1
|
Palmer LB, Monteforte M, Smaldone GC. Pharmacokinetics of vancomycin in sputum of intubated patients: Optimized intravenous delivery vs. inhaled therapy. Br J Clin Pharmacol 2025; 91:127-133. [PMID: 39235040 PMCID: PMC11671327 DOI: 10.1111/bcp.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/06/2024] Open
Abstract
AIMS Intubated patients with methicillin-resistant Staphylococcus aureus pneumonia, fail optimized treatment with intravenous (IV) vancomycin (serum trough 15-20 μg/mL) in 38-79% of cases. Airway blood flow is diminished compared to alveoli and we hypothesized that vancomycin concentrations achieved in airway secretions are suboptimal and nonbactericidal. Targeted therapy by inhalation may overcome this deficit. METHODS Airway pharmacokinetics of optimized IV and inhaled vancomycin in infected clinically stable prolonged mechanically ventilated patients were measured. First, IV vancomycin was given until optimized concentrations were achieved (15-20 μg/mL), and, at the same time point, sputum vancomycin concentrations were measured. Then, sputum concentrations were re-assessed after 4 treatments of inhaled vancomycin (120 mg/2 mL) via a previously characterized nebulizing system that deposited 18 ± 2 mg in the lungs. Vancomycin post-distribution phase serum peak and trough concentrations were also obtained. Serum albumin was measured to assess binding to vancomycin. RESULTS Mean serum trough concentration was 18.4 ± 6.5 μg/mL. Sputum concentrations were affected by serum albumin. Only patients with severe hypoalbuminaemia had penetration of drug leading to therapeutic (15.7-17 μg/mL) sputum concentrations. Following inhaled vancomycin, sputum concentrations increased significantly to 199 ± 37.0 μg/mL (P = .002) exceeding minimum inhibitory concentration by 2 orders of magnitude. CONCLUSION Despite optimized serum concentrations, patients with albumin near normal had suboptimal concentrations of vancomycin in their sputum. Inhaled therapy may be clinically important for successful treatment of ventilator-associated methicillin-resistant Staphylococcus aureus infection. Further studies of inhaled therapy are needed to define their role as adjunctive therapy in ventilator-associated pneumonia and as single therapy in tracheobronchitis.
Collapse
Affiliation(s)
- Lucy B. Palmer
- Pulmonary, Critical Care and Sleep Division, Department of MedicineHealth Sciences CenterStony BrookNYUSA
| | - Melinda Monteforte
- Department of Pharmacy and Department of MedicineL3‐560 Stony Brook HospitalStony BrookNYUSA
| | - Gerald C. Smaldone
- Pulmonary, Critical Care and Sleep Division, Department of MedicineHealth Sciences CenterStony BrookNYUSA
| |
Collapse
|
2
|
Grassiri B, Esin S, Piatek ME, More O'Ferrall L, Sake JA, Griffith DM, Kavanagh K, Ehrhardt C, Maria Piras A, Batoni G, Marie Healy A. The activity of a Ga(III) catecholate complex against Aspergillus fumigatus in conditions mimicking cystic fibrosis lung and inhaled formulations for its pulmonary administration. Int J Pharm 2024; 667:124871. [PMID: 39490551 DOI: 10.1016/j.ijpharm.2024.124871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Azole-resistant Aspergillus fumigatus (A. fumigatus) is an emerging worldwide pathogen. Pulmonary aspergillosis primarily affects severely immunocompromised patients and is also a particularly critical condition for cystic fibrosis (CF) patients. A recently designed gallium polypyridyl catecholate complex, GaS1, has previously demonstrated in vitro and in vivo antimicrobial activity against Gram-negative bacteria. In the present work GaS1 activity was assessed against A. fumigatus clinical isolates in a novel air-liquid-interface lung infection model, mimicking the conditions found in the CF airways. Furthermore, in this study both a solution for nebulisation and dry powders for inhalation were developed with a view to optimising GaS1 delivery to the lung. The solution for nebulisation was characterised for its osmolality and pH, while the dry powders were characterised by scanning electron microscopy, powder X-ray diffraction, thermal analysis and laser light scattering particle size analysis. The aerodynamic deposition profiles of all formulations were determined using a next generation impactor. GaS1, tested in a concentration range of 0.016-0.5 mg/mL, inhibited the growth of A. fumigatus lung isolates in a complex host-environment-mimicking medium at the non-toxic concentration of 0.063 mg/mL. A marked dose-dependent antifungal activity of GaS1 was also observed in the presence of differentiated human distal lung epithelial cells (NCI-H441) at the air liquid interface, with nearly no fungal growth detected at the macroscopic and microscopic level. A solution for nebulisation and three different dry powder inhaler formulations, prepared by spray-drying GaS1 with different concentrations of L-leucine, displayed suitable aerodynamic characteristics for GaS1 delivery to the lungs, while maintaining excellent antifungal activity. Overall, the results obtained highlight the potential of gallium-polypyridyl catecholate complexes for the management of difficult-to-treat A. fumigatus pulmonary infections.
Collapse
Affiliation(s)
- Brunella Grassiri
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland; Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Magdalena E Piatek
- Department of Biology, Maynooth University, Maynooth, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Lewis More O'Ferrall
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Johannes A Sake
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland
| | - Darren M Griffith
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland
| | | | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland.
