1
|
Pinho LS, Lima PM, Fang F, Cooperstone JL, Favaro-Trindade CS, Campanella OH. Effect of extrusion process conditions on extrudates enriched with carotenoids encapsulated by different methods using gum arabic and vegetable fat as carriers. Int J Biol Macromol 2024; 267:131200. [PMID: 38574910 DOI: 10.1016/j.ijbiomac.2024.131200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Bioactive compounds into extruded foods enhance their nutritional value but they are heat and shear labile and prone to oxidation. This study was aimed to examine the impacts of distinct encapsulation methods on the stability of carotenoids under typical extrusion conditions. The study presents innovative encapsulation methods and investigates the protection efficacy of carotenoids degradation, as well as the effects on the physicochemical characteristics of carotenoid-rich products. Thus, spray drying, spray chilling, and their combination were compared based on their ability to protect carotenoids. Processing temperatures were 110 °C and 140 °C, and shear rates 500 and 2000 1/s. Carotenoid retention was determined, β- and α-carotene retention ranged from 17 to 44 % and 18 to 48 %, respectively. Upon storage at room temperature, the carotenoid content was stable for 15 days, followed by a marked reduction after 30 days. Extrudates enriched microparticles produced by spray chilling and the combined methods exhibited higher carotenoid protection during storage. They also showed better quality attributes, notably bulk density, high water absorption index, color properties, and carotenoid retention. These findings suggest that encapsulation can protect carotenoids during extrusion, and the protection can be tailored to optimize the attributes of the final products.
Collapse
Affiliation(s)
- Lorena Silva Pinho
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Pirassununga, São Paulo, Brazil; Ohio State University, College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, Columbus, OH, United States
| | - Priscilla M Lima
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Pirassununga, São Paulo, Brazil
| | - Fang Fang
- Purdue University, Whistler Center for Carbohydrate Research, Department of Food Science, West Lafayette, IN, United States
| | - Jessica L Cooperstone
- Ohio State University, College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, Columbus, OH, United States; Ohio State University, College of Food, Agricultural, and Environmental Sciences, Department of Horticulture and Crop Science, Columbus, OH, United States
| | - Carmen Sílvia Favaro-Trindade
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Pirassununga, São Paulo, Brazil
| | - Osvaldo H Campanella
- Ohio State University, College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, Columbus, OH, United States.
| |
Collapse
|
2
|
Collignon TE, Webber K, Piasecki J, Rahman ASW, Mondal A, Barbalho SM, Bishayee A. Avocado ( Persea americana Mill) and its phytoconstituents: potential for cancer prevention and intervention. Crit Rev Food Sci Nutr 2023:1-21. [PMID: 37830928 DOI: 10.1080/10408398.2023.2260474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Dietary compounds, including fruits, vegetables, nuts, and spices, have been shown to exhibit anticancer properties due to their high concentrations of vitamins, minerals, fiber, and secondary metabolites, known as phytochemicals. Although emerging studies suggest that avocado (Persea americana Mill) displays antineoplastic properties in addition to numerous other health benefits, current literature lacks an updated comprehensive systematic review dedicated to the anticancer effects of avocado. This review aims to explore the cancer-preventive effects of avocados and the underlying molecular mechanisms. The in vitro studies suggest the various avocado-derived products and phytochemicals induced cytotoxicity, reduced cell viability, and inhibited cell proliferation. The in vivo studies revealed reduction in tumor number, size, and volume as well. The clinical studies demonstrated that avocado leaf extract increased free oxygen radical formation in larynx carcinoma tissue. Various avocado products and phytochemicals from the avocado fruit, including avocatin-B, persin, and PaDef defensin, may serve as viable cancer prevention and treatment options based on current literature. Despite many favorable outcomes, past research has been limited in scope, and more extensive and mechanism-based in vivo and randomized clinical studies should be performed before avocado-derived bioactive phytochemicals can be developed as cancer preventive agents.
Collapse
Affiliation(s)
- Taylor E Collignon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Josh Piasecki
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Austin S W Rahman
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, India
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
3
|
Viola E, Buzzanca C, Tinebra I, Settanni L, Farina V, Gaglio R, Di Stefano V. A Functional End-Use of Avocado (cv. Hass) Waste through Traditional Semolina Sourdough Bread Production. Foods 2023; 12:3743. [PMID: 37893636 PMCID: PMC10606098 DOI: 10.3390/foods12203743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, a main goal of research has been to exploit waste from agribusiness industries as new sources of bioactive components, with a view to establishing a circular economy. Non-compliant avocado fruits, as well as avocado seeds and peels, are examples of promising raw materials due to their high nutritional yield and antioxidant profiles. This study aimed to recycle avocado food waste and by-products through dehydration to produce functional bread. For this purpose, dehydrated avocado was reduced to powder form, and bread was prepared with different percentages of the powder (5% and 10%) and compared with a control bread prepared with only semolina. The avocado pulp and by-products did not alter organoleptically after dehydration, and the milling did not affect the products' color and retained the avocado aroma. The firmness of the breads enriched with avocado powder increased due to the additional fat from the avocado, and alveolation decreased. The total phenolic content of the fortified breads was in the range of 2.408-2.656 mg GAE/g, and the antiradical activity was in the range of 35.75-38.235 mmol TEAC/100 g (p < 0.0001), depending on the percentage of fortification.
Collapse
Affiliation(s)
- Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy; (C.B.); (V.D.S.)
| | - Ilenia Tinebra
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Vittorio Farina
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
- Centre for Sustainability and Ecological Transition, University of Palermo, Piazza Marina, 90133 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy; (C.B.); (V.D.S.)
| |
Collapse
|
4
|
Ford NA, Spagnuolo P, Kraft J, Bauer E. Nutritional Composition of Hass Avocado Pulp. Foods 2023; 12:2516. [PMID: 37444254 DOI: 10.3390/foods12132516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Avocados (Persea americana) are a unique fruit that can provide health benefits when included in a healthy diet. As health care moves towards precision health and targeted therapies or preventative medicine, it is critical to understand foods and their dietary components. The nutritional composition and plant physiology of the Hass avocado is strikingly different from other fruits. This paper reviews the nutrient and bioactive composition of the edible portion of the Hass avocado (pulp) reported in the literature and from commercial lab analyses of the current market supply of fresh Hass avocados. These results provide comprehensive data on what nutrients and bioactives are in avocado and the quantity of these nutrients. We discuss the reasons for nutrient composition variations and review some potential health benefits of bioactive compounds found in Hass avocados.
Collapse
Affiliation(s)
- Nikki A Ford
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA
| | - Paul Spagnuolo
- Department of Food Science, University of Guelph, 50 Stone Rd., Guelph, ON N1G2W1, Canada
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, 570 Main Street, Burlington, VT 05405, USA
| | - Ella Bauer
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA
| |
Collapse
|
5
|
Pinho LS, Patel BK, Campanella OH, Rodrigues CEDC, Favaro-Trindade CS. Microencapsulation of Carotenoid-Rich Extract from Guaraná Peels and Study of Microparticle Functionality through Incorporation into an Oatmeal Paste. Foods 2023; 12:foods12061170. [PMID: 36981097 PMCID: PMC10048682 DOI: 10.3390/foods12061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
The peels of guaraná (Paullinia cupana) fruit contain abundant carotenoid content, which has demonstrated health benefits. However, these compounds are unstable in certain conditions, and their application into food products can be changed considering the processing parameters. This study aimed to encapsulate the carotenoid-rich extract from guaraná peels by spray drying (SD), characterize the microparticles, investigate their influence on the pasting properties of oatmeal paste, and evaluate the effects of temperature and shear on carotenoid stability during the preparation of this product. A rheometer with a pasting cell was used to simulate the extrusion conditions. Temperatures of 70, 80, and 90 °C and shear rates of 50 and 100 1/s were the parameters evaluated. Microparticles with a total carotenoid content between 40 and 96 µg/g were obtained. Over the storage period, carotenoid stability, particle size, color, moisture, and water activity varied according to the core:carrier material proportion used. Afterward, the formulation SD1:2 was selected to be incorporated in oatmeal, and the paste viscosity was influenced by the addition of this powder. β-carotene retention was higher than that of lutein following the treatment. The less severe treatment involving a temperature of 70 °C and a shear rate of 50 1/s exhibited better retention of total carotenoids, regardless of whether the carotenoid-rich extract was encapsulated or non-encapsulated. In the other treatments, the thermomechanical stress significantly influenced the stability of the total carotenoid. These results suggest that the addition of encapsulated carotenoids to foods prepared at higher temperatures has the potential for the development of functional and stable products.
Collapse
Affiliation(s)
- Lorena Silva Pinho
- Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.S.P.)
- Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, Ohio State University (OSU), Columbus, OH 43210, USA
| | - Bhavesh K. Patel
- Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, Ohio State University (OSU), Columbus, OH 43210, USA
| | - Osvaldo H. Campanella
- Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, Ohio State University (OSU), Columbus, OH 43210, USA
| | - Christianne Elisabete da Costa Rodrigues
- Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.S.P.)
| | - Carmen Sílvia Favaro-Trindade
- Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.S.P.)
- Correspondence:
| |
Collapse
|
6
|
Borel P, Dangles O, Kopec RE. Fat-soluble vitamin and phytochemical metabolites: Production, gastrointestinal absorption, and health effects. Prog Lipid Res 2023; 90:101220. [PMID: 36657621 DOI: 10.1016/j.plipres.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Consumption of diets rich in fruits and vegetables, which provide some fat-soluble vitamins and many phytochemicals, is associated with a lower risk of developing certain degenerative diseases. It is well accepted that not only the parent compounds, but also their derivatives formed upon enzymatic or nonenzymatic transformations, can produce protective biological effects. These derivatives can be formed during food storage, processing, or cooking. They can also be formed in the lumen of the upper digestive tract during digestion, or via metabolism by microbiota in the colon. This review compiles the known metabolites of fat-soluble vitamins and fat-soluble phytochemicals (FSV and FSP) that have been identified in food and in the human digestive tract, or could potentially be present based on the known reactivity of the parent compounds in normal or pathological conditions, or following surgical interventions of the digestive tract or consumption of xenobiotics known to impair lipid absorption. It also covers the very limited data available on the bioavailability (absorption, intestinal mucosa metabolism) and summarizes their effects on health. Notably, despite great interest in identifying bioactive derivatives of FSV and FSP, studying their absorption, and probing their putative health effects, much research remains to be conducted to understand and capitalize on the potential of these molecules to preserve health.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France.
| | | | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Coe S, Spiro A. Cooking at home to retain nutritional quality and minimise nutrient losses: A focus on vegetables, potatoes and pulses. NUTR BULL 2022; 47:538-562. [PMID: 36299246 DOI: 10.1111/nbu.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 01/04/2023]
Abstract
Cooking at home has experienced a decline in many countries since the mid-20th century. As rates of obesity have increased, there has been an emphasis on more frequent home cooking, including its incorporation into several food-based dietary guidelines around the world as a strategy to improve dietary quality. With the recent trend towards the adoption of diets richer in plant-based foods, many consumers cooking at home may now be cooking plant foods such as vegetables, potatoes and pulses more often. It is, therefore, timely to explore the impact that different home cooking methods have on the range of nutrients (e.g. vitamin C and folate) and bioactive phytochemicals (e.g. carotenoids and polyphenols) that such plant foods provide, and this paper will explore this and whether advice can be tailored to minimise such losses. The impact of cooking on nutritional quality can be both desirable and/or undesirable and can vary according to the cooking method and the nutrient or phytochemical of interest. Cooking methods that expose plant foods to high temperatures and/or water for long periods of time (e.g. boiling) may be the most detrimental to nutrient content, whereas other cooking methods such as steaming or microwaving may help to retain nutrients, particularly those that are water-soluble. Dishes that use cooking liquids may retain nutrients that would have been lost through leaching. It may be helpful to provide the public with more information about better methods to prepare and cook plant foods to minimise any nutrient losses. However, for some nutrients/phytochemicals the insufficient and inconsistent research findings make clear messages around the optimal cooking method difficult, and factors such as bioaccessibility rather than just quantity may also be important to consider.
