1
|
Buckley PT, Chan R, Fernandez J, Luo J, Lacey KA, DuMont AL, O'Malley A, Brezski RJ, Zheng S, Malia T, Whitaker B, Zwolak A, Payne A, Clark D, Sigg M, Lacy ER, Kornilova A, Kwok D, McCarthy S, Wu B, Morrow B, Nemeth-Seay J, Petley T, Wu S, Strohl WR, Lynch AS, Torres VJ. Multivalent human antibody-centyrin fusion protein to prevent and treat Staphylococcus aureus infections. Cell Host Microbe 2023; 31:751-765.e11. [PMID: 37098341 DOI: 10.1016/j.chom.2023.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Treating and preventing infections by antimicrobial-resistant bacterial pathogens is a worldwide problem. Pathogens such as Staphylococcus aureus produce an array of virulence determinants, making it difficult to identify single targets for the development of vaccines or monoclonal therapies. We described a human-derived anti-S. aureus monoclonal antibody (mAb)-centyrin fusion protein ("mAbtyrin") that simultaneously targets multiple bacterial adhesins, resists proteolysis by bacterial protease GluV8, avoids Fc engagement by S. aureus IgG-binding proteins SpA and Sbi, and neutralizes pore-forming leukocidins via fusion with anti-toxin centyrins, while maintaining Fc- and complement-mediated functions. Compared with the parental mAb, mAbtyrin protected human phagocytes and boosted phagocyte-mediated killing. The mAbtyrin also reduced pathology, reduced bacterial burden, and protected from different types of infections in preclinical animal models. Finally, mAbtyrin synergized with vancomycin, enhancing pathogen clearance in an animal model of bacteremia. Altogether, these data establish the potential of multivalent mAbs for treating and preventing S. aureus diseases.
Collapse
Affiliation(s)
- Peter T Buckley
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA.
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Jeffrey Fernandez
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Jinquan Luo
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Ashley L DuMont
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Aidan O'Malley
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Randall J Brezski
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Songmao Zheng
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Thomas Malia
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Brian Whitaker
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Adam Zwolak
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Angela Payne
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Desmond Clark
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Martin Sigg
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Eilyn R Lacy
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Anna Kornilova
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Debra Kwok
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Steve McCarthy
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Bingyuan Wu
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Brian Morrow
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | | | - Ted Petley
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Sam Wu
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - William R Strohl
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | | | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Langone Health, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA.
| |
Collapse
|
2
|
Kim HK, Choi SM, Kang G, Park KH, Lee DG, Park WB, Rhee SJ, Lee S, Jung SI, Jang HC. Comparison of In Vivo Pharmacokinetics and Pharmacodynamics of Vancomycin Products Available in Korea. Yonsei Med J 2020; 61:301-309. [PMID: 32233172 PMCID: PMC7105400 DOI: 10.3349/ymj.2020.61.4.301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Few studies have been investigated the in vivo efficacy of generic vancomycin products available outside of the United States. In this study, we aimed to compare the in vivo pharmacokinetics (PK) and pharmacodynamics (PD) of five generic vancomycin products available in Korea with those of the innovator. MATERIALS AND METHODS The in vitro vancomycin purity of each product was examined using high-pressure liquid chromatography. Single-dose PK analyses were performed using neutropenic mice. The in vivo efficacy of vancomycin products was compared with that of the innovator in dose-effect experiments (25 to 400 mg/kg per day) using a thigh-infection model with neutropenic mice. RESULTS Generic products had a lower proportion of vancomycin B (range: 90.3-93.8%) and a higher proportion of impurities (range: 6.2-9.7%) than the innovator (94.5% and 5.5%, respectively). In an in vivo single-dose PK study, the maximum concentration (Cmax) values of each generic were lower than that of the innovator, and the geographic mean area under the curve ratios of four generics were significantly lower than that of the innovator (all p<0.1). In the thigh-infection model, the maximum efficacies of generic products reflected in maximal effect (Emax) values were not significantly different from the innovator. However, the PD profile curves of some generic products differed significantly from that of the innovator in mice injected with a high level of Mu3 (all p≤0.05). CONCLUSION Some generic vancomycin products available in Korea showed inferior PK and PD profiles, especially in mice infected with hetero-vancomycin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Hee Kyung Kim
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Su-Mi Choi
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Gaeun Kang
- Division of Clinical Pharmacology, Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Wan-Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Su-jin Rhee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Hee-Chang Jang
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
3
|
Antagonistic Effect of Colistin on Vancomycin Activity against Methicillin-Resistant Staphylococcus aureus in In Vitro and In Vivo Studies. Antimicrob Agents Chemother 2020; 64:AAC.01925-19. [PMID: 32041713 DOI: 10.1128/aac.01925-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/29/2020] [Indexed: 12/28/2022] Open
Abstract
As concerns arise that the vancomycin MIC of methicillin-resistant Staphylococcus aureus (MRSA) could be increased by concurrent colistin administration, we evaluated the effect of colistin on vancomycin efficacy against MRSA via in vitro and in vivo studies. Among MRSA blood isolates collected in a tertiary-care hospital, we selected representative strains from community-associated MRSA strains (CA-MRSA; ST72-MRSA-SCCmec IV) and hospital-acquired MRSA strains (HA-MRSA; ST5-MRSA-SCCmec II). USA CA-MRSA (USA300), HA-MRSA (USA100), N315 (New York/Japan clone), and a MRSA standard strain (ATCC 43300) were used for comparison. We performed checkerboard assays to identify changes in the vancomycin MIC of MRSA following colistin exposure and evaluated the effect of a vancomycin-colistin combination using time-kill assays. We also assessed the in vivo antagonistic effect by administering vancomycin, colistin, and a combination of these two in a neutropenic murine thigh infection model. In the checkerboard assays, vancomycin MICs of all MRSA strains except N315 were increased by from 0.25 to 0.75 μg/ml following colistin exposure. However, the time-kill assays indicated antagonism only against ST5-MRSA and USA100, when the vancomycin concentration was twice the MIC. In the murine thigh infection model with ST5-MRSA and USA100, vancomycin monotherapy reduced the number of CFU/muscle >1 log10 compared to a combination treatment after 24 h in ST5-MRSA, indicating an antagonistic effect of colistin on vancomycin treatment. This study suggests that exposure to colistin may reduce the susceptibility to vancomycin of certain MRSA strains. Combination therapy with vancomycin and colistin for multidrug-resistant pathogens might result in treatment failure for concurrent MRSA infection.
