1
|
Feng G, Deng M, Li R, Hou G, Ouyang Q, Jiang X, Liu X, Tang H, Chen F, Pu S, Wan D, Yin Y. Gastrointestinal microbiota and metabolites responses to dietary cereal grains in an adult pig model. Front Microbiol 2024; 15:1442077. [PMID: 39355428 PMCID: PMC11442370 DOI: 10.3389/fmicb.2024.1442077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Corn (C), wheat (W), and paddy rice (PR) are important energy sources and are commonly used in feed production for swine. This study mainly focuses on the variation and regularities of microbiota and metabolites in the gastrointestinal tract (GIT) of pigs in response to C, W, and PR. A total of 18 pigs were allotted into three dietary groups with six replicated pigs and received diets containing C, W, or PR as the sole energy source, respectively. The results showed that digestive parts significantly affected the diversity of microbial communities. Cereal grain sources significantly influenced the β-diversity of microbial communities in the colon and rectum. Campylobacterota and Proteobacteria are mainly distributed in the duodenum, Lactobacillus in the jejunum, and Bacteroidota in the colon and rectum. The W diet increased the Bacteroidota, Spirochaetota, and Prevotellaceae_NK3B31_group abundances and showed the highest concentrations of all short-chain fatty acids (SCFAs) in the hindgut. Fibrobacterota, Bacteroidota, Spirochaetota, Prevotellaceae_NK3B31_group, Prevotella, and Treponema in the colon or rectum were positively correlated with acetate, propionate, butyrate, and total SCFAs. These findings suggested that aerobic bacteria and facultative anaerobes in the foregut will gradually be replaced by anaerobes in the hindgut. The W diet had the best fermentability and was beneficial to the colonization of microbial communities that mainly used carbohydrates. The hindgut flora of the PR diet group may be more balanced with fewer potential pathogenic bacteria. Many microbial communities have been identified to contribute positively to the SCFA production of the hindgut. Collectively, our study revealed the spatial variation regularities of GIT microbial communities in an adult pig model and provided new insights into GIT microbiota and responses of metabolites to cereal grain diets.
Collapse
Affiliation(s)
- Ganyi Feng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Menglong Deng
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Rui Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Gaifeng Hou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qing Ouyang
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xianji Jiang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xiaojie Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Hui Tang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Shihua Pu
- Chongqing Academy of Animal Science, Rongchang, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
2
|
Wu H, Sang S, Weng P, Pan D, Wu Z, Yang J, Liu L, Farag MA, Xiao J, Liu L. Structural, rheological, and gelling characteristics of starch-based materials in context to 3D food printing applications in precision nutrition. Compr Rev Food Sci Food Saf 2023; 22:4217-4241. [PMID: 37583298 DOI: 10.1111/1541-4337.13217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
Starch-based materials have viscoelasticity, viscous film-forming, dough pseudoplasticity, and rheological properties, which possess the structural characteristics (crystal structure, double helix structure, and layered structure) suitable for three-dimensional (3D) food printing inks. 3D food printing technology has significant advantages in customizing personalized and precise nutrition, expanding the range of ingredients, designing unique food appearances, and simplifying the food supply chain. Precision nutrition aims to consider individual nutritional needs and individual differences, which include special food product design and personalized precise nutrition, thus expanding future food resources, then simplifying the food supply chain, and attracting extensive attention in food industry. Different types of starch-based materials with different structures and rheological properties meet different 3D food printing technology requirements. Starch-based materials suitable for 3D food printing technology can accurately deliver and release active substances or drugs. These active substances or drugs have certain regulatory effects on the gut microbiome and diabetes, so as to maintain personalized and accurate nutrition.