Collapse
Affiliation(s)
- Sarah Coe
- British Nutrition Foundation, London, UK
| | | |
Collapse
|
8
|
Pereira WFS, De Oliveira Lemos T, Abreu VKG, de Vasconcelos AGD, Pinto RA, Pereira ALF. Effect of partial substitution of tomato for avocado on physico-chemical and sensory aspects of sweet-and-sour sauce. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3965-3975. [PMID: 36193386 PMCID: PMC9525550 DOI: 10.1007/s13197-022-05428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to develop sweet-and-sour sauces with partial substitution of tomato for avocado. Four sauces formulations containing 0%, 25%, 50%, and 75% avocado pulp were prepared. The pH, titratable acidity (TA), sugar: acid ratio, color, consistency, and syneresis analyses were performed. Sensory acceptance was measured by the hedonic, Just-about-right (JAR), and purchase intent scales. Besides, a check-all-that-apply (CATA) form was applied to obtain description data on the formulations. The results of the color parameters showed that treatments containing avocado had higher (p < 0.05) lightness and yellowness. The avocado addition improved the rheological measurements. There was an increase in the consistency of the sauces when the avocado concentration increased. The opposite was observed for syneresis, which decreased (p < 0.05) as the avocado pulp concentration increased. Sensory evaluation revealed good consumer acceptance, and purchase intent analysis showed that most consumers would buy this product. For JAR data, sauces with 50 and 75% avocado had highest values of consistency in the JAR region. The consumers who reported the formulation with 25% avocado to be "not enough" penalized its acceptance, reducing the overall acceptance. Based on the frequency of terms cited by consumers in the CATA, it was possible to consider specific terms for each formulation. The terms pleasant color, good taste, brightness, and good consistency were associated with high overall acceptance. These terms were mostly used for sauces with 25% and 50% avocado. Therefore, sweet-and-sour sauces based on a combination of tomato and avocado has proven to be a viable alternative to traditional ketchup.
Collapse
Affiliation(s)
- Willias Fabio Silva Pereira
- Social Sciences, Health, and Technology Center, Federal University of Maranhão, 65.900-410, Imperatriz, Maranhão Brazil
| | - Tatiana De Oliveira Lemos
- Social Sciences, Health, and Technology Center, Federal University of Maranhão, 65.900-410, Imperatriz, Maranhão Brazil
| | | | | | - Rodrigo Anacleto Pinto
- Social Sciences, Health, and Technology Center, Federal University of Maranhão, 65.900-410, Imperatriz, Maranhão Brazil
| | - Ana Lúcia Fernandes Pereira
- Social Sciences, Health, and Technology Center, Federal University of Maranhão, 65.900-410, Imperatriz, Maranhão Brazil
| |
Collapse
|
9
|
Molteni C, La Motta C, Valoppi F. Improving the Bioaccessibility and Bioavailability of Carotenoids by Means of Nanostructured Delivery Systems: A Comprehensive Review. Antioxidants (Basel) 2022; 11:antiox11101931. [PMID: 36290651 PMCID: PMC9598319 DOI: 10.3390/antiox11101931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids are bioactive compounds provided by the diet playing a key role in maintaining human health. Therefore, they should be ingested daily in an adequate amount. However, even a varied and well-balanced diet does not guarantee an adequate intake, as both the bioaccessibility and bioavailability of the compounds significantly affect their absorption. This review summarizes the main results achieved in improving the bioaccessibility and bioavailability of carotenoids by means of nanostructured delivery systems, discussing in detail the available lipid-based and biopolymeric nanocarriers at present, with a focus on their formulation and functional efficiency. Although the toxicity profile of these innovative delivery systems is not fully understood, especially for long-term intake, these systems are an effective and valuable approach to increase the availability of compounds of nutritional interest.
Collapse
Affiliation(s)
- Camilla Molteni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219593
| | - Fabio Valoppi
- Department of Food and Nutrition, University of Helsinki, PL 66, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
- Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Physics, University of Helsinki, PL 64, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| |
Collapse
|
10
|
A Potential “Vitaminic Strategy” against Caries and Halitosis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus mutans and Fusobacterium nucleatum are two key bacteria of the oral microbiota. Due to their ability to form biofilms on oral tissues, they are both involved in the onset of the most common oral diseases. F. nucleatum is also the principal producer of hydrogen sulfide (H2S), causative of the awkward bad breath of halitosis. In this study, the oral product Vea® Oris, made by vitamin E and capric/caprylic acid only, was evaluated as a potential treatment for the most common oral diseases. Different concentrations of the product were tested against both S. mutans and F. nucleatum. The effect on planktonic and biofilm growth was investigated for both strains, and for F. nucleatum, the influence on H2S production was evaluated. From our data, the product did not relevantly reduce the planktonic growth of both strains, whereas it validly counteracted biofilm assemblage. Moreover, an interesting trend of H2S reduction was highlighted. Overall, these results suggested, on the one hand, a synergistic antimicrobial–antibiofilm action of two Vea® Oris components and, together, potential modulation activity on H2S production. However, the study should be implemented to confirm these only preliminary findings, certainly extending the panel of tested bacteria and using alternative methods of detection.
Collapse
|
11
|
Carotenoid extraction and analysis from blood plasma/serum. Methods Enzymol 2022; 670:423-457. [DOI: 10.1016/bs.mie.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Yao Y, Tan P, Kim JE. Effects of dietary fats on the bioaccessibility and bioavailability of carotenoids: a systematic review and meta-analysis of in vitro studies and randomized controlled trials. Nutr Rev 2021; 80:741-761. [PMID: 34897461 DOI: 10.1093/nutrit/nuab098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Dietary fats are one of the well-known stimulators of carotenoid absorption, but the effects of the quantity and the type of dietary fats on carotenoid absorption have not yet been studied systematically. OBJECTIVE This review aimed to analyze data from both in vitro studies and randomized controlled trials (RCTs) to examine the effects of dietary fats on the bioaccessibility and bioavailability of carotenoids. DATA SOURCES A systematic search of 5 databases (Scopus, PubMed, Embase, CINAHL and the Cochrane Library) was conducted. STUDY SELECTION In vitro studies and RCTs were selected according to the PICOS criteria and were reviewed independently by 2 investigators. DATE EXTRACTION Key study characteristics from the eligible in vitro studies and RCTs were extracted independently by 2 investigators using a standardized table. RESULTS A total of 27 in vitro studies and 12 RCTs were included. The meta-regression of in vitro studies showed that the bioaccessibility of carotenoids, except for lycopene, was positively associated with the concentration of dietary fats. The meta-analysis of RCTs showed that the bioavailability of carotenoids was enhanced when a higher quantity of dietary fats was co-consumed. Moreover, fats rich in unsaturated fatty acids resulted in greater improvement in carotenoid bioavailability (SMD 0.90; 95%CI, 0.69-1.11) as compared with fats rich in saturated fatty acids (SMD 0.27; 95%CI, 0.08-0.47). CONCLUSIONS Co-consuming dietary fats, particularly those rich in unsaturated fatty acids, with carotenoid-rich foods can improve the absorption of carotenoids. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42020188539.
Collapse
Affiliation(s)
- Yuanhang Yao
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Peiyi Tan
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Jung Eun Kim
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
13
|
Yao Y, Goh HM, Kim JE. The Roles of Carotenoid Consumption and Bioavailability in Cardiovascular Health. Antioxidants (Basel) 2021; 10:1978. [PMID: 34943081 PMCID: PMC8750451 DOI: 10.3390/antiox10121978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022] Open
Abstract
Carotenoids are natural pigments generally with a polyene chain consisting of 9-11 double bonds. In recent years, there has been increasing research interest in carotenoids because of their protective roles in cardiovascular diseases (CVDs). While the consumption of carotenoids may have a beneficial effect on CVDs, the literature shows inconsistencies between carotenoid consumption and reductions in the risk of CVDs. Therefore, this review aims to provide a summary of the association between dietary carotenoid intake and the risk of CVDs from published epidemiological studies. Meanwhile, to further elucidate the roles of carotenoid intake in CVD protection, this review outlines the evidence reporting the effects of carotenoids on cardiovascular health from randomized controlled trials by assessing classical CVD risk factors, oxidative stress, inflammatory markers and vascular health-related parameters, respectively. Given the considerable discrepancies among the published results, this review underlines the importance of bioavailability and summarizes the current dietary strategies for improving the bioavailability of carotenoids. In conclusion, this review supports the protective roles of carotenoids against CVDs, possibly by attenuating oxidative stress and mitigating inflammatory response. In addition, this review suggests that the bioavailability of carotenoids should be considered when evaluating the roles of carotenoids in CVD protection.
Collapse
Affiliation(s)
| | | | - Jung Eun Kim
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore; (Y.Y.); (H.M.G.)
| |
Collapse
|
14
|
Jobil AJ, Parameshwari S, Husain FM, Alomar SY, Ahmad N, Albalawi F, Alam P. Scientifically Formulated Avocado Fruit Juice: Phytochemical Analysis, Assessment of Its Antioxidant Potential and Consumer Perception. Molecules 2021; 26:7424. [PMID: 34946505 PMCID: PMC8706416 DOI: 10.3390/molecules26247424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 12/05/2022] Open
Abstract
The study's purpose was to find and create a nourishing fruit juice made from avocado to suit nutritional and health demands. In this regard, the avocado juice was formulated using a statistical technique, and its biochemical and phytochemical characteristics were evaluated. Statistically formulated fruit juice was evaluated for its sensory characteristics, proximate composition, nutrients and vitamins, total phenols and flavonoids, and for its antioxidant ability, in addition to a shelf-life test. The optimal amount of all ingredients included in the mathematical model for the preparation of the juice was 150 g of Persea americana (Avocado) fruit pulp, 12.5 g of honey and 100 mL of water. In fact, the composition of avocado juice was found to have higher phenolic (910.36 ± 0.215 mg EAG g-1/mL) and flavonoid (56.32 ± 1.26 mg QE g-1/ mL) amounts. DPPH, ABTS and FRAP antioxidant assays tended to be high compared with a standard. The shelf-life analysis indicated that the processed avocado juice (V7) had a long shelf life. In view of all these merits, a statistically formulated recipe for avocado fruit juice was recommended for the formulation of the most preferred health drink.