Collapse
|
4
|
Lee SO, Lee S, Park S, Lee JE, Lee SH. The Cefazolin Inoculum Effect and the Presence of type A blaZ Gene according to agr Genotype in Methicillin-Susceptible Staphylococcus aureus Bacteremia. Infect Chemother 2019; 51:376-385. [PMID: 31898425 PMCID: PMC6940372 DOI: 10.3947/ic.2019.51.4.376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recent data suggests the inoculum effect of methicillin-susceptible Staphylococcus aureus (MSSA) against beta-lactam antibiotics and their association with functionality or genotypic variation of agr locus. METHODS MSSA blood isolates were collected at a tertiary care hospital in Korea from June 2014 to December 2017. The functionality of the agr operon was measured by δ-hemolysin assays. Multiplex PCR was performed to determine the agr genotype. The cefazolin minimum inhibitory concentrations (MICs) at a high inoculum concentration (~5 × 10⁷ CFU/ml) were compared to the MICs at a standard inoculum concentration (~5 × 10⁵ CFU/ml) to identify strains with the cefazolin inoculum effect (CIE). The DNA sequencing of blaZ gene was performed to classify the blaZ genotype. RESULTS Among the 195 MSSA blood isolates, agr genotype I was most common (68.2%), followed by type III (16.4%), type IV (9.2%), and type II (6.2%). Sixty-seven (34.3%) MSSA isolates had dysfunctional agr, but neither CIE nor blaZ genotype was associated with dysfunctional agr. The MSSA with agr type III genotype exhibited significantly higher CIE positivity (agr III 43.8% vs. non-agr III 5.5%, P <0.01) and erythromycin/clindamycin resistance. In the subgroup analysis of type A blaZ possessing MSSA, almost all of the agr III MSSA isolates exhibited CIE, while only 20% of non-agr III isolates had CIE (P <0.01). CONCLUSION In MSSA blood isolates, CIE might be associated with agr genotype rather than with dysfunctional agr.
Collapse
Affiliation(s)
- Soon Ok Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Shinwon Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea.
| | - Sohee Park
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jeong Eun Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Sun Hee Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
5
|
Park C, Kwon EY, Choi SM, Cho SY, Byun JH, Park JY, Lee DG, Kang JH, Shin J, Kim H. Comparative evaluation of a newly developed 13-valent pneumococcal conjugate vaccine in a mouse model. Hum Vaccin Immunother 2016; 13:1169-1176. [PMID: 27960627 PMCID: PMC5443391 DOI: 10.1080/21645515.2016.1261772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Animal models facilitate evaluation of vaccine efficacy at relatively low cost. This study was a comparative evaluation of the immunogenicity and protective efficacy of a new 13-valent pneumococcal conjugate vaccine (PCV13) with a control vaccine in a mouse model. After vaccination, anti-capsular antibody levels were evaluated by pneumococcal polysaccharide (PnP) enzyme-linked immunosorbent assay (ELISA) and opsonophagocytic killing assay (OPA). Also, mice were challenged intraperitoneally with 100-fold of the 50% lethal dose of Streptococcus pneumoniae. The anti-capsular IgG levels against serotypes 1, 4, 7F, 14, 18C, 19A, and 19F were high (quartile 2 >1,600), while those against the other serotypes were low (Q2 ≤ 800). Also, the OPA titres were similar to those determined by PnP ELISA. Comparative analysis between new PCV13 and control vaccination group in a mouse model exhibited significant differences in serological immunity of a few serotypes and the range of anti-capsular IgG in the population. Challenge of wild-type or neutropenic mice with serotypes 3, 5, 6A, 6B, and 9V showed protective immunity despite of induced relatively low levels of anti-capsular antibodies. With comparison analysis, a mouse model should be adequate for evaluating serological efficacy and difference in the population level as preclinical trial.
Collapse
Affiliation(s)
- Chulmin Park
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Eun-Young Kwon
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Su-Mi Choi
- b Division of Infectious Diseases , Department of Internal Medicine, College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Sung-Yeon Cho
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea.,b Division of Infectious Diseases , Department of Internal Medicine, College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Ji-Hyun Byun
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Jung Yeon Park
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Dong-Gun Lee
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea.,b Division of Infectious Diseases , Department of Internal Medicine, College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Jin Han Kang
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea.,c Department of Pediatrics , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Jinhwan Shin
- d School of Pharmacy , Sungkyunkwan University , Suwon , the Republic of Korea.,e SK Chemicals Co. Ltd ., Seongnam , Gynuggi-do , the Republic of Korea
| | - Hun Kim
- e SK Chemicals Co. Ltd ., Seongnam , Gynuggi-do , the Republic of Korea
| |
Collapse
|