| |
Collapse
|
3
|
Zhang W, Xia L, Yuan Z, Jiao Y, Wang Z. Analysis of Nirmatrelvir Entry into Pulmonary Lining Fluid in Patients with COVID-19: A Unique Perspective to Explore and Understand the Target Plasma Concentration of 292 ng/mL in Antiviral Activity. Immun Inflamm Dis 2024; 12:e70075. [PMID: 39545673 PMCID: PMC11565441 DOI: 10.1002/iid3.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Currently, the applicant has chosen a target plasma trough concentration for nirmatrelvir, which is adjusted to 292 ng/mL based on the drug's molecular weight (499.54 Daltons), its binding to human plasma proteins (69%), and the in vitro antiviral EC90 value (181 nM). However, the current exposure-effect relationships (ER) analysis of viral load in patients enrolled in the EPIC-HR study has not revealed clinically significant trends in the ER. Given that the lungs are the primary site of COVID-19 infection, we aim to further understand this exposure relationship by exploring and analyzing the penetration characteristics of nirmatrelvir in the lungs. OBJECTIVES To explore and understand the target plasma concentration of 292 ng/mL in antiviral activity. METHODS We identified all critically ill patients with coronavirus disease 2019 who received nirmatrelvir/ritonavir treatment in the respiratory intensive care unit of Changhai hospital between January 2023 and October 2023. Samples of plasma and bronchoalveolar lavage fluid were obtained at pre-dose trough concentrations after administration of nirmatrelvir (NMV). The relationship between NMV levels in plasma and the epithelial lining fluid (ELF) was assessed by determining concentrations of NMV. RESULTS There was a significant relationship between NMV levels in plasma and ELF (ELF = 0.4976*PLASMA- 204; R = 0.96), with a correlation whose slope (0.4976) suggested that the blood-to-ELF ratio of drug penetration was 2:1. A negative value from the equation indicates that NMV requires to reach baseline concentration to penetrate the ELF. CONCLUSIONS The relationship between NMV levels in plasma and ELF with low permeability and a negative baseline value suggests that the target plasma concentration of 292 ng/mL is insufficient for antiviral activity. This study provides a unique perspective to explore and understand no clinically meaningful trend of exposure-response relationships in patients enrolled in EPIC-HR.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Pharmacy, Shanghai Changhai HospitalThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Lin Xia
- Department of Pharmacy, Shanghai Changhai HospitalThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Zhilong Yuan
- Department of Pharmacy, Shanghai Changhai HospitalThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
- School of PharmacyBengbu Medical UniversityBengbuChina
| | - Yang Jiao
- Department of Respiratory and Critical Care MedicineShanghai Changhai Hospital, The First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Zhuo Wang
- Department of Pharmacy, Shanghai Changhai HospitalThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
4
|
Offman EM, Leestemaker-Palmer A, Fathi R, Keefe B, Bibliowicz A, Raday G, Bermudez LE. Triple-Antibiotic Combination Exerts Effective Activity against Mycobacterium avium subsp. hominissuis Biofilm and Airway Infection in an In Vivo Murine Model. Antibiotics (Basel) 2024; 13:475. [PMID: 38927142 PMCID: PMC11200515 DOI: 10.3390/antibiotics13060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Slow-growing nontuberculous mycobacteria (NTMs) are highly prevalent and routinely cause opportunistic intracellular infectious disease in immunocompromised hosts. METHODS The activity of the triple combination of antibiotics, clarithromycin (CLR), rifabutin (RFB), and clofazimine (CFZ), was evaluated and compared with the activity of single antibiotics as well as with double combinations in an in vitro biofilm assay and an in vivo murine model of Mycobacterium avium subsp. hominissuis (M. avium) lung infection. RESULTS Treatment of 1-week-old biofilms with the triple combination exerted the strongest effect of all (0.12 ± 0.5 × 107 CFU/mL) in reducing bacterial growth as compared to the untreated (5.20 ± 0.5 × 107/mL) or any other combination (≥0.75 ± 0.6 × 107/mL) by 7 days. The treatment of mice intranasally infected with M. avium with either CLR and CFZ or the triple combination provided the greatest reduction in CLR-sensitive M. avium bacterial counts in both the lung and spleen compared to any single antibiotic or remaining double combination by 4 weeks posttreatment. After 4 weeks of treatment with the triple combination, there were no resistant colonies detected in mice infected with a CLR-resistant strain. No clear relationships between treatment and spleen or lung organ weights were apparent after triple combination treatment. CONCLUSIONS The biofilm assay data and mouse disease model efficacy results support the further investigation of the triple-antibiotic combination.
Collapse
Affiliation(s)
| | - Amy Leestemaker-Palmer
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (A.L.-P.); (B.K.)
| | - Reza Fathi
- RedHill Biopharma Ltd., Tel Aviv 6473921, Israel; (R.F.); (G.R.)
| | - Bailey Keefe
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (A.L.-P.); (B.K.)
| | - Aida Bibliowicz
- RedHill Biopharma Ltd., Tel Aviv 6473921, Israel; (R.F.); (G.R.)
| | - Gilead Raday
- RedHill Biopharma Ltd., Tel Aviv 6473921, Israel; (R.F.); (G.R.)
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (A.L.-P.); (B.K.)
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
5
|
Rebholz D, Liebchen U, Paal M, Vogeser M, Starp J, Gräfe C, Brozat CI, Happich FL, Habler K, Scharf C. Can linezolid be validly measured in endotracheal aspiration in critically ill patients? A proof-of-concept trial. Intensive Care Med Exp 2024; 12:47. [PMID: 38717627 PMCID: PMC11078899 DOI: 10.1186/s40635-024-00630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) of anti-infectives such as linezolid is routinely performed in blood of intensive care unit (ICU) patients to optimize target attainment. However, the concentration at the site of infection is considered more important for a successful therapy. Until now, bronchoalveolar lavage (BAL) is the gold standard to measure intrapulmonary concentrations of anti-infective agents. However, it is an invasive method and unsuitable for regular TDM. The aim of this proof-of-concept study was to investigate whether it is possible to reliably determine the intrapulmonary concentration of linezolid from endotracheal aspiration (ENTA). METHODS Intubated ICU patients receiving 600 mg intravenous linezolid twice daily were examined in steady state. First, preliminary experiments were performed in six patients to investigate which patients are suitable for linezolid measurement in ENTA. In a second step, trough and peak linezolid concentrations of plasma and ENTA were determined in nine suitable patients. RESULTS Linezolid can validly be detected in ENTA with viscous texture and > 0.5 mL volume. The mean (SD) linezolid trough concentration was 2.02 (1.27) mg/L in plasma and 1.60 (1.36) mg/L in ENTA, resulting in a median lung penetration rate of 104%. The mean (SD) peak concentration in plasma and ENTA was 10.77 (5.93) and 4.74 (2.66) mg/L. CONCLUSIONS Linezolid can validly be determined in ENTA with an adequate texture and volume. The penetration rate is comparable to already published BAL concentrations. This method might offer a simple and non-invasive method for TDM at the site of infection "lung". Due to promising results of the feasibility study, comparison of ENTA and BAL in the same patient should be investigated in a further trial.
Collapse
Affiliation(s)
- Diana Rebholz
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Uwe Liebchen
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Starp
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Caroline Gräfe
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Clara I Brozat
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Felix L Happich
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Habler
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christina Scharf
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
6
|
MacLoughlin R, Martin-Loeches I. Not all nebulizers are created equal: Considerations in choosing a nebulizer for aerosol delivery during mechanical ventilation. Expert Rev Respir Med 2023; 17:131-142. [PMID: 36803134 DOI: 10.1080/17476348.2023.2183194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Aerosol therapy is commonly prescribed in the mechanically ventilated patient. Jet nebulizers (JN) and vibrating mesh nebulizers (VMN) are the most common nebulizer types, however, despite VMN's well established superior performance, JN use remains the most commonly used of the two. In this review, we describe the key differentiators between nebulizer types and how considered selection of nebulizer type may enable successful therapy and the optimization of drug/device combination products. AREAS COVERED Following a review of the published literature up to February 2023, the current state of the art in relation to JN and VMN is discussed under the headings of in vitro performance of nebulizers during mechanical ventilation, respective compatibility with formulations for inhalation, clinical trials making use of VMN during mechanical ventilation, distribution of nebulized aerosol throughout the lung, measuring the respective performance of nebulizers in the patient and non-drug delivery considerations in nebulizer choice. EXPERT OPINION Whether for standard care, or the development of drug/device combination products, the choice of nebulizer type should not be made without consideration of the unique needs of the combination of each of drug, disease and patient types, as well as target site for deposition, and healthcare professional and patient safety.