Collapse
Affiliation(s)
- Arackal Jose Jobil
- Department of Food Technology, Saintgits College of Engineering, Pathamuttom, Kottayam 686532, Kerala, India;
- Department of Nutrition and Dietetics, Periyar University, Salem 636011, Tamil Nadu, India
| | | | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Naushad Ahmad
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Fadwa Albalawi
- Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|
15
|
Dreher ML, Cheng FW, Ford NA. A Comprehensive Review of Hass Avocado Clinical Trials, Observational Studies, and Biological Mechanisms. Nutrients 2021; 13:nu13124376. [PMID: 34959933 PMCID: PMC8705026 DOI: 10.3390/nu13124376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
This first comprehensive review of fresh Hass avocados includes 19 clinical trials, five observational studies, and biological mechanisms. We identified four primary avocado health effects: (1) reducing cardiovascular disease risk in healthy overweight or obese adults with dyslipidemia by lowering non-HDL-C profiles, triglycerides, LDL oxidation, small atherogenic LDL particles and promoting postprandial vascular endothelial health for better peripheral blood flow; (2) lowering the risk of being overweight or obese, supporting weight loss, and reducing visceral fat tissue in overweight or obese women; (3) improving cognitive function in older normal-weight adults and in young to middle age overweight or obese adults especially in frontal cortex executive function; and (4) stimulating improved colonic microbiota health in overweight or obese adults by promoting healthier microflora and fecal metabolites. We also identified a unique combination of four Hass avocado nutritional features that appear to be primarily responsible for these health effects: (1) a 6 to 1 unsaturated (rich in oleic acid) to saturated fat ratio similar to olive oil; (2) a source of multifunctional prebiotic and viscous fiber; (3) a relatively low energy density of 1.6 kcal/g (79% of edible Hass avocado weight consists of water and fiber with a creamy, smooth texture); and (4) its oleic acid and water emulsion increases carotenoid absorption from low-fat fruits and vegetables (e.g., salsa or salad) when consumed with avocados. They are also a good source of micronutrients and polyphenols, and are very low in sodium and available carbohydrates supporting secondary health and wellness benefits. Hass avocado health effects are best demonstrated when consumed in a healthy dietary plan such as the Mediterranean diet. More extensive and longer clinical trials are needed to further enhance our understanding of the Hass avocado’s health effects.
Collapse
Affiliation(s)
- Mark L. Dreher
- Nutrition Science Solutions, LLC, 900 S Rainbow Ranch Rd., Wimberley, TX 78676, USA;
| | - Feon W. Cheng
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA;
| | - Nikki A. Ford
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA;
- Correspondence: ; Tel.: +1-949-341-3250
| |
Collapse
|
16
|
Pinho LS, Silva MP, Thomazini M, Cooperstone JL, Campanella OH, Costa Rodrigues CE, Favaro‐Trindade CS. Guaraná (
Paullinia cupana
) by‐product as a source of bioactive compounds and as a natural antioxidant for food applications. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lorena Silva Pinho
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
- Department of Food Science and Technology College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
| | - Marluci Palazzolli Silva
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
| | - Marcelo Thomazini
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
| | - Jessica L. Cooperstone
- Department of Food Science and Technology College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
- Department of Horticulture and Crop Science College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
| | - Osvaldo H. Campanella
- Department of Food Science and Technology College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
| | | | - Carmen Sílvia Favaro‐Trindade
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
17
|
Inroga MMAS, da Silva MM, Cantillano RFF, Paese K, Guterres SS, Flôres SH, de Oliveira Rios A. Apples ( Malus Domestica Borkh) Minimally Processed Biofortified with Nanoencapsulated β-carotene. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1948479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Karina Paese
- Programa De Pós-Graduação Em Ciências Farmacêuticas, Faculdade De Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Sílvia Stanisçuaski Guterres
- Programa De Pós-Graduação Em Ciências Farmacêuticas, Faculdade De Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Simone Hickmann Flôres
- Instituto De Ciência E Tecnologia De Alimentos, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Alessandro de Oliveira Rios
- Instituto De Ciência E Tecnologia De Alimentos, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
18
|
Cervantes-Paz B, Yahia EM. Avocado oil: Production and market demand, bioactive components, implications in health, and tendencies and potential uses. Compr Rev Food Sci Food Saf 2021; 20:4120-4158. [PMID: 34146454 DOI: 10.1111/1541-4337.12784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
Avocado is a subtropical/tropical fruit with creamy texture, peculiar flavor, and high nutritional value. Due to its high oil content, a significant quantity of avocado fruit is used for the production of oil using different methods. Avocado oil is rich in lipid-soluble bioactive compounds, but their content depends on different factors. Several phytochemicals in the oil have been linked to prevention of cancer, age-related macular degeneration, and cardiovascular diseases and therefore have generated an increase in consumer demand for avocado oil. The aim of this review is to critically and systematically analyze the worldwide production and commercialization of avocado oil, its extraction methods, changes in its fat-soluble phytochemical content, health benefits, and new trends and applications. There is a lack of information on the production and commercialization of the different types of avocado oil, but there are abundant data on extraction methods using solvents, centrifugation-assisted aqueous extraction, mechanical extraction by cold pressing (varying concentration and type of enzymes, temperature and time of reaction, and dilution ratio), ultrasound-assisted extraction, and supercritical fluid to enhance the yield and quality of oil. Extensive information is available on the content of fatty acids, although it is limited on carotenoids and chlorophylls. The effect of avocado oil on cancer, diabetes, and cardiovascular diseases has been demonstrated through in vitro and animal studies, but not in humans. Avocado oil continues to be of interest to the food, pharmaceutical, and cosmetic industries and is also generating increased attention in other areas including structured lipids, nanotechnology, and environmental care.
Collapse
Affiliation(s)
- Braulio Cervantes-Paz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, México.,Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Elhadi M Yahia
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, México
| |
Collapse
|
19
|
Mitra S, Rauf A, Tareq AM, Jahan S, Emran TB, Shahriar TG, Dhama K, Alhumaydhi FA, Aljohani ASM, Rebezov M, Uddin MS, Jeandet P, Shah ZA, Shariati MA, Rengasamy KR. Potential health benefits of carotenoid lutein: An updated review. Food Chem Toxicol 2021; 154:112328. [PMID: 34111488 DOI: 10.1016/j.fct.2021.112328] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Carotenoids in food substances are believed to have health benefits by lowering the risk of diseases. Lutein, a carotenoid compound, is one of the essential nutrients available in green leafy vegetables (kale, broccoli, spinach, lettuce, and peas), along with other foods, such as eggs. As nutrition plays a pivotal role in maintaining human health, lutein, as a nutritional substance, confers promising benefits against numerous health issues, including neurological disorders, eye diseases, skin irritation, etc. This review describes the in-depth health beneficial effects of lutein. As yet, a minimal amount of literature has been undertaken to consider all its promising bioactivities. The step-by-step biosynthesis of lutein has also been taken into account in this review. Besides, this review demonstrates the drug interactions of lutein with β-carotene, as well as safety concerns and dosage. The potential benefits of lutein have been assessed against neurological disorders, eye diseases, cardiac complications, microbial infections, skin irritation, bone decay, etc. Additionally, recent studies ascertained the significance of lutein nanoformulations in the amelioration of eye disorders, which are also considered in this review. Moreover, a possible approach for the use of lutein in bioactive functional foods will be discussed.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Shamima Jahan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow, 109316, Russian Federation; Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow, 119991, Russian Federation
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687, Reims Cedex 2, France
| | - Zafar Ali Shah
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University (MSUTM), Russian Federation
| | - Kannan Rr Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Private Bag X1106, Polokwane, Sovenga, 0727, South Africa.
| |
Collapse
|
20
|
Orchard CJ, Cooperstone JL, Gas-Pascual E, Andrade MC, Abud G, Schwartz SJ, Francis DM. Identification and assessment of alleles in the promoter of the Cyc-B gene that modulate levels of β-carotene in ripe tomato fruit. THE PLANT GENOME 2021; 14:e20085. [PMID: 33605077 DOI: 10.1002/tpg2.20085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/05/2020] [Indexed: 05/27/2023]
Abstract
Novel diversity may be mined from databases and de novo sequencing, but functional characterization remains a limiting step to identifying new alleles. Classical breeding approaches augmented by marker-assisted selection offer a means to rapidly assess the function of new variation in coding or regulatory regions to modulate traits. We used the Cyc-B gene (B) of tomato (Solanum lycopersicum L.) for a proof of concept because of its role in the production of β-carotene, a provitamin A carotenoid with importance to human nutrition. We measured carotenoid content in vintage and contemporary varieties and the profiles had a range of β-carotene from 0.2 to 4.06 mg 100 g-1 fresh weight. We characterized variation in B from 84 sequences recovered from public databases and from an additional 29 high β-carotene tomato, S. galapagense S. C. Darwin & Peralta, and S. cheesmaniae (L. Riley) Fosberg accessions. Thirteen unique haplotypes across 1600 bp of sequence 5' to the first ATG were identified with 11 occurring in high β-carotene accessions we sequenced, and additional haplotypes were identified in public data. Phylogenetic analysis suggested that the alleles in high β-carotene varieties were derived from wild species. Association analysis suggested two single nucleotide polymorphisms (SNPs) as the most likely causes of high β-carotene, presumably through their influence on transcription of B that is elevated in ripening fruit. A marker-assisted backcross breeding scheme leveraging SNPs for background genome selection was used to rapidly develop germplasm resources containing different alleles of B in a uniform genetic background. Evaluation demonstrated that distinct promoter haplotypes function as different alleles that can be used to modulate the levels of β-carotene in tomato.