Collapse
Affiliation(s)
- Huanqi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Junsi Yang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Orense, Spain
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
3
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Kierończyk B, Rawski M, Mikołajczak Z, Wachowiak R, Homska N, Józefiak D. A Preliminary Study of Chemically Preserved and High-Moisture Whole Maize ( Zea mays L.) Usage in Pekin Duck Nutrition: Effect on Growth Performance and Selected Internal Organ Traits. Animals (Basel) 2021; 11:ani11041018. [PMID: 33916534 PMCID: PMC8065844 DOI: 10.3390/ani11041018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Harvested maize grains characterized by high moisture require the use of additional preservation processes to secure against the microbiota. The most commonly used practice is heat-drying, which is energy- and cost-consuming, as well as environmentally unfriendly. Thus, there is a need to omit these harmful techniques and evaluate the usage of wet maize in animal nutrition. The present study aimed to investigate the effect of the chemically preserved, high-moisture whole maize grain addition in Pekin duck nutrition on their growth performance and selected internal organ and gastrointestinal tract measurements and digesta pH values. The results of the experiment clearly showed that there is a possibility to partially replace commonly used heat-dry maize with the preserved whole-grain form without an adverse effect on the birds’ performances and selected organ morphometrical parameters. However, due to surprising changes in the pH values in the gizzard and caeca, further investigations, including microbiota analyses, are recommended. Abstract This study aimed to investigate the effect of chemically preserved, high-moisture whole maize grain addition in Pekin duck diets on their growth performance and selected internal organ and gastrointestinal tract measurements and digesta pH values. A total of 300 29-d-old male Pekin ducks were randomly distributed into three dietary treatments using five replicate pens per group and 20 birds per pen. The following treatment groups were applied: CON—basal diet, 5HM—5% of high-moisture, chemically preserved whole maize (HM) inclusion, and 10HM—10% of HM addition. The experiment lasted 21 d. The implementation of 5HM or 10HM did not affect (p > 0.05) the growth performance parameters, selected internal organ weights, and the gastrointestinal tract segment weights and lengths. However, significant changes in terms of the gizzard (p = 0.005), ileum (p = 0.030), and caecal (p < 0.001) digesta pH were observed, especially in the case of the 10HM group, which exhibited the greatest increase in pH in the gizzard and caecal digesta and decrease in the ileal digesta pH. The implementation of whole wet maize may be used in waterfowl diets from 29 d of age. Additionally, chemical preservation can efficiently reduce the cost of maize preparation in duck nutrition.
Collapse
Affiliation(s)
- Bartosz Kierończyk
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (Z.M.); (R.W.); (D.J.)
- Correspondence: ; Tel.: +48-691-712-183
| | - Mateusz Rawski
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (M.R.); (N.H.)
| | - Zuzanna Mikołajczak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (Z.M.); (R.W.); (D.J.)
| | - Roksana Wachowiak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (Z.M.); (R.W.); (D.J.)
| | - Natalia Homska
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (M.R.); (N.H.)
| | - Damian Józefiak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (Z.M.); (R.W.); (D.J.)
| |
Collapse
|
5
|
Hong J, Ndou SP, Adams S, Scaria J, Woyengo TA. Canola meal in nursery pig diets: growth performance and gut health. J Anim Sci 2020; 98:skaa338. [PMID: 33098648 PMCID: PMC8060915 DOI: 10.1093/jas/skaa338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
An experiment was conducted to determine the effects of including canola meal (CM) in nursery pig diets on growth performance, immune response, fecal microbial composition, and gut integrity. A total of 200 nursery pigs (initial body weight = 7.00 kg) were obtained in two batches of 100 pigs each. Pigs in each batch were housed in 25 pens (four pigs per pen) and fed five diets in a randomized complete block design. The five diets were corn-soybean meal (SBM)-based basal diets with 0%, 10%, 20%, 30%, or 40% of CM. The diets were fed in three phases: phase 1: day 0 to 7, phase 2: day 7 to 21, and phase 3: day 21 to 42. Diets in each phase were formulated to similar net energy, Ca, and digestible P and amino acid contents. Feed intake and body weight were measured by phase. Immune response and gut integrity parameters were measured at the end of phases 1 and 2. Fecal microbial composition for diets with 0% or 20% CM was determined at the end of phase 2. Overall average daily gain (ADG) responded quadratically (P < 0.05) to increasing dietary level of CM such that ADG was increased by 17% due to an increase in the dietary level of CM from 0% to 20% and was reduced by 16% due to an increase in the dietary level of CM from 20% to 40%. Pigs fed diets with 0% or 40% CM did not differ in overall ADG. Dietary CM tended to quadratically decrease (P = 0.09) serum immunoglobulin A (IgA) level at the end of phase 2 such that serum IgA level tended to reduce with an increase in dietary CM from 0% to 20% and to increase with an increase in dietary CM from 20% to 40%. Dietary CM at 20% decreased (P < 0.05) the relative abundance of Bacteroidetes phylum and tended to increase (P = 0.07) the relative abundance of Firmicutes phylum. Dietary CM linearly increased (P < 0.05) the lactulose to mannitol ratio in the urine by 47% and 49% at the end of phases 1 and 2, respectively, and tended to linearly decrease (P < 0.10) ileal transepithelial electrical resistance at the end of phase 1 by 64%. In conclusion, CM fed in the current study could be included in corn-SBM-based diets for nursery pigs 20% to improve the growth performance and gut microbial composition and reduce immune response. Also, the CM used in the current study could be included in corn-SBM-based diets for nursery pigs at 30% or 40% without compromising growth performance. Dietary CM increased gut permeability, implying that dietary CM at 20% improves the growth performance of weaned pigs through mechanisms other than reducing gut permeability.