Collapse
Affiliation(s)
- Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Dangan, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), Dublin, Ireland
| |
Collapse
|
7
|
Palmer LB, Smaldone GC. The Unfulfilled Promise of Inhaled Therapy in Ventilator-Associated Infections: Where Do We Go from Here? J Aerosol Med Pulm Drug Deliv 2022; 35:11-24. [PMID: 35099284 PMCID: PMC8867107 DOI: 10.1089/jamp.2021.0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Respiratory infection is common in intubated/tracheotomized patients and systemic antibiotic therapy is often unrewarding. In 1967, the difficulty in treating Gram-negative respiratory infections led to the use of inhaled gentamicin, targeting therapy directly to the lungs. Fifty-three years later, the effects of topical therapy in the intubated patient remain undefined. Clinical failures with intravenous antibiotics persist and instrumented patients are now infected by many more multidrug-resistant Gram-negative species as well as methicillin-resistant Staphylococcus aureus. Multiple systematic reviews and meta-analyses suggest that there may be a role for inhaled delivery but “more research is needed.” Yet there is still no Food and Drug Administration (FDA) approved inhaled antibiotic for the treatment of ventilator-associated infection, the hallmark of which is the foreign body in the upper airway. Current pulmonary and infectious disease guidelines suggest using aerosols only in the setting of Gram-negative infections that are resistant to all systemic antibiotics or not to use them at all. Recently two seemingly well-designed large randomized placebo-controlled Phase 2 and Phase 3 clinical trials of adjunctive inhaled therapy for the treatment of ventilator-associated pneumonia failed to show more rapid resolution of pneumonia symptoms or effect on mortality. Despite evolving technology of delivery devices and more detailed understanding of the factors affecting delivery, treatment effects were no better than placebo. What is wrong with our approach to ventilator- associated infection? Is there a message from the large meta-analyses and these two large recent multisite trials? This review will suggest why current therapies are unpredictable and have not fulfilled the promise of better outcomes. Data suggest that future studies of inhaled therapy, in the milieu of worsening bacterial resistance, require new approaches with completely different indications and endpoints to determine whether inhaled therapy indeed has an important role in the treatment of ventilated patients.
Collapse
Affiliation(s)
- Lucy B Palmer
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Gerald C Smaldone
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
8
|
Singhal T, Rodrigues C, Soman R, Wattal C, Swaminathan S, Nambi S, Talwar D, Singh RK, Todi S. Treatment of MRSA infections in India: Clinical insights from a Delphi analysis. Indian J Med Microbiol 2021; 40:35-45. [PMID: 34785281 DOI: 10.1016/j.ijmmb.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE International and Indian guidelines for the management of patients with methicillin-resistant Staphylococcus aureus (MRSA) infections are available, but the local guidelines are not MRSA-specific. This study aimed to provide clinical insights for the treatment of MRSA infections in India. METHODS We used a three-step modified Delphi method to obtain insights. Ten experts comprising infectious disease specialists, microbiologists, pulmonologists, and critical care experts agreed to participate in the analysis. In round 1, a total of 161 statements were circulated to the panel and the experts were asked to 'agree' or 'disagree' by responding 'yes' or 'no' to each statement and provide comments. The same process was used for 73 statements in round 2. Direct interaction with the experts was carried out in round 3 wherein 35 statements were discussed. At least 80% of the experts had to agree for a statement to reach concordance. RESULTS Eighty-eight statements in round 1, thirty-eight statements in round 2, and eight statements in round 3 reached concordance and were accepted without modification. The final document comprised 152 statements on the management of various syndromes associated with MRSA such as skin and soft tissue infections, bacteremia and endocarditis, pneumonia, bone and joint infections, and central nervous system infections. CONCLUSIONS This analysis will assist clinicians in India to choose an appropriate course of action for MRSA infections.
Collapse
Affiliation(s)
- Tanu Singhal
- Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, India
| | | | | | - Chand Wattal
- Clinical Microbiology & Immunology, Sir Ganga Ram Hospital, New Delhi, India
| | - Subramanian Swaminathan
- Infectious Diseases and Infection Control at Gleneagles Global Hospitals (Chennai, Bangalore, Hyderabad), India
| | | | - Deepak Talwar
- Metro Respiratory Center Pulmonology & Sleep Medicine, Metro Hospital, Noida, India
| | | | - Subhash Todi
- Critical Care Medicine, Department of Academics & Health Research, AMRI Hospitals, Kolkata, India.
| |
Collapse
|
9
|
Humphries H, Almond L, Berg A, Gardner I, Hatley O, Pan X, Small B, Zhang M, Jamei M, Romero K. Development of physiologically-based pharmacokinetic models for standard of care and newer tuberculosis drugs. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:1382-1395. [PMID: 34623770 PMCID: PMC8592506 DOI: 10.1002/psp4.12707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) remains a global health problem and there is an ongoing effort to develop more effective therapies and new combination regimes that can reduce duration of treatment. The purpose of this study was to demonstrate utility of a physiologically‐based pharmacokinetic modeling approach to predict plasma and lung concentrations of 11 compounds used or under development as TB therapies (bedaquiline [and N‐desmethyl bedaquiline], clofazimine, cycloserine, ethambutol, ethionamide, isoniazid, kanamycin, linezolid, pyrazinamide, rifampicin, and rifapentine). Model accuracy was assessed by comparison of simulated plasma pharmacokinetic parameters with healthy volunteer data for compounds administered alone or in combination. Eighty‐four percent (area under the curve [AUC]) and 91% (maximum concentration [Cmax]) of simulated mean values were within 1.5‐fold of the observed data and the simulated drug‐drug interaction ratios were within 1.5‐fold (AUC) and twofold (Cmax) of the observed data for nine (AUC) and eight (Cmax) of the 10 cases. Following satisfactory recovery of plasma concentrations in healthy volunteers, model accuracy was assessed further (where patients’ with TB data were available) by comparing clinical data with simulated lung concentrations (9 compounds) and simulated lung: plasma concentration ratios (7 compounds). The 5th–95th percentiles for the simulated lung concentration data recovered between 13% (isoniazid and pyrazinamide) and 88% (pyrazinamide) of the observed data points (Am J Respir Crit Care Med, 198, 2018, 1208; Nat Med, 21, 2015, 1223; PLoS Med, 16, 2019, e1002773). The impact of uncertain model parameters, such as the fraction of drug unbound in lung tissue mass (fumass), is discussed. Additionally, the variability associated with the patient lung concentration data, which was sparse and included extensive within‐subject, interlaboratory, and experimental variability (as well interindividual variability) is reviewed. All presented models are transparently documented and are available as open‐source to aid further research.