Collapse
Affiliation(s)
- Caleb J Orchard
- Department of Horticulture and Crop Science, The Ohio State University, OARDC, 1680 Madison Ave., Wooster, OH, 44691, USA
| | - Jessica L Cooperstone
- Department of Horticulture and Crop Science, The Ohio State University, OARDC, 1680 Madison Ave., Wooster, OH, 44691, USA
- Department of Food Science and Technology, The Ohio State University, 1739 N. High St., Columbus, OH, 43210, USA
| | - Elisabet Gas-Pascual
- Department of Horticulture and Crop Science, The Ohio State University, OARDC, 1680 Madison Ave., Wooster, OH, 44691, USA
- Present address: Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green Street, Athens, GA, 30602, USA
| | - Marcela C Andrade
- Deparment of Biology, Universidade Federal de Lavras, Campus Universitário, Lavras, Minas Gerais, 37200-000, Brazil
| | - Gabriel Abud
- Department of Horticulture and Crop Science, The Ohio State University, OARDC, 1680 Madison Ave., Wooster, OH, 44691, USA
| | - Steven J Schwartz
- Department of Food Science and Technology, The Ohio State University, 1739 N. High St., Columbus, OH, 43210, USA
| | - David M Francis
- Department of Horticulture and Crop Science, The Ohio State University, OARDC, 1680 Madison Ave., Wooster, OH, 44691, USA
| |
Collapse
|
21
|
Cervantes-Paz B, Yahia EM, Ornelas-Paz JDJ, Victoria-Campos CI, Pérez-Martínez JD, Reyes-Hernández J. Bioaccessibility of fat-soluble bioactive compounds (FSBC) from avocado fruit as affected by ripening and FSBC composition in the food matrix. Food Res Int 2021; 139:109960. [PMID: 33509510 DOI: 10.1016/j.foodres.2020.109960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/10/2020] [Accepted: 11/28/2020] [Indexed: 11/29/2022]
Abstract
Dried fruit pulp and oil from avocado fruit (Persea americana, Cv Hass) at five different ripening stages were digested in vitro to determine the bioaccessibility of several fat-soluble bioactive compounds (FSBC). Viscosity, particle size, ζ-potential and lipolysis were evaluated and related to the bioaccessibility of the tested compounds. Fatty acids were more bioaccessible than carotenoids and tocopherols. The viscosity of gastrointestinal medium was related to the initial fruit firmness and modulated the bioaccessibility of neoxanthin, violaxanthin, lutein and luteoxanthin, while particle size and ζ-potential influenced the bioaccessibility of fatty acids. Lipolysis degree highly altered the bioaccessibility of luteoxanthin, pheophytin b, and α-tocopherol indicating that these digestive events are highly involved in the bioaccessibility of FSBC. In summary, FSBC from avocado fruit are highly bioaccessible, but their bioaccessibility depends on fruit ripening stage and FSBC type and concentration.
Collapse
Affiliation(s)
- Braulio Cervantes-Paz
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias S/N, C.P. 76230 Juriquilla, Querétaro, Mexico; Universidad Autónoma de San Luis Potosí, Instituto de Investigación de Zonas Desérticas, Altair 200, Col. Del Llano, C.P. 78377 San Luis Potosí, SLP, Mexico
| | - Elhadi M Yahia
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias S/N, C.P. 76230 Juriquilla, Querétaro, Mexico.
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, C.P. 31570 Cd, Cuauhtémoc, Chihuahua, Mexico
| | - Claudia Inés Victoria-Campos
- Universidad Autónoma de San Luis Potosí, Facultad de Enfermería y Nutrición, Av. Niño Artillero No. 130, Zona Universitaria, C.P. 78240 San Luis Potosí, Mexico
| | - Jaime David Pérez-Martínez
- Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Manuel Nava No. 6, Zona Universitaria, C.P. 78210 San Luis Potosí, Mexico
| | - Jaime Reyes-Hernández
- Universidad Autónoma de San Luis Potosí, Facultad de Enfermería y Nutrición, Av. Niño Artillero No. 130, Zona Universitaria, C.P. 78240 San Luis Potosí, Mexico
| |
Collapse
|
22
|
Yeluri. Jonnala BR, McSweeney PL, Cotter PD, Zhong S, Sheehan JJ, Kopec RE. Comparison of the carotenoid profiles of commonly consumed smear-ripened cheeses. Lebensm Wiss Technol 2021; 135:110241. [PMID: 33446941 PMCID: PMC7802757 DOI: 10.1016/j.lwt.2020.110241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to identify the carotenoids imparting the orange colour to the rind, and pale yellow color to the core, of selected smear-ripened cheeses. The cheeses investigated were Charloe, Ashbrook, Taleggio, and Limburger, and were sourced from artisanal markets. Samples of the rind and core were extracted using non-polar solvents, followed by saponification to hydrolyze triglycerides to remove fatty acids, and to release carotenoid esters. Extracts were tested using ultra-high pressure liquid chromatograph-diode array detector-high resolution mass spectrometry (UHPLC-DAD-MS and -MS/MS), and identities of α- and β-carotene, lycopene, and β-cryptoxanthin confirmed with authentic standards. β-Carotene was the predominant species in both the rind and core, absorbing ~70% of the signal at 450 nm in all cheese extracts tested, as well as minor quantities of β-cryptoxanthin and α-carotene. Carotenoids unique to the rind included lycopene as well as the rare bacterial carotenoids previously identified in bacterial isolates of cheeses (i.e. decaprenoxanthin, sarcinaxanthin, and echinenone). This is the first detailed characterisation of carotenoids extracted directly from smear-ripened cheeses, and reveals that smear-ripened cheese can contribute both provitamin A carotenoids as well as C50 carotenoids to the human diet.
Collapse
Affiliation(s)
- Bhagya R. Yeluri. Jonnala
- Teagasc Food Research Centre, Moorepark, Fermoy Co.Cork, Ireland. P61C996
- School of Food and Nutrition, University College Cork, Cork, Ireland
| | | | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy Co.Cork, Ireland. P61C996
- APC Microbiome, UCC, Cork, Ireland
| | - Siqiong Zhong
- Human Nutrition Program, The Ohio State University, 1787 Neil Ave., Columbus, Ohio, USA 43210
| | | | - Rachel E. Kopec
- Human Nutrition Program, The Ohio State University, 1787 Neil Ave., Columbus, Ohio, USA 43210
- Foods for Health Discovery Theme, The Ohio State University, 1787 Neil Ave., Columbus, Ohio, USA 43210
| |
Collapse
|
23
|
Mukherjee D, DiVincenzo MJ, Torok M, Choueiry F, Kumar RJ, Deems A, Miller JL, Hinton A, Geraghty C, Maranon JA, Kulp SK, Coss C, Carson WE, Conwell DL, Hart PA, Cooperstone JL, Mace TA. Soy-tomato enriched diet reduces inflammation and disease severity in a pre-clinical model of chronic pancreatitis. Sci Rep 2020; 10:21824. [PMID: 33311549 PMCID: PMC7733503 DOI: 10.1038/s41598-020-78762-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic pancreatitis (CP) is a fibro-inflammatory syndrome in individuals who develop persistent pathological responses to parenchymal injury or stress. Novel therapeutic or dietary interventions that could lessen inflammation in this disease could significantly improve quality of life in patients with CP. Complex dietary foods like soy and tomatoes are composed of active metabolites with anti-inflammatory effects. Data from our group reports that bioactive agents in soy and tomatoes can reduce pro-inflammatory cytokines and suppressive immune populations. Additionally, our team has developed a novel soy-tomato juice currently being studied in healthy individuals with no toxicities, and good compliance and bioavailability. Thus, we hypothesize that administration of a soy-tomato enriched diet can reduce inflammation and severity of CP. C57BL/6 mice were injected intraperitoneally with 50 μg/kg caeurlein (7 hourly injections, twice weekly) for 6 weeks to induce CP. After 4 weeks of caerulein injections, mice were administered a control or a soy-tomato enriched diet for 2 weeks. Disease severity was measured via immunohistochemical analysis of pancreata measuring loss of acini, fibrosis, inflammation, and necrosis. Serum lipase and amylase levels were analyzed at the end of the study. Inflammatory factors in the serum and pancreas, and immune populations in the spleen of mice were analyzed by cytokine multiplex detection, qRT-PCR, and flow cytometry respectively. Infra-red (IR) sensing of mice was used to monitor spontaneous activity and distress of mice. Mice fed a soy-tomato enriched diet had a significantly reduced level of inflammation and severity of CP (p = 0.032) compared to mice administered a control diet with restored serum lipase and amylase levels (p < 0.05). Mice with CP fed a soy-tomato diet had a reduction in inflammatory factors (TNF-α, IL-1β, IL-5) and suppressive immune populations (myeloid-derived suppressor cells; MDSC) compared to control diet fed mice (p < 0.05). Infra-red sensing to monitor spontaneous activity of mice showed that soy-tomato enriched diet improved total activity and overall health of mice with CP (p = 0.055) and CP mice on a control diet were determined to spend more time at rest (p = 0.053). These pre-clinical results indicate that a soy-tomato enriched diet may be a novel treatment approach to reduce inflammation and pain in patients with CP.
Collapse
Affiliation(s)
| | - Mallory J DiVincenzo
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, USA
| | - Molly Torok
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Fouad Choueiry
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Rahul J Kumar
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Anna Deems
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Jenna L Miller
- Department of Food Science and Technology, The Ohio State University, Columbus, USA
| | - Alice Hinton
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, USA
| | - Connor Geraghty
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - Samuel K Kulp
- College of Pharmacy, The Ohio State University, Columbus, USA
| | | | | | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W 12th Ave., Columbus, OH, 43210, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W 12th Ave., Columbus, OH, 43210, USA
| | - Jessica L Cooperstone
- Department of Food Science and Technology, The Ohio State University, Columbus, USA
- Departments of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Thomas A Mace
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA.
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W 12th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Ford NA, Liu AG. The Forgotten Fruit: A Case for Consuming Avocado Within the Traditional Mediterranean Diet. Front Nutr 2020; 7:78. [PMID: 32548125 PMCID: PMC7272688 DOI: 10.3389/fnut.2020.00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
The Mediterranean diet is rich in fruits and vegetables and includes an abundant intake of oleic-acid-rich olive oil. People who adhere to a Mediterranean diet have reduced risk for numerous chronic diseases. As obesity rates rise globally, people who choose to follow a traditional Mediterranean diet and/or make improvements in food choices may reduce their risk of metabolic dysfunction and disease. Incorporating non-traditional fruits and vegetables into the Mediterranean diet could provide greater flexibility in suitable food choices for people who struggle to adhere to recommended healthy dietary patterns, and it could also provide greater adaptability for people living outside of the Mediterranean region who are interested in adopting the diet. The avocado fruit thrives in a Mediterranean climate, is produced in the region, and is rich in oleic acid and fiber, yet avocados are not commonly consumed within the traditional Mediterranean diet. Based on the existing research studies on the health benefits of avocado consumption and the continued investigation into the nutritional attributes of the avocado, a case can be made for including avocados as part of the Mediterranean dietary pattern.