Collapse
Affiliation(s)
- Jinsu Hong
- Department of Animal Science, South Dakota State University, Brookings, SD
| | | | - Seidu Adams
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD
| | - Joy Scaria
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD
| | - Tofuko Awori Woyengo
- Department of Animal Science, South Dakota State University, Brookings, SD
- Department of Animal Science, Aarhus University, Tjele, Denmark
| |
Collapse
|
6
|
Purification, Preliminary Structural Characterization, and In Vitro Inhibitory Effect on Digestive Enzymes by β-Glucan from Qingke (Tibetan Hulless Barley). ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/2709536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background and Objective. Qingke (Tibetan hulless barley, Hordeum vulgare L.) contains a high content of β-glucan among all the cereal varieties. Although β-glucan has multiple physiological functions, the physiological function of qingke β-glucan was few studied. In this study, the β-glucan was isolated, purified, determined the structural characterization, and measured the inhibitory activity to enzymes correlating blood sugar and lipid. Methods. β-Glucan was isolated from enzymatic aqueous extract of qingke by using deproteinization, decolorization, DEAE-52 column chromatography, and sepharose CL-4B agarose gel column chromatography. The structure of the β-glucan was determined using FT-IR and 13C-NMR spectra analysis, and molecular mass by use of HPSEC-dRI-LS. The kinematic viscosity was measured. The inhibitory effects of this β-glucan on four enzymes were investigated. Results. This β-glucan had a uniform molecular weight of 201,000 Da with β-(1⟶4) as the main chain and β-(1⟶3) as a side chain. The β-glucan presented a relatively strong inhibitory activity on α-glucosidase, moderate inhibition on invertase, and a weak inhibition on α-amylase, whereas it did not inhibit lipase. Conclusion. The study indicates that the enzymatic β-glucan from qingke has the potential as natural auxiliary hypoglycemic additives in functional medicine or foods.
Collapse
|
7
|
López-Colom P, Estellé J, Bonet J, Coma J, Martín-Orúe SM. Applicability of an Unmedicated Feeding Program Aimed to Reduce the Use of Antimicrobials in Nursery Piglets: Impact on Performance and Fecal Microbiota. Animals (Basel) 2020; 10:ani10020242. [PMID: 32028658 PMCID: PMC7070809 DOI: 10.3390/ani10020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The need for a reduction in the use of antibiotics in livestock to safeguard their efficacy requires the development of alternatives. In this line, the use of alternative by-products or ingredients, with functional properties brings the opportunity to improve pig health and thus, reduce medicalization. Therefore, in the present study, we aimed to evaluate the impact of an alternative feeding program based on unmedicalized diets formulated with fibrous by-products and functional feed ingredients on performance and fecal microbiota of young pigs compared to a common weaner diet supplemented with antibiotics. The alternative feeding program could anticipate the gut development of young piglets, which at the end of the nursery period presented a fecal microbiota more similar to that found in fattening animals. Moreover, piglets in the unmedicalized diets showed a trend to reduce the course of diarrhea immediately after weaning. The alternative feeding program showed, however, a reduced growth efficiency during the nursery period that needs to be discussed in the frame of the costs-benefits analysis of reducing antibiotics. Abstract This study aimed to assess the impact of two different feeding programs, including or not antimicrobials, on gut microbiota development at early ages in commercial pigs. For this, 21-day-old weaned piglets were distributed into 12 pens (6 replicates with 26 pigs each) and fed ad libitum until fattening with: standard commercial formula with antibiotics and zinc oxide (2400 ppm) (AB), and alternative unmedicated feed formula (UN). Subsequently, the animals were moved to the fattening unit (F) receiving a common diet. Pigs were weighed, and feed consumption and diarrhea scores registered. Feces were collected on days 9 (pre-starter), 40 (starter) and 72 (fattening) post-weaning and microbial DNA extracted for 16S rDNA sequencing. Piglets fed UN diets had a worse feed efficiency (p < 0.05) than AB during nursery; however, UN pigs spent less time scouring after weaning (p = 0.098). The structure of fecal community evolved with the age of the animals (p = 0.001), and diet also showed to have a role, particularly in the starter period when UN microbiomes clustered apart from AB, resembling the ecosystems found in the fattening animals. Fibrolytic genera (Fibrobacter, Butyrivibrio, Christellansellaceae) were enriched in UN piglets whereas Lactobacillus characterized AB piglets (adjusted p < 0.05). Overall, this alternative feeding program could anticipate the gut development of piglets despite a lower feed efficiency compared to standard medicalized programs.