Collapse
Affiliation(s)
| | - Lisa Almond
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | | | - Iain Gardner
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | | | - Xian Pan
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | - Ben Small
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | - Mian Zhang
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | - Masoud Jamei
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | | |
Collapse
|
10
|
Gonzalez-Juarrero M, Lukka PB, Wagh S, Walz A, Arab J, Pearce C, Ali Z, Ryman JT, Parmar K, Temrikar Z, Munoz-Gutierrez J, Robertson GT, Liu J, Lenaerts AJ, Daley C, Lee RE, Braunstein M, Hickey AJ, Meibohm B. Preclinical Evaluation of Inhalational Spectinamide-1599 Therapy against Tuberculosis. ACS Infect Dis 2021; 7:2850-2863. [PMID: 34546724 DOI: 10.1021/acsinfecdis.1c00213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The lengthy treatment time for tuberculosis (TB) is a primary cause for the emergence of multidrug resistant tuberculosis (MDR-TB). One approach to improve TB therapy is to develop an inhalational TB therapy that when administered in combination with oral TB drugs eases and shortens treatment. Spectinamides are new semisynthetic analogues of spectinomycin with excellent activity against Mycobacterium tuberculosis (Mtb), including MDR and XDR Mtb strains. Spectinamide-1599 was chosen as a promising candidate for development of inhalational therapy. Using the murine TB model and intrapulmonary aerosol delivery of spectinamide-1599, we characterized the pharmacokinetics and efficacy of this therapy in BALB/c and C3HeB/FeJ mice infected with the Mtb Erdman strain. As expected, spectinamide-1599 exhibited dose-dependent exposure in plasma, lungs, and ELF, but exposure ratios between lung and plasma were 12-40 times higher for intrapulmonary compared to intravenous or subcutaneous administration. In chronically infected BALB/c mice, low doses (10 mg/kg) of spectinamide-1599 when administered thrice weekly for two months provide efficacy similar to that of higher doses (50-100 mg/kg) after one month of therapy. In the C3HeB/FeJ TB model, intrapulmonary aerosol delivery of spectinamide-1599 (50 mg/kg) or oral pyrazinamide (150 mg/kg) had limited or no efficacy in monotherapy, but when both drugs were given in combination, a synergistic effect with superior bacterial reduction of >1.8 log10 CFU was observed. Throughout the up to eight-week treatment period, intrapulmonary therapy was well-tolerated without any overt toxicity. Overall, these results strongly support the further development of intrapulmonary spectinamide-1599 as a combination partner for anti-TB therapy.
Collapse
Affiliation(s)
- Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Pradeep B. Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Santosh Wagh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Amanda Walz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jennifer Arab
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Camron Pearce
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Zohaib Ali
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Josiah T. Ryman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Keyur Parmar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zaid Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Juan Munoz-Gutierrez
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gregory T. Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jiuyu Liu
- Department of Chemical Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Anne J. Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Charles Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, Colorado 80206, United States
| | - Richard E. Lee
- Department of Chemical Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anthony J. Hickey
- Discovery Science and Technology, RTI International, RTP, Durham, North Carolina 27709, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
11
|
Chalmers JD, van Ingen J, van der Laan R, Herrmann JL. Liposomal drug delivery to manage nontuberculous mycobacterial pulmonary disease and other chronic lung infections. Eur Respir Rev 2021; 30:30/161/210010. [PMID: 34289985 PMCID: PMC9488898 DOI: 10.1183/16000617.0010-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
Nontuberculous mycobacterial (NTM) pulmonary disease is a chronic respiratory infection associated with declining lung function, radiological deterioration and significantly increased morbidity and mortality. Patients often have underlying lung conditions, particularly bronchiectasis and COPD. NTM pulmonary disease is difficult to treat because mycobacteria can evade host defences and antimicrobial therapy through extracellular persistence in biofilms and sequestration into macrophages. Management of NTM pulmonary disease remains challenging and outcomes are often poor, partly due to limited penetration of antibiotics into intracellular spaces and biofilms. Efficient drug delivery to the site of infection is therefore a key objective of treatment, but there is high variability in lung penetration by antibiotics. Inhalation is the most direct route of delivery and has demonstrated increased efficacy of antibiotics like amikacin compared with systemic administration. Liposomes are small, artificial, enclosed spherical vesicles, in which drug molecules can be encapsulated to provide controlled release, with potentially improved pharmacokinetics and reduced toxicity. They are especially useful for drugs where penetration of cell membranes is essential. Inhaled delivery of liposomal drug solutions can therefore facilitate direct access to macrophages in the lung where the infecting NTM may reside. A range of liposomal drugs are currently being evaluated in respiratory diseases. Liposome-encapsulated antibiotics can optimise respiratory disease treatment. Amikacin liposomal inhalation suspension is effective in nontuberculous mycobacterial pulmonary disease that has failed to convert following oral guideline-based therapy.https://bit.ly/3f3ixIu
Collapse
Affiliation(s)
- James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Jakko van Ingen
- Dept of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection and Inflammation, Montigny-le-Bretonneux, France.,APHP, Groupe Hospitalo-Universitaire Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| |
Collapse
|
12
|
Minimum-inhibitory-concentration of iclaprim and lefamulin against Mycobacterium abscessus complex. Antimicrob Agents Chemother 2021; 65:e0061921. [PMID: 34252305 DOI: 10.1128/aac.00619-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with rapid-growing-mycobacteria (RGM) are often difficult to treat.….