Collapse
Affiliation(s)
- Nikki A Ford
- Avocado Nutrition Center, Mission Viejo, CA, United States
| | - Ann G Liu
- Independent Researcher, Valencia, CA, United States
| |
Collapse
|
25
|
Petry FC, Mercadante AZ. Bile amount affects both the degree of micellarization and the hydrolysis extent of carotenoid esters during in vitro digestion. Food Funct 2020; 10:8250-8262. [PMID: 31720652 DOI: 10.1039/c9fo01453e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carotenoid esters are present in considerable amounts in most fruits, such as in citrus. Although the bioavailability of carotenoid esters is similar or even higher compared to that of free carotenoids, these molecules are generally detected only in the free form in human plasma, suggesting that hydrolysis of carotenoid esters occurs in vivo. However, the available in vitro digestion methods were not able to achieve satisfactory carotenoid ester hydrolysis so far. As bile salts play an essential role in the hydrolytic action of lipolytic enzymes from pancreatin, we evaluated the effect of increasing the bile extract/food ratio from 0.045 to 0.12 (g g-1) on the hydrolysis of β-cryptoxanthin esters from mandarin pulp during in vitro digestion. Additionally, considering the positive effect of lipids on carotenoid bioavailability, the impact of soybean oil addition on carotenoid ester hydrolysis was studied. Finally, bioaccessibility and recovery of 33 carotenoids were assessed by LC-DAD-MS. The hydrolysis extent of β-cryptoxanthin esters enhanced from 29% to 55% by increasing the bile extract/food ratio, but reduced respectively to 28% and 11% by the addition of 1% and 10% oil (p < 0.05). The bioaccessibility of overall carotenoids improved from 19% to 35% by increasing the bile extract/food ratio, along with that of (all-E)-β-carotene (from 19 to 31%) and total (all-E)-β-cryptoxanthin (17% to 49%). Soybean oil addition reduced carotenoid micellarization, regardless of the concentration (p < 0.05). Irrespective of the bile extract amount and oil addition, the bioaccessibility of carotenoids was inversely related to its hydrophobicity, with respect to the following ranking: free xanthophylls > carotenes ≥ xanthophyll esters. Altogether, these results indicate that increasing the bile extract amount is a simple and inexpensive option to improve carotenoid ester hydrolysis in in vitro digestion protocols. Additionally, the constant amounts of bile (and possibly enzymes) of static methods, such as INFOGEST, should be further optimized for experiments involving lipid addition in which carotenoid bioaccessibility is evaluated.
Collapse
Affiliation(s)
- Fabiane Cristina Petry
- Food Research Center (FoRC), Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, SP, Brazil, Campinas, SP, Brazil.
| | | |
Collapse
|
26
|
Jimenez P, Garcia P, Quitral V, Vasquez K, Parra-Ruiz C, Reyes-Farias M, Garcia-Diaz DF, Robert P, Encina C, Soto-Covasich J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Paula Jimenez
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Paula Garcia
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Vilma Quitral
- Escuela De Nutricion Y Dietetica, Facultad De Salud, Universidad Santo Tomas, Santiago, Chile
| | - Karla Vasquez
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Claudia Parra-Ruiz
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Marjorie Reyes-Farias
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Diego F Garcia-Diaz
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Paz Robert
- Departamento De Ciencia De Los Alimentos Y Tecnologia Quimica, Facultad De Ciencias Quimicas Y Farmaceuticas, Universidad De Chile, Santiago, Chile
| | - Cristian Encina
- Departamento De Ciencia De Los Alimentos Y Tecnologia Quimica, Facultad De Ciencias Quimicas Y Farmaceuticas, Universidad De Chile, Santiago, Chile
| | - Jessica Soto-Covasich
- Programa de Doctorado en Biotecnologia, Pontificia Universidad Catolica de Valparaiso-Universidad Tecnica Federico Santa Maria
| |
Collapse
|
27
|
M U N, Mehar JG, Mudliar SN, Shekh AY. Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Compr Rev Food Sci Food Saf 2019; 18:1882-1897. [PMID: 33336956 DOI: 10.1111/1541-4337.12500] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
To combat food scarcity as well as to ensure nutritional food supply for sustainable living of increasing population, microalgae are considered as innovative sources for adequate nutrition. Currently, the dried biomass, various carotenoids, phycocyanin, phycoerythrin, omega fatty acids, and enzymes are being used as food additives, food coloring agents, and food supplements. Apart from nutritional importance, microalgae are finding the place in the market as "functional foods." When compared to the total market size of food and feed products derived from all the possible sources, the market portfolio of microalgae-based products is still smaller, but increasing steadily. On the other hand, the genetic modification of microalgae for enhanced production of commercially important metabolites holds a great potential. However, the success of commercial application of genetically modified (GM) algae will be defined by their safety to human health and environment. In view of this, the present study attempts to highlight the industrially important microalgal metabolites, their production, and application in food, feed, nutraceuticals, pharmaceuticals, and cosmeceuticals. The current and future market trends for microalgal products have been thoroughly discussed. Importantly, the safety pertaining to microalgae cultivation and consumption, and regulatory issues for GM microalgae have also been covered.
Collapse
Affiliation(s)
- Nethravathy M U
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India
| | - Jitendra G Mehar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandeep N Mudliar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ajam Y Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
28
|
Bhuyan DJ, Alsherbiny MA, Perera S, Low M, Basu A, Devi OA, Barooah MS, Li CG, Papoutsis K. The Odyssey of Bioactive Compounds in Avocado ( Persea americana) and Their Health Benefits. Antioxidants (Basel) 2019; 8:E426. [PMID: 31554332 PMCID: PMC6826385 DOI: 10.3390/antiox8100426] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Persea americana, commonly known as avocado, has recently gained substantial popularity and is often marketed as a "superfood" because of its unique nutritional composition, antioxidant content, and biochemical profile. However, the term "superfood" can be vague and misleading, as it is often associated with unrealistic health claims. This review draws a comprehensive summary and assessment of research performed in the last few decades to understand the nutritional and therapeutic properties of avocado and its bioactive compounds. In particular, studies reporting the major metabolites of avocado, their antioxidant as well as bioavailability and pharmacokinetic properties, are summarized and assessed. Furthermore, the potential of avocado in novel drug discovery for the prevention and treatment of cancer, microbial, inflammatory, diabetes, and cardiovascular diseases is highlighted. This review also proposes several interesting future directions for avocado research.
Collapse
Affiliation(s)
- Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Muhammad A Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Saumya Perera
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Amrita Basu
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno 62500, Czech.
| | - Okram Abemsana Devi
- Department of Food Science and Nutrition, College of Community Science, Assam Agricultural University, Assam 785013, India.
| | - Mridula Saikia Barooah
- Department of Food Science and Nutrition, College of Community Science, Assam Agricultural University, Assam 785013, India.
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Konstantinos Papoutsis
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
29
|
Zhong S, Vendrell-Pacheco M, Heskitt B, Chitchumroonchokchai C, Failla M, Sastry SK, Francis DM, Martin-Belloso O, Elez-Martínez P, Kopec RE. Novel Processing Technologies as Compared to Thermal Treatment on the Bioaccessibility and Caco-2 Cell Uptake of Carotenoids from Tomato and Kale-Based Juices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10185-10194. [PMID: 31423782 DOI: 10.1021/acs.jafc.9b03666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This research aimed to measure the impact of novel food processing techniques, i.e., pulsed electric field (PEF) and ohmic heating (OH), on carotenoid bioaccessibility and Caco-2 cell uptake from tomato juice and high-pressure processing (HPP) and PEF on the same attributes from kale-based juices, as compared with raw (nonprocessed) and conventional thermally treated (TT) juices. Lycopene, β-carotene, and lutein were quantitated in juices and the micelle fraction using high-performance liquid chromatography (HPLC)-diode array detection and in Caco-2 cells using HPLC-tandem mass spectrometry. Tomato juice results were as follows: PEF increased lycopene bioaccessibility (1.5 ± 0.39%) by 150% (P = 0.01) but reduced β-carotene bioaccessibility (28 ± 6.2%) by 44% (P = 0.02), relative to raw juice. All processing methods increased lutein uptake. Kale-based juice results were as follows: TT and PEF degraded β-carotene and lutein in the juice. No difference in bioaccessibility or cell uptake was observed. Total delivery, i.e., the summation of bioaccessibility and cell uptake, of lycopene, β-carotene, and lutein was independent of type of processing. Taken together, PEF and OH enhanced total lycopene and lutein delivery from tomato juice to Caco-2 cells as well as TT, and may produce a more desirable product due to other factors (i.e., conservation of heat-labile micronutrients, fresher organoleptic profile). HPP best conserved the carotenoid content and color of kale-based juice and merits further consideration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David M Francis
- Department of Horticulture and Crop Science , The Ohio State University , Wooster , Ohio 44691 , United States
| | - Olga Martin-Belloso
- Department of Food Technology, Agrotecnio Center , University of Lleida , Lleida 25003 , Spain
| | - Pedro Elez-Martínez
- Department of Food Technology, Agrotecnio Center , University of Lleida , Lleida 25003 , Spain
| | | |
Collapse
|
30
|
Functional Foods and Bioactive Compounds: A Review of Its Possible Role on Weight Management and Obesity's Metabolic Consequences. MEDICINES 2019; 6:medicines6030094. [PMID: 31505825 PMCID: PMC6789755 DOI: 10.3390/medicines6030094] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Background: Weight management and obesity prevention is a basic aim of health organizations in order to decrease the prevalence of various metabolic disorders. The aim of the present review article was the evaluation of the possible role of functional foods and their bioactive compounds as alternative way to promote weight management and prevent obesity and its metabolic consequences. Methods: Approximately 100 articles were selected from Scopus, PubMed, Google Scholar, and Science Direct, by using relative key words, and based mainly on recent animal, clinical or epidemiological studies. Results: The literature review highlighted the possible effect of specific functional foods such as coffee, green tea, berries, nuts, olive oil, pomegranate, avocado, and ginger. Specific bioactive compounds of those foods—such as caffeine, catechins, gallic acid, anthocyanins, ascorbic acid, polyphenols, oleuropein, capsaicin, and quercetin—may contribute to weight management, obesity prevention, and obesity’s metabolic consequences. The possible mechanisms include effect on satiety, lipid absorption, fatty acids beta oxidation, stimulation of thermogenesis, etc. Conclusions: Functional foods, as part of a balanced diet, could be useful in the direction of weight management and decrease of obesity’s’ metabolic consequences. However, the scientific evidence is unclear and in most cases controversial and more clinical and epidemiological studies are needed in order to further investigate the mechanisms of their possible effect.