Collapse
Affiliation(s)
- Paola López-Colom
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Agraria del Ecuador, 090104 Guayaquil, Ecuador
| | - Jordi Estellé
- Génétique Animale et Biologie Intégrative (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; or
| | - Jordi Bonet
- Vall Companys Group, 25191 Lleida, Spain; (J.B.); (J.C.)
| | - Jaume Coma
- Vall Companys Group, 25191 Lleida, Spain; (J.B.); (J.C.)
| | - Susana Ma. Martín-Orúe
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Correspondence: ; Tel.: +34-93581-1504
| |
Collapse
|
8
|
Henning SM, Yang J, Woo SL, Lee RP, Huang J, Rasmusen A, Carpenter CL, Thames G, Gilbuena I, Tseng CH, Heber D, Li Z. Hass Avocado Inclusion in a Weight-Loss Diet Supported Weight Loss and Altered Gut Microbiota: A 12-Week Randomized, Parallel-Controlled Trial. Curr Dev Nutr 2019; 3:nzz068. [PMID: 31367691 PMCID: PMC6658913 DOI: 10.1093/cdn/nzz068] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Avocados contain fiber, lutein, and vitamin E, and they are a rich source of MUFAs. The effect of including an avocado daily as part of a hypocaloric weight-loss diet on weight loss is not known. OBJECTIVE The aim of this study was to determine the effect of daily avocado consumption as part of a hypocaloric diet on weight loss, body composition, satiety, biomarkers of inflammation, and intestinal microbiota composition. METHODS In this randomized, parallel-controlled, open-label, 2-arm intervention study, 51 healthy overweight/obese women and men were assigned to a hypocaloric diet with 1 Hass avocado daily (AVO; n = 24) or a hypocaloric diet (CTRL; n = 27) without daily avocado for 12 wk. Serum markers and intestinal microbiota were analyzed at baseline and week 12. RESULTS Both groups experienced significant weight loss, decrease in BMI (in kg/m2), total body fat, and visceral adipose tissue, respectively (AVO: -2.3 ± 2 kg, -0.8 ± 0.8, -1.1% ± 2%, and -81.2 ± 118 g; CTRL: -2.6 ± 3.6 kg, -0.9 ± 1, -1.5% ± 2%, and -87.4 ± 216 g). We observed a significant decrease in serum glucose over time in the control group compared with the AVO group. There was no change between the groups in serum triglyceride, but a significant decrease from baseline to 12 wk was observed in the AVO group. Serum hepatic growth factor (HGF) and relative proportion of bacterial phyla (Firmicutes and Bacteroidetes), family (Bacteroidaceae and Erysipelotrichaceae), and genus (Bacteroides, Clostridium, Methanosphaera, and Candidatus Soleaferrea) were significantly altered in the AVO group compared with the CTRL group. A trend to decrease in serum inflammatory factors IL-1β (P = 0.07) and C-reactive protein (P = 0.074) was observed in the AVO group compared with CTRL. CONCLUSIONS Daily Hass avocado consumption as part of a hypocaloric diet supported weight loss, a decrease in serum HGF, and an increase in the abundance of bacteria involved in plant polysaccharide fermentation. This trial was registered at clinicaltrials.gov as NCT02953158.
Collapse
Affiliation(s)
- Susanne M Henning
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jieping Yang
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shih Lung Woo
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ru-Po Lee
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jianjun Huang
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Rasmusen
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Catherine L Carpenter
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gail Thames
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Irene Gilbuena
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chi-Hong Tseng
- Department of Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Heber
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhaoping Li
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Jha R, Fouhse JM, Tiwari UP, Li L, Willing BP. Dietary Fiber and Intestinal Health of Monogastric Animals. Front Vet Sci 2019; 6:48. [PMID: 30886850 PMCID: PMC6409295 DOI: 10.3389/fvets.2019.00048] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/06/2019] [Indexed: 01/10/2023] Open
Abstract
Animal performance, feed efficiency, and overall health are heavily dependent on gut health. Changes in animal production systems and feed regulations away from the use of antibiotic growth promoters (AGP) have necessitated the identification of strategies to optimize gut health in novel and effective ways. Among alternatives to AGP, the inclusion of dietary fibers (DF) in monogastric diets has been attempted with some success. Alternative feedstuffs and coproducts are typically rich in fiber and can be used in the diets to reduce feed costs and optimize gut health. DF are naturally occurring compounds with a diverse composition and are present in all plant-based feedstuffs. DF stimulate the growth of health-promoting gut bacteria, are fermented in the distal small intestine and large intestine to short-chain fatty acids and have beneficial effects on the immune system. Maternal DF supplementation is one novel strategy suggested to have a beneficial programming effect on the microbial and immune development of their offspring. One mechanism by which DF improves gut health is through maintenance of an anaerobic intestinal environment that subsequently prevents facultative anaerobic pathogens from flourishing. Studies with pigs and poultry have shown that fermentation characteristics and their beneficial effects on gut health vary widely based on type, form, and the physico-chemical properties of the DF. Therefore, it is important to have information on the different types of DF and their role in optimizing gut health. This review will provide information and updates on different types of DF used in monogastric nutrition and its contribution to gut health including microbiology, fermentation characteristics, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Janelle M. Fouhse
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Utsav P. Tiwari
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Linge Li
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Benjamin P. Willing
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|