Collapse
|
13
|
Evans SJ, Roberts AEL, Morris AC, Simpson AJ, Harris LG, Mack D, Jenkins RE, Wilkinson TS. Contrasting effects of linezolid on healthy and dysfunctional human neutrophils: reducing C5a-induced injury. Sci Rep 2020; 10:16377. [PMID: 33009444 PMCID: PMC7532177 DOI: 10.1038/s41598-020-72454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of ventilator-associated pneumonia (VAP). Patients with VAP have poorly functioning neutrophils, related to increased levels of the complement fragment C5a. The antibiotic linezolid has been useful in controlling MRSA-related VAP infections; however clinical benefit does not always correlate with antimicrobial effect, suggesting the possibility of immunomodulatory properties. Here the effects of linezolid on healthy and dysfunctional neutrophils (modelled by C5a-induced injury) was investigated. Functional assays (killing, phagocytosis, transmigration, and respiratory burst) were used to assess the effects of pre-, co- and post-incubating linezolid (0.4-40 mg/L) with healthy neutrophils relative to those with C5a-induced injury. C5a decreased neutrophil killing, and phagocytosis of MRSA. Furthermore, C5a significantly decreased neutrophil transmigration to IL-8, but did not affect respiratory burst. Co-incubation of linezolid significantly improved killing of MRSA by dysfunctional neutrophils, which was supported by concomitant increases in phagocytosis. Conversely linezolid impaired killing responses in healthy neutrophils. Pre- or post-incubation of linezolid prior or following C5a induced injury had no effect on neutrophil function. This study suggests that linezolid has immunomodulatory properties that protect human neutrophils from injury and provides insight into its mode of action beyond a basic antibiotic.
Collapse
Affiliation(s)
- Stephen J Evans
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Aled E L Roberts
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Andrew Conway Morris
- Division of Anaesthesia, Department of Medicine, School of Clinical Medicine, University of Cambridge, Level 4, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Box 93, Cambridge, CB2, 0QQ, UK
| | - A John Simpson
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Llinos G Harris
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Dietrich Mack
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK.,Bioscientia Labor Ingelheim, Institut für Medizinische Diagnostik GmbH, Konrad-Adenauer-Str. 17, 55218, Ingelheim, Germany
| | - Rowena E Jenkins
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Thomas S Wilkinson
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
14
|
Liu T, Luo J, Bi G, Du Z, Kong J, Chen Y. Antibacterial synergy between linezolid and baicalein against methicillin-resistant Staphylococcus aureus biofilm in vivo. Microb Pathog 2020; 147:104411. [PMID: 32745664 DOI: 10.1016/j.micpath.2020.104411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/09/2020] [Accepted: 07/18/2020] [Indexed: 10/23/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can form biofilms, which prevents the penetration of antibiotics, decreasing their efficacy. This study investigated whether baicalein has synergistic antibacterial effects with linezolid in vivo. We cultivated MRSA 17546 biofilms on silicone implants and inserted them into the air pouches of rat models. The rats were treated with linezolid, baicalein, or a combination therapy for three consecutive days. All treatments reduced the number of colony-forming units (CFU) in the biofilms compared to the control (p < 0.05). However, by day two, the CFU counts were significantly lower in the combination group than in the individual treatment groups (p < 0.05). Histological analysis of the air pouches showed that the severity of the inflammatory cell infiltration was severe in the combination therapy group. In the combination group, the biofilm structure on the implant's surface was sparse and more free colonies could be seen by scanning electron microscopy (SEM); by day three, no obvious biofilm was observed. The serum levels of Staphylococcus enterotoxin A (SEA), C-reactive protein (CRP), and procalcitonin (PCT) were the lowest in the group where rats were treated with the combination of baicalein and linezolid (p < 0.05) compared to other groups. The results suggest that baicalein may inhibit the accessory gene regulator system, reducing the expression of SEA, thus lowering CRP and PCT levels. Furthermore, the inhibitory effect was more pronounced when baicalein was combined with linezolid. These results provide an important basis for the development of a new combination regimen to treat patients with biofilm-associated MRSA infections.
Collapse
Affiliation(s)
- Tangjuan Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Jing Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Guan Bi
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Zhongye Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Jinliang Kong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.
| | - Yiqiang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.
| |
Collapse
|
15
|
Karampitsakos T, Papaioannou O, Kaponi M, Kozanidou A, Hillas G, Stavropoulou E, Bouros D, Dimakou K. Low penetrance of antibiotics in the epithelial lining fluid. The role of inhaled antibiotics in patients with bronchiectasis. Pulm Pharmacol Ther 2019; 60:101885. [PMID: 31891761 DOI: 10.1016/j.pupt.2019.101885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/16/2022]
Abstract
Plasma drug concentrations, spectrum of antibacterial activity and minimum inhibitory concentration (MIC) had been widely considered as markers of the efficacy of antibiotics. Nonetheless, in several cases, antibiotics characterized by all these features were ineffective for the treatment of respiratory tract infections. A typical paradigm represented the case of patients with bronchiectasis who do not always benefit from antibiotics and thus experiencing increased sputum production, worse quality of life, more rapid forced expiratory volume in the first second (FEV1) decline, more frequent exacerbations and increased mortality rates, especially those with Pseudomonas aeruginosa (P. aeruginosa) chronic infection. Subsequently, penetrance of antibiotics in the epithelial lining fluid has gradually emerged as another key factor for the outcome of antibiotic treatment. Given that a plethora of antibiotics presented with poor or intermediate penetrance in the epithelial lining fluid, inhaled antibiotics targeting directly the site of infection emerged as a new option for patients with respiratory disorders including patients with bronchiectasis. This review article intends to summarize the current state of knowledge for the penetrance of antibiotics in the epithelial lining fluid and present results from clinical trials of inhaled antibiotics in patients with bronchiectasis of etiology other than cystic fibrosis.
Collapse
Affiliation(s)
| | - Ourania Papaioannou
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "Sotiria", Athens, Greece
| | - Maria Kaponi
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "Sotiria", Athens, Greece
| | - Andreana Kozanidou
- Department of Internal Medicine, Hippokrateion Hospital, Thessaloniki, Greece
| | - Georgios Hillas
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "Sotiria", Athens, Greece
| | - Elisavet Stavropoulou
- Service de Médecine Interne, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, Hospital for Thoracic Diseases, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Dimakou
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "Sotiria", Athens, Greece.
| |
Collapse
|
16
|
Linezolid Attenuates Lethal Lung Damage during Postinfluenza Methicillin-Resistant Staphylococcus aureus Pneumonia. Infect Immun 2019; 87:IAI.00538-19. [PMID: 31383747 DOI: 10.1128/iai.00538-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/27/2019] [Indexed: 12/13/2022] Open
Abstract
Postinfluenza methicillin-resistant Staphylococcus aureus (MRSA) infection can quickly develop into severe, necrotizing pneumonia, causing over 50% mortality despite antibiotic treatments. In this study, we investigated the efficacy of antibiotic therapies and the impact of S. aureus alpha-toxin in a model of lethal influenza virus and MRSA coinfection. We demonstrate that antibiotics primarily attenuate alpha-toxin-induced acute lethality, even though both alpha-toxin-dependent and -independent mechanisms significantly contribute to animal mortality after coinfection. Furthermore, we found that the protein synthesis-suppressing antibiotic linezolid has an advantageous therapeutic effect on alpha-toxin-induced lung damage, as measured by protein leak and lactate dehydrogenase (LDH) activity. Importantly, using a Panton-Valentine leucocidin (PVL)-negative MRSA isolate from patient sputum, we show that linezolid therapy significantly improves animal survival from postinfluenza MRSA pneumonia compared with vancomycin treatment. Rather than improved viral or bacterial control, this advantageous therapeutic effect is associated with a significantly attenuated proinflammatory cytokine response and acute lung damage in linezolid-treated mice. Together, our findings not only establish a critical role of alpha-toxin in the extreme mortality of secondary MRSA pneumonia after influenza but also provide support for the possibility that linezolid could be a more effective treatment than vancomycin to improve disease outcomes.