Collapse
|
31
|
Hombali AS, Solon JA, Venkatesh BT, Nair NS, Peña‐Rosas JP. Fortification of staple foods with vitamin A for vitamin A deficiency. Cochrane Database Syst Rev 2019; 5:CD010068. [PMID: 31074495 PMCID: PMC6509778 DOI: 10.1002/14651858.cd010068.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Vitamin A deficiency is a significant public health problem in many low- and middle-income countries, especially affecting young children, women of reproductive age, and pregnant women. Fortification of staple foods with vitamin A has been used to increase vitamin A consumption among these groups. OBJECTIVES To assess the effects of fortifying staple foods with vitamin A for reducing vitamin A deficiency and improving health-related outcomes in the general population older than two years of age. SEARCH METHODS We searched the following international databases with no language or date restrictions: Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 6) in the Cochrane Library; MEDLINE and MEDLINE In Process OVID; Embase OVID; CINAHL Ebsco; Web of Science (ISI) SCI, SSCI, CPCI-exp and CPCI-SSH; BIOSIS (ISI); POPLINE; Bibliomap; TRoPHI; ASSIA (Proquest); IBECS; SCIELO; Global Index Medicus - AFRO and EMRO; LILACS; PAHO; WHOLIS; WPRO; IMSEAR; IndMED; and Native Health Research Database. We also searched clinicaltrials.gov and the International Clinical Trials Registry Platform to identify ongoing and unpublished studies. The date of the last search was 19 July 2018. SELECTION CRITERIA We included individually or cluster-randomised controlled trials (RCTs) in this review. The intervention included fortification of staple foods (sugar, edible oils, edible fats, maize flour or corn meal, wheat flour, milk and dairy products, and condiments and seasonings) with vitamin A alone or in combination with other vitamins and minerals. We included the general population older than two years of age (including pregnant and lactating women) from any country. DATA COLLECTION AND ANALYSIS Two authors independently screened and assessed eligibility of studies for inclusion, extracted data from included studies and assessed their risk of bias. We used standard Cochrane methodology to carry out the review. MAIN RESULTS We included 10 randomised controlled trials involving 4455 participants. All the studies were conducted in low- and upper-middle income countries where vitamin A deficiency was a public health issue. One of the included trials did not contribute data to the outcomes of interest.Three trials compared provision of staple foods fortified with vitamin A versus unfortified staple food, five trials compared provision of staple foods fortified with vitamin A plus other micronutrients versus unfortified staple foods, and two trials compared provision of staple foods fortified with vitamin A plus other micronutrients versus no intervention. No studies compared staple foods fortified with vitamin A alone versus no intervention.The duration of interventions ranged from three to nine months. We assessed six studies at high risk of bias overall. Government organisations, non-governmental organisations, the private sector, and academic institutions funded the included studies; funding source does not appear to have distorted the results.Staple food fortified with vitamin A versus unfortified staple food We are uncertain whether fortifying staple foods with vitamin A alone makes little or no difference for serum retinol concentration (mean difference (MD) 0.03 μmol/L, 95% CI -0.06 to 0.12; 3 studies, 1829 participants; I² = 90%, very low-certainty evidence). It is uncertain whether vitamin A alone reduces the risk of subclinical vitamin A deficiency (risk ratio (RR) 0.45, 95% CI 0.19 to 1.05; 2 studies; 993 participants; I² = 33%, very low-certainty evidence). The certainty of the evidence was mainly affected by risk of bias, imprecision and inconsistency.It is uncertain whether vitamin A fortification reduces clinical vitamin A deficiency, defined as night blindness (RR 0.11, 95% CI 0.01 to 1.98; 1 study, 581 participants, very low-certainty evidence). The certainty of the evidence was mainly affected by imprecision, inconsistency, and risk of bias.Staple foods fortified with vitamin A versus no intervention No studies provided data for this comparison.Staple foods fortified with vitamin A plus other micronutrients versus same unfortified staple foods Fortifying staple foods with vitamin A plus other micronutrients may not increase the serum retinol concentration (MD 0.08 μmol/L, 95% CI -0.06 to 0.22; 4 studies; 1009 participants; I² = 95%, low-certainty evidence). The certainty of the evidence was mainly affected by serious inconsistency and risk of bias.In comparison to unfortified staple foods, fortification with vitamin A plus other micronutrients probably reduces the risk of subclinical vitamin A deficiency (RR 0.27, 95% CI 0.16 to 0.49; 3 studies; 923 participants; I² = 0%; moderate-certainty evidence). The certainty of the evidence was mainly affected by serious risk of bias.Staple foods fortified with vitamin A plus other micronutrients versus no interventionFortification of staple foods with vitamin A plus other micronutrients may increase serum retinol concentration (MD 0.22 μmol/L, 95% CI 0.15 to 0.30; 2 studies; 318 participants; I² = 0%; low-certainty evidence). When compared to no intervention, it is uncertain whether the intervention reduces the risk of subclinical vitamin A deficiency (RR 0.71, 95% CI 0.52 to 0.98; 2 studies; 318 participants; I² = 0%; very low-certainty evidence) . The certainty of the evidence was affected mainly by serious imprecision and risk of bias.No trials reported on the outcomes of all-cause morbidity, all-cause mortality, adverse effects, food intake, congenital anomalies (for pregnant women), or breast milk concentration (for lactating women). AUTHORS' CONCLUSIONS Fortifying staple foods with vitamin A alone may make little or no difference to serum retinol concentrations or the risk of subclinical vitamin A deficiency. In comparison with provision of unfortified foods, provision of staple foods fortified with vitamin A plus other micronutrients may not increase serum retinol concentration but probably reduces the risk of subclinical vitamin A deficiency.Compared to no intervention, staple foods fortified with vitamin A plus other micronutrients may increase serum retinol concentration, although it is uncertain whether the intervention reduces the risk of subclinical vitamin A deficiency as the certainty of the evidence has been assessed as very low.It was not possible to estimate the effect of staple food fortification on outcomes such as mortality, morbidity, adverse effects, congenital anomalies, or breast milk vitamin A, as no trials included these outcomes.The type of funding source for the studies did not appear to distort the results from the analysis.
Collapse
Affiliation(s)
- Aditi S Hombali
- Institute of Mental HealthDepartment of ResearchBlock 7, Buangkok View, Buangkok Green Medical ParkSingaporeSingapore539747
| | | | - Bhumika T Venkatesh
- Prasanna School of Public Health, Manipal Academy of Higher EducationPublic Health Evidence South Asia (PHESA)ManipalUdupiIndia
| | - N Sreekumaran Nair
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER) (Institution of National Importance Under Ministry of Health and Family Welfare, Government of India)Department of Medical Biometrics & Informatics (Biostatistics)4th Floor, Administrative BlockDhanvantri NagarPuducherryIndia605006
| | - Juan Pablo Peña‐Rosas
- World Health OrganizationEvidence and Programme Guidance, Department of Nutrition for Health and Development20 Avenue AppiaGenevaGESwitzerland1211
| | | |
Collapse
|
32
|
Chacón-Ordóñez T, Carle R, Schweiggert R. Bioaccessibility of carotenoids from plant and animal foods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3220-3239. [PMID: 30536912 DOI: 10.1002/jsfa.9525] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/18/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
The frequent consumption of carotenoid-rich foods has been associated with numerous health benefits, such as the supply of provitamin A. To exert these health benefits, carotenoids need to be efficiently liberated from the food matrix, micellized in the small intestine, taken up by the enterocytes and absorbed into the human blood stream. Enormous efforts have been made to better understand these processes. Because human studies are costly, labor-intense and time-consuming, the evaluation of carotenoid liberation and micellization at the laboratory scale using simulated in vitro digestion models has proven to be an important tool for obtaining preliminary results prior to conducting human studies. In particular, the liberation from the food matrix and the intestinal micellization can be mimicked by simulated digestion, yielding an estimate of the so-called bioaccessibility of a carotenoid. In the present review, we provide an overview of the carotenoid digestion process in vivo, the currently used in vitro digestion models and the outcomes of previous bioaccessibility studies, with a special focus on correlations with concomitantly conducted human studies. Furthermore, we advocate for the on-going requirement of better standardized digestion protocols and, in addition, we provide suggestions for the complementation of the acquired knowledge and current nutritional recommendations. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tania Chacón-Ordóñez
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
- Biological Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ralf Schweiggert
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
- Analysis and Technology of Plant-based Foods, Department of Beverage Research, Geisenheim University, Geisenheim, Germany
| |
Collapse
|
33
|
Kourouma V, Mu TH, Zhang M, Sun HN. Effects of cooking process on carotenoids and antioxidant activity of orange-fleshed sweet potato. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Durojaye BO, Riedl KM, Curley RW, Harrison EH. Uptake and metabolism of β-apo-8'-carotenal, β-apo-10'-carotenal, and β-apo-13-carotenone in Caco-2 cells. J Lipid Res 2019; 60:1121-1135. [PMID: 30846527 DOI: 10.1194/jlr.m093161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/20/2022] Open
Abstract
β-Apocarotenoids are eccentric cleavage products of carotenoids formed by chemical and enzymatic oxidations. They occur in foods containing carotenoids and thus might be directly absorbed from the diet. However, there is limited information about their intestinal absorption. The present research examined the kinetics of uptake and metabolism of β-apocarotenoids. Caco-2 cells were grown on 6-well plastic plates until a differentiated cell monolayer was achieved. β-Apocarotenoids were prepared in Tween 40 micelles, delivered to differentiated cells in serum-free medium, and incubated at 37°C for up to 8 h. There was rapid uptake of β-apo-8'-carotenal into cells, and β-apo-8'-carotenal was largely converted to β-apo-8'-carotenoic acid and a minor metabolite that we identified as 5,6-epoxy-β-apo-8'-carotenol. There was also rapid uptake of β-apo-10'-carotenal into cells, and β-apo-10'-carotenal was converted into a major metabolite identified as 5,6-epoxy-β-apo-10'-carotenol and a minor metabolite that is likely a dihydro-β-apo-10'-carotenol. Finally, there was rapid cellular uptake of β-apo-13-carotenone, and this compound was extensively degraded. These results suggest that dietary β-apocarotenals are extensively metabolized in intestinal cells via pathways similar to the metabolism of retinal. Thus, they are likely not absorbed directly from the diet.
Collapse
Affiliation(s)
| | - Kenneth M Riedl
- Food Science and Technology, Ohio State University, Columbus, OH 43210
| | - Robert W Curley
- College of Pharmacy, Ohio State University, Columbus, OH 43210
| | - Earl H Harrison
- Departments of Human Sciences Ohio State University, Columbus, OH 43210
| |
Collapse
|
35
|
Dzakovich MP, Gas-Pascual E, Orchard CJ, Sari EN, Riedl KM, Schwartz SJ, Francis DM, Cooperstone JL. Analysis of Tomato Carotenoids: Comparing Extraction and Chromatographic Methods. J AOAC Int 2019; 102:1069-1079. [PMID: 30786953 DOI: 10.5740/jaoacint.19-0017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Tomatoes (Solanum lycopersicum) are an economically and nutritionally important crop colored by carotenoids such as lycopene and β-carotene. Market diversification and interest in the health benefits of carotenoids has created the desire in plant, food, and nutritional scientists for improved extraction and quantification protocols that avoid the analytical bottlenecks caused by current methods. Objective: Our objective was to compare standard and rapid extraction as well as chromatographic separation methods for tomato carotenoids. Method: Comparison was based on accuracy and the ability to discriminate between alleles and genetic backgrounds. Estimates of the contribution to variance in the presence of genetic and environmental effects were further used for comparison. Selections of cherry and processing tomatoes with varying carotenoid profiles were assessed using both established extraction and HPLC-diode array detector (HPLC-DAD) methods and rapid extraction and ultra-HPLC-DAD (UHPLC-DAD) protocols. Results: Discrimination of alleles in samples extracted rapidly (<5 min/sample) was similar to samples extracted using a standard method (10 min/sample), although carotenoid concentrations were lower due to reduced extraction efficiency. Quantification by HPLC-DAD (21.5 min/sample) and UHPLC-DAD (4.2 min/sample) were comparable, but the UHPLC-DAD method could not separate all carotenoids and isomers of tangerine tomatoes. Random effects modeling indicated that extraction and chromatographic methods explained a small proportion of variance compared with genetic and environmental sources. Conclusions: The rapid extraction and UHPLC-DAD methods could enhance throughput for some applications compared with standard protocols.
