DOI: 10.1155/2014/639856] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/06/2014] [Indexed: 01/24/2023]
Abstract
Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.
Collapse
|
18
|
Antitumoural and antiangiogenic activity of Portuguese propolis in in vitro and in vivo models. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Abstract
Cellulite is traditionally considered a highly prevalent aesthetic condition in women. From a clinical standpoint, it is characterized by a cottage-cheese-like appearance of the skin, which can be most commonly found in certain areas of the body (eg, thighs, buttocks, and legs). Although cellulite is generally asymptomatic, the more severe stages can be accompanied by the appearance of painful nodules and increased local temperature, which are suggestive of an inflammatory reaction occurring in the dermis and in the underlying subcutaneous adipose tissue. Whether cellulite is a real disease or only a disturbing aesthetic issue is still a matter of controversy. This debate notwithstanding, it seems clear from market trends that there is considerable commercial interest in developing effective strategies aimed at reducing the cottage-cheese-like appearance of cellulite areas. Quite disturbingly, the majority of treatment attempts to date have been conducted in an empirical manner and without the application of rigorous scientific methodology. This is likely due--at least in part--to the lack of major, evidence-based pathophysiological insights into the nature of this condition. More stringent regulatory control is needed over commercial products aiming at improving the appearance of cellulite.
Collapse
Affiliation(s)
- Enzo Emanuele
- Living Research s.a.s., Via Monte Grappa 13, I-27038, Robbio (PV), Italy.
| |
Collapse
|
20
|
Cyanidin-3-O-glucoside modulates intracellular redox status and prevents HIF-1 stabilization in endothelial cells in vitro exposed to chronic hypoxia. Toxicol Lett 2014; 226:206-13. [PMID: 24518827 DOI: 10.1016/j.toxlet.2014.01.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 12/30/2022]
Abstract
The term hypoxia refers to conditions characterized by a relative restriction of oxygen supply. It is usually associated to a paradoxical overproduction of reactive oxygen species (ROS) and to the activation of several transcription factors, including HIF-1α, which in turn trigger angiogenic and apoptotic response. In this study we have investigated the mechanisms by which the anthocyanin cyanidin-3-O-glucoside (C3G) modulates hypoxia induced response in human endothelial cells (HUVECs). In fact, hypoxia induces an increase of ROS generation in HUVECs paralleled by a loss of antioxidant cellular capacity. According to the observed increase of HO-1 mRNA expression, pretreatment of C3G to HUVEC reduces the entity of oxidative stress thanks to the activation of cellular antioxidant response. C3G also attenuates HIF-1α protein accumulation conditions supporting the hypothesis of a major role of oxidative stress in the presence of low oxygen. Furthermore, the increased expression of angiogenesis and apoptosis markers (MMP-2 and caspase-3) due to HIF-1α activation by hypoxia is reduced in C3G pretreated cells. Overall, our data suggest that the modulation of intracellular redox status induced by C3G may be an important protective mechanism against endothelial damage in hypoxic conditions.
Collapse
|
21
|
Laquer VT, Hevezi PA, Albrecht H, Chen TS, Zlotnik A, Kelly KM. Microarray analysis of port wine stains before and after pulsed dye laser treatment. Lasers Surg Med 2013; 45:67-75. [PMID: 23440713 DOI: 10.1002/lsm.22087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Neither the pathogenesis of port wine stain (PWS) birthmarks nor tissue effects of pulsed dye laser (PDL) treatment of these lesions is fully understood. There are few published reports utilizing gene expression analysis in human PWS skin. We aim to compare gene expression in PWS before and after PDL, using DNA microarrays that represent most, if not all, human genes to obtain comprehensive molecular profiles of PWS lesions and PDL-associated tissue effects. MATERIALS AND METHODS Five human subjects had PDL treatment of their PWS. One week later, three biopsies were taken from each subject: normal skin (N); untreated PWS (PWS); PWS post-PDL (PWS + PDL). Samples included two lower extremity lesions, two facial lesions, and one facial nodule. High-quality total RNA isolated from skin biopsies was processed and applied to Affymetrix Human gene 1.0ST microarrays for gene expression analysis. We performed a 16 pair-wise comparison identifying either up- or down-regulated genes between N versus PWS and PWS versus PWS + PDL for four of the donor samples. The PWS nodule (nPWS) was analyzed separately. RESULTS There was significant variation in gene expression profiles between individuals. By doing pair-wise comparisons between samples taken from the same donor, we were able to identify genes that may participate in the formation of PWS lesions and PDL tissue effects. Genes associated with immune, epidermal, and lipid metabolism were up-regulated in PWS skin. The nPWS exhibited more profound differences in gene expression than the rest of the samples, with significant differential expression of genes associated with angiogenesis, tumorigenesis, and inflammation. CONCLUSION In summary, gene expression profiles from N, PWS, and PWS + PDL demonstrated significant variation within samples from the same donor and between donors. By doing pair-wise comparisons between samples taken from the same donor and comparing these results between donors, we were able to identify genes that may participate in formation of PWS and PDL effects. Our preliminary results indicate changes in gene expression of angiogenesis-related genes, suggesting that dysregulation of angiogenic signals and/or components may contribute to PWS pathology.
Collapse
Affiliation(s)
- Vivian T Laquer
- Department of Dermatology, University of California, Irvine, Irvine, California, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Southern Brazilian autumnal propolis shows anti-angiogenic activity: An in vitro and in vivo study. Microvasc Res 2013; 88:1-11. [DOI: 10.1016/j.mvr.2013.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 02/24/2013] [Accepted: 03/17/2013] [Indexed: 02/06/2023]
|
23
|
Emerging roles of propolis: antioxidant, cardioprotective, and antiangiogenic actions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:175135. [PMID: 23662115 PMCID: PMC3638596 DOI: 10.1155/2013/175135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 12/29/2022]
Abstract
Propolis has attracted attention in recent years due to its beneficial effects, which make it a potential preventive and therapeutic agent as well as a useful additive in food and cosmetics. The aim of this review is to discuss the growing evidence that propolis may, via a diverse array of biological actions, assist in the prevention of some inflammation-mediated pathologies including cardiovascular disease. The active components of propolis that have been identified so far include polyphenols and flavonoids. These compounds have cardioprotective, vasoprotective, antioxidant, antiatherosclerotic, anti-inflammatory and antiangiogenic actions. Many studies have been undertaken to elucidate the mechanism(s) by which propolis acts, which involve cellular signaling targets and interactions at the genomic level. This review will highlight the effects of propolis that may assist in the prevention of chronic degenerative diseases, such as cardiovascular disease.
Collapse
|