Collapse
|
17
|
Caniga M, Yu H, Lee HH, Wang M, Witter D, Salmon M, Fan PW. Estimation of Fraction Dissolved After Intratracheal Delivery of a Potent Janus Kinase Inhibitor, iJAK-001, with Low Solubility in Rat and Sheep: Impact of Preclinical PKPD on Inhaled Human Dose Projection. J Aerosol Med Pulm Drug Deliv 2019; 32:251-265. [PMID: 31084462 DOI: 10.1089/jamp.2018.1492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: A highly potent pan-Janus kinase (JAK) inhibitor with excellent kinome selectivity was developed for topical delivery to treat severe asthma. This poorly soluble drug discovery candidate, iJAK-001, is expected to exhibit long duration of JAK/STAT pathway inhibition at low doses in asthmatics because of depot effect after dry powder inhalation. Human dose projection for inhaled molecules with low aqueous solubility remains to be a daunting challenge because of several limitations: (1) bioanalytical measurement of dissolved fraction after inhalation of solid particles is uncertain; (2) distribution of these particles is not homogenous in the lung; (3) in vitro solubility measurements to estimate fraction dissolved may not be a reflection of local surface lung concentration; (4) lack of a surrogate biomarker of lung target engagement, and (5) invasive procedure needed to sample human lung tissue in the clinic. Methods: We leveraged in silico, in vitro, and in vivo tools preclinically and found significant differences in lung to plasma partition ratio when iJAK-001 was given intravenously (IV) or intratracheally in a solution-based formulation versus that in suspension, as well as pharmacodynamic response in preclinical asthma models when delivered systemically via IV infusion versus inhaled. Results and Conclusion: The combined results from above suggest that caution must be exercised using either lung or plasma exposure for human dose projection. Instead, using the local inhibitor concentration estimate based on delivery efficiency, dose, fraction absorbed, and rate of absorption normalized by lung (cardiac) blood flow may be more appropriate for dose projection.
Collapse
Affiliation(s)
- Michael Caniga
- Department of In Vivo Pharmacology, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc.Boston, Massachusetts
| | - Hongshi Yu
- Department of Discovery Pharmaceutical Sciences, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc.Boston, Massachusetts
| | - Hyun-Hee Lee
- Department of Discovery Immunology, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc.Boston, Massachusetts
| | - Meiyao Wang
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc.Boston, Massachusetts
| | - David Witter
- Preclinical Research, Cullinan Oncology, Cambridge, Massachusetts
| | - Michael Salmon
- Platform Translation and Development, Emulate, Inc., Boston, Massachusetts
| | - Peter W Fan
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc.Boston, Massachusetts
| |
Collapse
|
18
|
Tian Y, Huang X, Wu LJ, Yi L, Li M, Gu SC, Guo DJ, Zhan QY. Pneumonia Caused by Community-Acquired Methicillin-Resistant Staphylococcus aureus: Vancomycin or Linezolid? Chin Med J (Engl) 2019; 131:2002-2004. [PMID: 30082534 PMCID: PMC6085849 DOI: 10.4103/0366-6999.238139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ye Tian
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xu Huang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Juan Wu
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Yi
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Min Li
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Si-Chao Gu
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dong-Jie Guo
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qing-Yuan Zhan
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
19
|
Nogid B, Lacy MK, Jacobs M, Bruss J, Dwyer J. Time Course and Extent of Renal Function Changes in Patients Receiving Treatment for Staphylococcal Pneumonias: An Analysis Comparing Telavancin and Vancomycin from the ATTAIN Trials. Pharmacotherapy 2018; 38:990-998. [PMID: 30003567 PMCID: PMC6221095 DOI: 10.1002/phar.2165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
STUDY OBJECTIVE Telavancin and vancomycin are both approved for treatment of hospital-acquired and ventilator-associated bacterial pneumonias caused by Staphylococcus aureus, and both agents can cause renal dysfunction. The objective of this study was to assess renal function changes by performing renal shift table analyses of telavancin- and vancomycin-treated patients in phase III trials. DESIGN Retrospective, descriptive analysis of data from the safety population from the Assessment of Telavancin for Treatment of Hospital-Acquired Pneumonia (ATTAIN) trials. PATIENTS A total of 1503 adults with hospital-acquired or ventilator-associated bacterial pneumonia primarily caused by gram-positive pathogens and who received telavancin (n = 751) or vancomycin (n = 752). MEASUREMENTS AND MAIN RESULTS Decline or improvement in creatinine clearance (CrCl) across seven defined categories (≤30, >30-40, >40-50, >50-60, >60-70, >70-80, and >80 ml/min) was classified as negative or positive shifts, respectively. The number of categories crossed (either positive or negative) determined the grade of shift (of a potential grades 1-6, with crossing from one category to the next adjacent category defined as a grade 1 shift) at specific time points compared with baseline: day 4, day 7, and end of therapy (EOT). Approximately 77%-91.6% of patients had either no change or improvement of CrCl across all time points for both treatments. Negative shifts were consistent for telavancin (day 4, 19.3%; day 7, 19.0%; EOT, 23.0%) but increased over time for vancomycin (day 4, 8.4%; day 7, 12.3%; EOT, 19.3%). A significantly lower proportion of patients receiving vancomycin showed renal function decline on day 4 and day 7. At EOT, negative shift rates were similar between treatments (treatment difference 3.6% [95% CI -0.7 to 7.9]). At day 7 and EOT, a higher percentage of vancomycin-treated patients experienced high-grade negative shifts relative to telavancin (day 7, vancomycin 2.8% vs telavancin 1.9%; EOT, vancomycin 4.7% vs telavancin 4.1%), though differences were not statistically significant. CONCLUSION Use of shift tables revealed differences in timing of renal function changes in patients receiving telavancin and vancomycin. Telavancin-related declines in renal function were similar at day 4 and day 7, with a slight increase by EOT. This differed from vancomycin, which caused a steady increase in the percentage of patients with renal function decline over time. A significant difference in negative renal shifts between treatments occurred at day 4 and day 7 and favored vancomycin; however, the difference was minimal and not significant at EOT.