Collapse
Affiliation(s)
- Michael P Dzakovich
- The Ohio State University, Department of Horticulture and Crop Science, 2001 Fyffe Court, Columbus, OH 43210
| | - Elisabet Gas-Pascual
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, 1680 Madison Ave, Wooster, OH 44691
| | - Caleb J Orchard
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, 1680 Madison Ave, Wooster, OH 44691
| | - Eka N Sari
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, 1680 Madison Ave, Wooster, OH 44691
| | - Ken M Riedl
- The Ohio State University, Department of Food Science and Technology, 2015 Fyffe Court, Columbus, OH 43210
| | - Steven J Schwartz
- The Ohio State University, Department of Food Science and Technology, 2015 Fyffe Court, Columbus, OH 43210
| | - David M Francis
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, 1680 Madison Ave, Wooster, OH 44691
| | - Jessica L Cooperstone
- The Ohio State University, Department of Horticulture and Crop Science, 2001 Fyffe Court, Columbus, OH 43210
| |
Collapse
|
36
|
Cooperstone JL, Novotny JA, Riedl KM, Cichon MJ, Francis DM, Curley RW, Schwartz SJ, Harrison EH. Limited appearance of apocarotenoids is observed in plasma after consumption of tomato juices: a randomized human clinical trial. Am J Clin Nutr 2018; 108:784-792. [PMID: 30239552 PMCID: PMC6186210 DOI: 10.1093/ajcn/nqy177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/03/2018] [Indexed: 12/28/2022] Open
Abstract
Background Nonvitamin A apocarotenoids occur in foods. Some function as retinoic acid receptor antagonists in vitro, though it is unclear if apocarotenoids are absorbed or accumulate to levels needed to elicit biological function. Objective The aim of this study was to quantify carotenoids and apocarotenoids (β-apo-8'-, -10'-, -12'-, and -14'-carotenal, apo-6'-, -8'-, -10'-, -12'-, and -14'-lycopenal, retinal, acycloretinal, β-apo-13-carotenone, and apo-13-lycopenone) in human plasma after controlled consumption of carotenoid-rich tomato juices. Design Healthy subjects (n = 35) consumed a low-carotenoid diet for 2 wk, then consumed 360 mL of high-β-carotene tomato juice (30.4 mg of β-carotene, 34.5 μg total β-apocarotenoids/d), high-lycopene tomato juice (42.5 mg of lycopene, 119.2 μg total apolycopenoids/d), or a carotenoid-free control (cucumber juice) per day for 4 wk. Plasma was sampled at baseline (after washout) and after 2 and 4 wk, and analyzed for carotenoids and apocarotenoids using high-pressure liquid chromatography (HPLC) and HPLC-tandem mass spectrometry, respectively. The methods used to analyze the apocarotenoids had limits of detection of ∼ 100 pmol/L. Results Apocarotenoids are present in tomato juices at 0.1-0.5% of the parent carotenoids. Plasma lycopene and β-carotene increased (P < 0.001) after consuming high-lycopene and β-carotene tomato juices, respectively, while retinol remained unchanged. β-Apo-13-carotenone was found in the blood of all subjects at every visit, although elevated (P < 0.001) after consuming β-carotene tomato juice for 4 wk (1.01 ± 0.27 nmol/L) compared with both baseline (0.37 ± 0.17 nmol/L) and control (0.46 ± 0.11 nmol/L). Apo-6'-lycopenal was detected or quantifiable in 29 subjects, while β-apo-10'- and 12'-carotenal were detected in 6 and 2 subjects, respectively. No other apolycopenoids or apocarotenoids were detected. Conclusions β-Apo-13-carotenone was the only apocarotenoid that was quantifiable in all subjects, and was elevated in those consuming high-β-carotene tomato juice. Levels were similar to previous reports of all-trans-retinoic acid. Other apocarotenoids are either poorly absorbed or rapidly metabolized or cleared, and so are absent or limited in blood. β-Apo-13-carotenone may form from vitamin A and its presence warrants further investigation. This trial was registered at clinicaltrials.gov as NCT02550483.
Collapse
Affiliation(s)
- Jessica L Cooperstone
- Horticulture and Crop Sciences, The Ohio State University, Columbus, OH,Food Science and Technology, The Ohio State University, Columbus, OH,Address correspondence to JLC (e-mail: )
| | - Janet A Novotny
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Ken M Riedl
- Food Science and Technology, The Ohio State University, Columbus, OH
| | - Morgan J Cichon
- Food Science and Technology, The Ohio State University, Columbus, OH
| | - David M Francis
- Horticulture and Crop Sciences, The Ohio State University, Columbus, OH
| | - Robert W Curley
- Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH
| | - Steven J Schwartz
- Food Science and Technology, The Ohio State University, Columbus, OH
| | - Earl H Harrison
- Human Sciences, Human Nutrition, The Ohio State University, Columbus, OH,Address correspondence to EHH (e-mail: )
| |
Collapse
|
37
|
Ford JL, Green MH, Green JB, Oxley A, Lietz G. Intestinal β-carotene bioconversion in humans is determined by a new single-sample, plasma isotope ratio method and compared with traditional and modified area-under-the-curve methods. Arch Biochem Biophys 2018; 653:121-126. [PMID: 29958897 PMCID: PMC6094152 DOI: 10.1016/j.abb.2018.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 12/02/2022]
Abstract
The vitamin A value (bioefficacy) of provitamin A carotenoids is determined by absorption of the carotenoid (bioavailability) and its subsequent conversion to retinol (bioconversion). Here we show that intestinal bioconversion of β-carotene can be estimated based on analysis of a single plasma sample collected 6 h after subjects ingest a test dose of stable isotope-labeled β-carotene from the ratio of retinyl esters to retinyl esters plus β-carotene. Plasma isotope ratio predictions of bioconversion ranged from 50 to– 93% (mean 76%) for 45 healthy young adults with low vitamin A stores. Results were the same as predictions made by a traditional area-under-the-curve method calculated from 0 to– 8 h or a modified area-under-the-curve method calculated from 0 to– 12 h. The modified method may provide better estimates of bioconversion between 8 and 24 h after ingestion of a carotenoid dose when stable isotopes cannot be used due to cost or logistics. Furthermore, because the plasma isotope ratio method requires only one blood sample and no isolation of triglyceride-rich lipoproteins, its use will facilitate estimation of provitamin A carotenoid bioconversion in human subjects and especially children, in whom repeated blood sampling is not feasible.
Collapse
Affiliation(s)
- Jennifer Lynn Ford
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Michael H Green
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joanne Balmer Green
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Anthony Oxley
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Georg Lietz
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
38
|
Abbaoui B, Lucas CR, Riedl KM, Clinton SK, Mortazavi A. Cruciferous Vegetables, Isothiocyanates, and Bladder Cancer Prevention. Mol Nutr Food Res 2018; 62:e1800079. [PMID: 30079608 DOI: 10.1002/mnfr.201800079] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/11/2018] [Indexed: 12/16/2022]
Abstract
Bladder cancer is a significant health burden due to its high prevalence, risk of mortality, morbidity, and high cost of medical care. Epidemiologic evidence suggests that diets rich in cruciferous vegetables, particularly broccoli, are associated with lower bladder cancer risk. Phytochemicals in cruciferous vegetables, such as glucosinolates, which are enzymatically hydrolyzed to bioactive isothiocyanates, are possible mediators of an anticancer effect. In vitro studies have shown inhibition of bladder cancer cell lines, cell cycle arrest, and induction of apoptosis by these isothiocyanates, in particular sulforaphane and erucin. Although not yet completely understood, many mechanisms of anticancer activity at the steps of cancer initiation, promotion, and progression have been attributed to these isothiocyanates. They target multiple pathways including the adaptive stress response, phase I/II enzyme modulation, pro-growth, pro-survival, pro-inflammatory signaling, angiogenesis, and even epigenetic modulation. Multiple in vivo studies have shown the bioavailability of isothiocyanates and their antitumoral effects. Although human studies are limited, they support oral bioavailability with reasonable plasma and urine concentrations achieved. Overall, both cell and animal studies support a potential role for isothiocyanates in bladder cancer prevention and treatment. Future studies are necessary to examine clinically relevant outcomes and define guidelines on ameliorating the bladder cancer burden.
Collapse
Affiliation(s)
- Besma Abbaoui
- Foods for Health Discovery Theme, The College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Christopher R Lucas
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210.,Department of Mechanical and Aerospace Engineering, The College of Engineering, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Ken M Riedl
- Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Amir Mortazavi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
39
|
Moran NE, Mohn ES, Hason N, Erdman JW, Johnson EJ. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids. Adv Nutr 2018; 9:465-492. [PMID: 30032230 PMCID: PMC6054194 DOI: 10.1093/advances/nmy025] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Carotenoids are orange, yellow, and red lipophilic pigments present in many fruit and vegetables, as well as other food groups. Some carotenoids contribute to vitamin A requirements. The consumption and blood concentrations of specific carotenoids have been associated with reduced risks of a number of chronic conditions. However, the interpretation of large, population-based observational and prospective clinical trials is often complicated by the many extrinsic and intrinsic factors that affect the physiologic response to carotenoids. Extrinsic factors affecting carotenoid bioavailability include food-based factors, such as co-consumed lipid, food processing, and molecular structure, as well as environmental factors, such as interactions with prescription drugs, smoking, or alcohol consumption. Intrinsic, physiologic factors associated with blood and tissue carotenoid concentrations include age, body composition, hormonal fluctuations, and variation in genes associated with carotenoid absorption and metabolism. To most effectively investigate carotenoid bioactivity and to utilize blood or tissue carotenoid concentrations as biomarkers of intake, investigators should either experimentally or statistically control for confounding variables affecting the bioavailability, tissue distribution, and metabolism of carotene and xanthophyll species. Although much remains to be investigated, recent advances have highlighted that lipid co-consumption, baseline vitamin A status, smoking, body mass and body fat distribution, and genetics are relevant covariates for interpreting blood serum or plasma carotenoid responses. These and other intrinsic and extrinsic factors are discussed, highlighting remaining gaps in knowledge and opportunities for future research. To provide context, we review the state of knowledge with regard to the prominent health effects of carotenoids.
Collapse
Affiliation(s)
- Nancy E Moran
- USDA–Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Emily S Mohn
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Noor Hason
- USDA–Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - John W Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Elizabeth J Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| |
Collapse
|
40
|
TELES LFDS, PAIVA ADA, LUZIA LA, LIMA-FERREIRA FELD, CARVALHO CMRGD, RONDÓ PHDC. The relationship between serum retinol concentrations and subclinical infection in rural Brazilian children. REV NUTR 2018. [DOI: 10.1590/1678-98652018000300004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Objective To evaluate the relationship between serum retinol concentrations and subclinical infection in children from rural settlements. Methods A cross-sectional population-based study was carried out in nine rural settlements in the northeastern region of Brazil, involving 118 children aged 6 to 59 months. The relationship between serum retinol and C-Reactive Protein levels, an important marker of infectious and inflammatory processes, was investigated by multiple linear regression, controlling for demographic, socioeconomic and nutritional variables. Serum retinol and C-Reactive Protein were measured, respectively, by High Performance Liquid Chromatography and immunoturbidimetric assay in automated equipment. Results Vitamin A deficiency (retinol <0.70μmol/L) was identified in 9.3% of the children. C-Reactive Protein was the only predictor of retinol concentrations in the final regression model, causing a 0.728μmol/L reduction in retinol concentrations in the studied children (p=0.008). Conclusion Vitamin A deficiency is a problem of mild/moderate severity and measures to control infectious diseases in this population are fundamental to prevent and/or combat this problem.
Collapse
|
41
|
Kopec RE, Failla ML. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.06.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Nair KM, Augustine LF. Food synergies for improving bioavailability of micronutrients from plant foods. Food Chem 2018; 238:180-185. [DOI: 10.1016/j.foodchem.2016.09.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/09/2016] [Accepted: 09/17/2016] [Indexed: 11/16/2022]
|
43
|
Yuan X, Liu X, McClements DJ, Cao Y, Xiao H. Enhancement of phytochemical bioaccessibility from plant-based foods using excipient emulsions: impact of lipid type on carotenoid solubilization from spinach. Food Funct 2018; 9:4352-4365. [DOI: 10.1039/c8fo01118d] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Effects of lipid type in excipient emulsions on the bioaccessibility of carotenoids (lutein and β-carotene) in spinach were studied using a simulated gastrointestinal tract (GIT).
Collapse
Affiliation(s)
- Xi Yuan
- Department of Food Science
- College of Food Science
- South China Agricultural University
- China
- Research Centre of Natural Active Compound Engineering Technology of Guangdong Province
| | - Xiaojuan Liu
- Department of Food Science
- College of Food Science
- South China Agricultural University
- China
- Research Centre of Natural Active Compound Engineering Technology of Guangdong Province
| | | | - Yong Cao
- Department of Food Science
- College of Food Science
- South China Agricultural University
- China
- Research Centre of Natural Active Compound Engineering Technology of Guangdong Province
| | - Hang Xiao
- Department of Food Science University of Massachusetts
- Amherst
- USA
| |
Collapse
|
44
|
Rodrigues DB, Chitchumroonchokchai C, Mariutti LRB, Mercadante AZ, Failla ML. Comparison of Two Static in Vitro Digestion Methods for Screening the Bioaccessibility of Carotenoids in Fruits, Vegetables, and Animal Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11220-11228. [PMID: 29205039 DOI: 10.1021/acs.jafc.7b04854] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In vitro digestion methods are routinely used to assess the bioaccessibility of carotenoids and other dietary lipophilic compounds. Here, we compared the recovery of carotenoids and their efficiency of micellarization in digested fruits, vegetables, egg yolk, and salmon and also in mixed-vegetable salads with and without either egg yolk or salmon using the static INFOGEST method22 and the procedure of Failla et al.16 Carotenoid stability during the simulated digestion was ≥70%. The efficiencies of the partitioning of carotenoids into mixed micelles were similar when individual plant foods and salad meals were digested using the two static methods. Furthermore, the addition of cooked egg or salmon to vegetable salads increased the bioaccessibility of some carotenoids. Our findings showed that the two methods of in vitro digestion generated similar estimates of carotenoid retention and bioaccessibility for diverse foods.
Collapse
Affiliation(s)
- Daniele B Rodrigues
- Department of Food Science, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | | | - Lilian R B Mariutti
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Adriana Z Mercadante
- Department of Food Science, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Mark L Failla
- Human Nutrition Program, Department of Human Sciences, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
45
|
Effect of aggregation form on bioavailability of zeaxanthin in humans: a randomised cross-over study. Br J Nutr 2017; 118:698-706. [PMID: 29185931 DOI: 10.1017/s0007114517002653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Carotenoid bioavailability from plant and animal food is highly variable depending on numerous factors such as the physical deposition form of carotenoids. As the carotenoid zeaxanthin is believed to play an important role in eye and brain health, we sought to compare the human bioavailability of an H-aggregated with that of a J-aggregated deposition form of zeaxanthin encapsulated into identical formulation matrices. A randomised two-way cross-over study with sixteen participants was designed to compare the post-prandial bioavailability of an H-aggregated zeaxanthin and a J-aggregated zeaxanthin dipalmitate formulation, both delivering 10 mg of free zeaxanthin. Carotenoid levels in TAG-rich lipoprotein fractions were analysed over 9·5 h after test meal consumption. Bioavailability from the J-aggregated formulation (AUC=55·9 nmol h/l) was 23 % higher than from the H-aggregated one (AUC=45·5 nmol h/l), although being only marginally significant (P=0·064). Furthermore, the same formulations were subjected to an internationally recognised in vitro digestion protocol to reveal potential strengths and weaknesses of simulated digestions. In agreement with our human study, liberation of zeaxanthin from the J-aggregated formulation into the simulated duodenal fluids was superior to that from the H-aggregated form. However, micellization rate (bioaccessibility) of the J-aggregated zeaxanthin dipalmitate was lower than that of the H-aggregated zeaxanthin, being contradictory to our in vivo results. An insufficient ester cleavage during simulated digestion was suggested to be the root cause for these observations. In brief, combining our in vitro and in vivo observations, the effect of the different aggregation forms on human bioavailability was lower than expected.
Collapse
|
46
|
Desmarchelier C, Borel P. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
White WS, Zhou Y, Crane A, Dixon P, Quadt F, Flendrig LM. Modeling the dose effects of soybean oil in salad dressing on carotenoid and fat-soluble vitamin bioavailability in salad vegetables. Am J Clin Nutr 2017; 106:1041-1051. [PMID: 28814399 PMCID: PMC5611781 DOI: 10.3945/ajcn.117.153635] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/13/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Previously, we showed that vegetable oil is necessary for carotenoid absorption from salad vegetables. Research is needed to better define the dose effect and its interindividual variation for carotenoids and fat-soluble vitamins.Objective: The objective was to model the dose-response relation between the amount of soybean oil in salad dressing and the absorption of 1) carotenoids, phylloquinone, and tocopherols in salad vegetables and 2) retinyl palmitate formed from the provitamin A carotenoids.Design: Women (n = 12) each consumed 5 vegetable salads with salad dressings containing 0, 2, 4, 8, or 32 g soybean oil. Blood was collected at selected time points. The outcome variables were the chylomicron carotenoid and fat-soluble vitamin area under the curve (AUC) and maximum content in the plasma chylomicron fraction (Cmax). The individual-specific and group-average dose-response relations were investigated by fitting linear mixed-effects random coefficient models.Results: Across the entire 0-32-g range, soybean oil was linearly related to the chylomicron AUC and Cmax values for α-carotene, lycopene, phylloquinone, and retinyl palmitate. Across 0-8 g of soybean oil, there was a linear increase in the chylomicron AUC and Cmax values for β-carotene. Across a more limited 0-4-g range of soybean oil, there were minor linear increases in the chylomicron AUC for lutein and α- and total tocopherol. Absorption of all carotenoids and fat-soluble vitamins was highest with 32 g oil (P < 0.002). For 32 g oil, the interindividual rank order of the chylomicron AUCs was consistent across the carotenoids and fat-soluble vitamins (P < 0.0001).Conclusions: Within the linear range, the average absorption of carotenoids and fat-soluble vitamins could be largely predicted by the soybean oil effect. However, the effect varied widely, and some individuals showed a negligible response. There was a global soybean oil effect such that those who absorbed more of one carotenoid and fat-soluble vitamin also tended to absorb more of the others. This trial was registered at clinicaltrials.gov as NCT02867488.
Collapse
Affiliation(s)
| | - Yang Zhou
- Departments of Food Science and Human Nutrition and
| | - Agatha Crane
- Departments of Food Science and Human Nutrition and
| | | | - Frits Quadt
- Quadt Consultancy B.V., Oostvoorne, Netherlands; and
| | | |
Collapse
|
48
|
Thermal and ultraviolet–visible light stability kinetics of co-nanoencapsulated carotenoids. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Cooperstone JL, Goetz HJ, Riedl KM, Harrison EH, Schwartz SJ, Kopec RE. Relative contribution of α-carotene to postprandial vitamin A concentrations in healthy humans after carrot consumption. Am J Clin Nutr 2017; 106:59-66. [PMID: 28515067 PMCID: PMC5486200 DOI: 10.3945/ajcn.116.150821] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/19/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Asymmetric α-carotene, a provitamin A carotenoid, is cleaved to produce retinol (vitamin A) and α-retinol (with negligible vitamin A activity). The vitamin A activity of α-carotene-containing foods is likely overestimated because traditional analytic methods do not separate α-retinol derivatives from active retinol.Objective: This study aimed to accurately characterize intestinal α-carotene cleavage and its relative contribution to postprandial vitamin A in humans after consumption of raw carrots.Design: Healthy adults (n = 12) consumed a meal containing 300 g raw carrot (providing 27.3 mg β-carotene and 18.7 mg α-carotene). Triglyceride-rich lipoprotein fractions of plasma were isolated and extracted, and α-retinyl palmitate (αRP) and retinyl palmitate were measured over 12 h postprandially via high-performance liquid chromatography-tandem mass spectrometry. The complete profile of all α-retinyl esters and retinyl esters was measured at 6 h, and total absorption of α- and β-carotene was calculated.Results: αRP was identified and quantified in every subject. No difference in preference for absorption of β- over α-carotene was observed (adjusting for dose, 28% higher, P = 0.103). After absorption, β-carotene trended toward preferential cleavage compared with α-carotene (22% higher, P = 0.084). A large range of provitamin A carotenoid conversion efficiencies was observed, with α-carotene contributing 12-35% of newly converted vitamin A (predicted contribution = 25.5%). In all subjects, a majority of α-retinol was esterified to palmitic acid (as compared with other fatty acids).Conclusions: α-Retinol is esterified in the enterocyte and transported in the blood analogous to retinol. The percentage of absorption of α-carotene from raw carrots was not significantly different from β-carotene when adjusting for dose, although a trend toward higher cleavage of β-carotene was observed. The results demonstrate large interindividual variability in α-carotene conversion. The contribution of newly absorbed α-carotene to postprandial vitamin A should not be estimated but should be measured directly to accurately assess the vitamin A capacity of α-carotene-containing foods. This trial was registered at clinicaltrials.gov as NCT01432210.
Collapse
Affiliation(s)
| | | | - Ken M Riedl
- Department of Food Science and Technology and
| | - Earl H Harrison
- Division of Human Nutrition, The Ohio State University, Columbus, OH; and
| | | | - Rachel E Kopec
- Division of Human Nutrition, The Ohio State University, Columbus, OH; and .,Security and Quality of Products of Plant Origin, Unité Mixte de Recherche (UMR) 408, French National Institute for Agricultural Research (INRA), Avignon, France
| |
Collapse
|
50
|
Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotechnol 2017; 44:169-180. [DOI: 10.1016/j.copbio.2017.02.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/11/2023]
|