Collapse
Affiliation(s)
- Boris Nogid
- Theravance Biopharma Inc., South San Francisco, California
| | - Melinda K Lacy
- Theravance Biopharma Inc., South San Francisco, California
| | - Micah Jacobs
- Romano, Pontzer and Associates, Pittsburgh, Pennsylvania
| | - Jon Bruss
- Theravance Biopharma Inc., South San Francisco, California
| | - Jamie Dwyer
- Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
20
|
Lei Z, Liu Q, Yang S, Yang B, Khaliq H, Li K, Ahmed S, Sajid A, Zhang B, Chen P, Qiu Y, Cao J, He Q. PK-PD Integration Modeling and Cutoff Value of Florfenicol against Streptococcus suis in Pigs. Front Pharmacol 2018; 9:2. [PMID: 29387013 PMCID: PMC5776115 DOI: 10.3389/fphar.2018.00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
The aims of the present study were to establish optimal doses and provide an alternate COPD for florfenicol against Streptococcus suis based on pharmacokinetic-pharmacodynamic integration modeling. The recommended dose (30 mg/kg b.w.) were administered in healthy pigs through intramuscular and intravenous routes for pharmacokinetic studies. The main pharmacokinetic parameters of Cmax, AUC0-24h, AUC, Ke, t1/2ke, MRT, Tmax, and Clb, were estimated as 4.44 μg/ml, 88.85 μg⋅h/ml, 158.56 μg⋅h/ml, 0.048 h-1, 14.46 h, 26.11 h, 4 h and 0.185 L/h⋅kg, respectively. The bioavailability of florfenicol was calculated to be 99.14% after I.M administration. A total of 124 Streptococcus suis from most cities of China were isolated to determine the minimum inhibitory concentration (MIC) of florfenicol. The MIC50 and MIC90 were calculated as 1 and 2 μg/ml. A serotype 2 Streptococcus suis (WH-2), with MIC value similar to MIC90, was selected as a representative for an in vitro and ex vivo pharmacodynamics study. The MIC values of WH-2 in TSB and plasma were 2 μg/ml, and the MBC/MIC ratios were 2 in TSB and plasma. The MPC was detected to be 3.2 μg/ml. According to inhibitory sigmoid Emax model, plasma AUC0-24h/MIC values of florfenicol versus Streptococcus suis were 37.89, 44.02, and 46.42 h for the bactericidal, bacteriostatic, and elimination activity, respectively. Monte Carlo simulations the optimal doses for bactericidal, bacteriostatic, and elimination effects were calculated as 16.5, 19.17, and 20.14 mg/kg b.w. for 50% target attainment rates (TAR), and 21.55, 25.02, and 26.85 mg/kg b.w. for 90% TAR, respectively. The PK-PD cutoff value (COPD) analyzed from MCS for florfenicol against Streptococcus suis was 1 μg/ml which could provide a sensitivity cutoff value. These results contributed an optimized alternative to clinical veterinary medicine and showed that the dose of 25.02 mg/kg florfenicol for 24 h could have a bactericidal action against Streptococcus suis after I.M administration. However, it should be validated in clinical practice in the future investigations.
Collapse
Affiliation(s)
- Zhixin Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qianying Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Shuaike Yang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, University of lllinois at Urbana – Champaign, Champaign, IL, United States
| | - Saeed Ahmed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Abdul Sajid
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Pin Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yinsheng Qiu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jiyue Cao
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Lei Z, Liu Q, Yang B, Ahmed S, Cao J, He Q. The pharmacokinetic-pharmacodynamic modeling and cut-off values of tildipirosin against Haemophilus parasuis. Oncotarget 2017; 9:1673-1690. [PMID: 29416722 PMCID: PMC5788590 DOI: 10.18632/oncotarget.23018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/17/2017] [Indexed: 01/10/2023] Open
Abstract
The goal of this study was to establish the epidemiological, pharmacodynamic cut-off values, optimal dose regimens for tildipirosin against Haemophilus parasuis. The minimum inhibitory concentrations (MIC) of 164 HPS isolates were determined and SH0165 whose MIC (2 μg/ml ) were selected for PD analysis. The ex vivo MIC in plasma of SH0165 was 0.25 μg/ml which was 8 times lower than that in TSB. The bacteriostatic, bactericidal and elimination activity (AUC24h/MIC) in serum were 26.35, 52.27 and 73.29 h based on the inhibitory sigmoid Emax modeling. The present study demonstrates that 97.9% of the wild-type (WT) isolates were covered when the epidemiological cut-off value (ECV) was set at 8 μg/ml. The parameters including AUC24h, AUC, T1/2, Cmax, CLb and MRT in PELF were 19.56, 60.41, 2.32, 4.02, 56.6, and 2.63 times than those in plasma, respectively. Regarding the Monte Carlo simulation, the COPD was defined as 0.5 μg/ml in vitro, and the optimal doses to achieve bacteriostatic, bactericidal and elimination effect were 1.85, 3.67 and 5.16 mg/kg for 50% target, respectively, and 2.07, 4.17 and 5.78 mg/kg for 90% target, respectively. The results of this study offer a more optimised alternative for clinical use and demonstrated that 4.17 mg/kg of tildipirosin by intramuscular injection could have an effect on bactericidal activity against HPS. These values are of great significance for the effective treatment of HPS infections, but it also be deserved to be validated in clinical practice in the future research.
Collapse
Affiliation(s)
- Zhixin Lei
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qianying Liu
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Saeed Ahmed
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiyue Cao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
22
|
Lei Z, Liu Q, Yang B, Khaliq H, Cao J, He Q. PK-PD Analysis of Marbofloxacin against Streptococcus suis in Pigs. Front Pharmacol 2017; 8:856. [PMID: 29209222 PMCID: PMC5701813 DOI: 10.3389/fphar.2017.00856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022] Open
Abstract
Marbofloxacin is a fluoroquinolone antibiotic and highly effective treatment for respiratory diseases. Here we aimed to evaluate the ex vivo activity of marbofloxacin against Streptococcus suis in pig serum, as well as the optimal dosages scheme for avoiding the fluoroquinolone resistance development. A single dose of 8 mg/kg body weight (bw) was administrated orally to healthy pigs and serum samples were collected during the next 72 h. Serum marbofloxacin content was determined by high-performance liquid chromatography. We estimated the Cmax (6.28 μg/ml), AUC0-24 h (60.30 μg.h/ml), AUC0-∞ (88.94 μg.h/ml), T1/2ke, (12.48 h), Tmax (0.75 h) and Clb (0.104 L/h) of marbofloxacin in pigs, as well as the bioavailability of marbofloxacin (94.21%) after a single 8 mg/kg oral administration. We also determined the pharmacodynamic of marbofloxacin against 134 Streptococcus suis strains isolated from Chinese cities in TSB and serum. These isolated strains had a MIC90 of 1 μg/ml. HB2, a virulent, serotype 2 isolate of SS, was selected for having antibacterial activity in TSB and serum to marbofloxacin. We determined the minimum inhibitory concentration (MIC, 1 μg/ml in TSB, 2 μg/ml in serum), minimum bactericidal concentration (MBC, 4 μg/ml in TSB, 4 μg/ml in serum), and mutant prevention concentration (2.56 μg/ml in TSB) for marbofloxacin against Streptococcus suis (HB2). In serum, by inhibitory sigmoid Emax modeling, the AUC0-24h/MIC values for marbofloxacin against HB2 were 25.23 (bacteriostatic), 35.64 (bactericidal), and 39.71 (elimination) h. Based on Monte Carlo simulations, the predicted optimal oral doses of marbofloxacin curing Streptococcus suis were 5.88 (bacteriostatic), 8.34 (bactericidal), and 9.36 (elimination) mg/kg.bw for a 50% target attainment ratio, and 8.16 (bacteriostatic), 11.31 (bactericidal), and 12.35 (elimination) mg/kg.bw for a 90% target attainment ratio. The data presented here provides optimized dosage information for clinical use; however, these predicted dosages should also be validated in clinical practice.
Collapse
Affiliation(s)
- Zhixin Lei
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qianying Liu
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Nebulized antibiotics in mechanically ventilated patients: a challenge for translational research from technology to clinical care. Ann Intensive Care 2017; 7:78. [PMID: 28766281 PMCID: PMC5539056 DOI: 10.1186/s13613-017-0301-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/17/2017] [Indexed: 01/20/2023] Open
Abstract
Nebulized antibiotic therapy directly targets airways and lung parenchyma resulting in high local concentrations and potentially lower systemic toxicities. Experimental and clinical studies have provided evidence for elevated lung concentrations and rapid bacterial killing following the administration of nebulized antibiotics during mechanical ventilation. Delivery of high concentrations of antibiotics to infected lung regions is the key to achieving efficient nebulized antibiotic therapy. However, current non-standardized clinical practice, the difficulties with implementing optimal nebulization techniques and the lack of robust clinical data have limited its widespread adoption. The present review summarizes the techniques and clinical constraints for optimal delivery of nebulized antibiotics to lung parenchyma during invasive mechanical ventilation. Pulmonary pharmacokinetics and pharmacodynamics of nebulized antibiotic therapy to treat ventilator-associated pneumonia are discussed and put into perspective. Experimental and clinical pharmacokinetics and pharmacodynamics support the use of nebulized antibiotics. However, its clinical benefits compared to intravenous therapy remain to be proved. Future investigations should focus on continuous improvement of nebulization practices and techniques. Before expanding its clinical use, careful design of large phase III randomized trials implementing adequate therapeutic strategies in targeted populations is required to demonstrate the clinical effectiveness of nebulized antibiotics in terms of patient outcomes and reduction in the emergence of antibiotic resistance.
Collapse
|
24
|
Huang DB, File TM, Torres A, Shorr AF, Wilcox MH, Hadvary P, Dryden M, Corey GR. A Phase II Randomized, Double-blind, Multicenter Study to Evaluate Efficacy and Safety of Intravenous Iclaprim Versus Vancomycin for the Treatment of Nosocomial Pneumonia Suspected or Confirmed to be Due to Gram-positive Pathogens. Clin Ther 2017; 39:1706-1718. [PMID: 28756068 DOI: 10.1016/j.clinthera.2017.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 11/19/2022]
Abstract
PURPOSE The primary objective of this Phase II study was to compare the clinical cure rates of 2 iclaprim dosages versus vancomycin in the treatment of patients with nosocomial pneumonia suspected or confirmed to be caused by gram-positive pathogens. METHODS This study was a double-blind, randomized, multicenter trial. A total of 70 patients were randomized 1:1:1 to receive iclaprim 0.8 mg/kg IV q12h (iclaprim q12h; n = 23), iclaprim 1.2 mg/kg IV q8h (iclaprim q8h; n = 24), or vancomycin 1 g IV q12h (vancomycin; n = 23) for 7 to 14 days. The primary end point was clinical cure in the intention-to-treat population at test of cure (TOC; 7 [1] days' posttreatment) visit. FINDINGS The baseline and demographic characteristics of patients treated with either iclaprim or vancomycin were comparable. Cure rates in the intention-to-treat population were 73.9% (17 of 23), 62.5% (15 of 24), and 52.2% (12 of 23) at the TOC visit in the iclaprim q12h, iclaprim q8h, and vancomycin groups, respectively (iclaprim q12h vs vancomycin, P = 0.13; iclaprim q8h vs vancomycin, P = 0.47). The death rates within 28 days of the start of treatment were 8.7% (2 of 23), 12.5% (3 of 24), and 21.7% (5 of 23) for the iclaprim q12h, iclaprim q8h, and vancomycin groups (no statistically significant differences). The adverse event profile of both iclaprim dosing regimens was similar to that of vancomycin. IMPLICATIONS Iclaprim had clinical cure rates and a safety profile comparable with vancomycin among patients with nosocomial pneumonia. Iclaprim could be an important new therapeutic option for the treatment of nosocomial pneumonia, and a pivotal clinical trial is warranted to evaluate its safety and efficacy in this indication.
Collapse
Affiliation(s)
| | | | - Antoni Torres
- Department of Pulmonology, Hospital Clinic of Barcelona, University of Barcelona, Institut D'investigacions August Pi I Sunyer, and Centro de Investigación Biomedica En Red-Enfermedades Respiratorias, Barcelona, Spain
| | - Andrew F Shorr
- Section of Pulmonary and Critical Care Medicine, MedStar Washington Hospital Center, Washington, DC
| | - Mark H Wilcox
- Leeds Teaching Hospitals and University of Leeds, Leeds, United Kingdom
| | | | - Matthew Dryden
- Department of Microbiology and Infection, Hampshire Hospitals NHS Foundation Trust, Southampton, United Kingdom
| | - G Ralph Corey
- Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
25
|
Van Bambeke F. Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review. Drugs 2015; 75:2073-95. [DOI: 10.1007/s40265-015-0505-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|