1
|
Li D, Xu X, Gao Y, Wang J, Yin Y, Yao B, Zhao L, Wang H, Wang H, Dong J, Zhang J, Peng R. Hsp72-Based Effect and Mechanism of Microwave Radiation-Induced Cardiac Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7145415. [PMID: 36035207 PMCID: PMC9410832 DOI: 10.1155/2022/7145415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to determine the role of heat shock protein 72 (Hsp72) changes in cardiac injury caused by microwave radiation, aimed at providing novel insights into the mechanism of this damage. A digital thermometer was used to measure the rectal temperature of the rats' pre- and post-radiation. On the 1st, 7th, 14th, and 28th days post-radiation, the changes in electrocardiogram (ECG) were analyzed by a multi-channel physiological recorder. The myocardial enzyme activities and ion concentrations were detected by an automatic biochemical analyzer. Additionally, the levels of myocardial injury markers were established by the enzyme-linked immunosorbent assay (ELISA), and those of hormones were measured by radioimmunoassay. The structure and ultrastructure of the myocardial tissue were observed using an optical microscope and transmission electron microscopy (TEM). The expression of Hsp72 was measured by Western blot and immunofluorescence analyses. Post-exposure, the rectal temperature in the R-group increased significantly, ECG was disordered, and the concentrations of ions were decreased. Furthermore, the activities of myocardial enzymes were changed, and the contents of myocardial injury markers and hormones were increased. We observed damage to the structure and ultrastructure and significantly increased expression of Hsp72. As a whole, the results indicated that S-wave microwave radiation at 30 mW/cm2 for 35 min resulted in damage to the cardiac functionality organigram, caused by a combination of the thermal and nonthermal effects.
Collapse
Affiliation(s)
- Dayan Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yabing Gao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Juan Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Yin
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
2
|
The Role of NMDAR and BDNF in Cognitive Dysfunction Induced by Different Microwave Radiation Conditions in Rats. RADIATION 2021. [DOI: 10.3390/radiation1040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: To investigate the effects of different levels of microwave radiation on learning and memory in Wistar rats and explore the underlying mechanisms of N-methyl-D-aspartate receptor (NMDAR/NR) and Brain-derived neurotropic factor (BDNF); Methods: A total of 140 Wistar rats were exposed to microwave radiation levels of 0, 10, 30 or 50 mW/cm2 for 6 min. Morris Water Maze Test, high-performance liquid chromatography, Transmission Electron Microscope and Western blotting were used; Results: The 30 and 50 mW/cm2 groups exhibited longer average escape latencies and fewer platform crossings than the 0 mW/cm2 group from 6 h to 3 d after microwave radiation. Alterations in the amino acid neurotransmitters of the hippocampi were shown at 6 h, 3 d and 7 d after exposure to 10, 30 or 50 mW/cm2 microwave radiation. The length and width of the Postsynaptic density were increased. The expression of NR1, NR2A and NR2B increased from day 1 to day 7; Postsynaptic density protein-95 and cortactin expression increased from day 3 to day 7; BDNF and Tyrosine kinase receptor B (TrkB) expression increased between 6 h and 1 d after 30 mW/cm2 microwave radiation exposure, but they decreased after 50mW/cm2 exposure. Conclusions: Microwave exposure (30 or 50 mW/cm2, for 6 min) may cause abnormalities in neurotransmitter release and synaptic structures, resulting in impaired learning and memory; BDNF and NMDAR-related signaling molecules might contribute differently to these alterations.
Collapse
|
3
|
Hu C, Zuo H, Li Y. Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain. Front Public Health 2021; 9:691880. [PMID: 34485223 PMCID: PMC8415840 DOI: 10.3389/fpubh.2021.691880] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
With the rapid development of electronic information in the past 30 years, technical achievements based on electromagnetism have been widely used in various fields pertaining to human production and life. Consequently, electromagnetic radiation (EMR) has become a substantial new pollution source in modern civilization. The biological effects of EMR have attracted considerable attention worldwide. The possible interaction of EMR with human organs, especially the brain, is currently where the most attention is focused. Many studies have shown that the nervous system is an important target organ system sensitive to EMR. In recent years, an increasing number of studies have focused on the neurobiological effects of EMR, including the metabolism and transport of neurotransmitters. As messengers of synaptic transmission, neurotransmitters play critical roles in cognitive and emotional behavior. Here, the effects of EMR on the metabolism and receptors of neurotransmitters in the brain are summarized.
Collapse
Affiliation(s)
- Cuicui Hu
- Anhui Medical University, Academy of Life Sciences, Hefei, China.,Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Li
- Anhui Medical University, Academy of Life Sciences, Hefei, China.,Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
4
|
Xia Z, Li M, Tian Y, Li Y, Li B, Zhang G, Lv J, Fu Q, Zhou H, Dong J. Lipidomics of Serum and Hippocampus Reveal the Protective Effects of Fermented Soybean Lipid on Rats of Microwave-Induced Cognitive Damage. ACS Chem Neurosci 2021; 12:2122-2132. [PMID: 34085811 DOI: 10.1021/acschemneuro.1c00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fermented soybean lipids (FSE-C) is an extract enriched in active lipid classes. To explore whether FSE-C can alleviate cognitive damage triggered by the exposure to microwave radiation through regulating lipid metabolism, we employed lipidomic profiling based on a UPLC-MS to investigate differential lipid metabolites in the serum and hippocampus of rats. The results showed that orally administered FSE-C could protect from cognitive damage in microwave-induced rats. Serum lipidomics indicated that FSE-C effectively facilitated the recovery of 43 differential lipid metabolites including 6 phosphatidylcholines (PCs), 5 phosphatidylethanolamines (PEs), 1 phosphatidylinositol, 3 lysophosphatidylcholines (LPCs), 6 lysophosphatidylethanolamines (LPEs), and 22 triglycerides (TGs), which was consistent with the analysis of serum TG levels. Moreover, FSE-C positively coordinated hexacosanoic acid, 2 PCs, 4 sphingomyelins (SMs), and 11 TGs, through the hippocampal lipidomics. Collectively, these findings suggested that phospholipid and TG metabolisms were significantly modified in microwave-exposed rats. TGs may be regarded as potential biomarkers to further investigate and evaluate the roles and functions of FSE-C on the attenuation of cognitive damage induced by microwave radiation.
Collapse
Affiliation(s)
- Ziming Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Min Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Ying Tian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yongzhong Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Bin Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Guangjie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jinpeng Lv
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qianyu Fu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hongmei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Junxing Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| |
Collapse
|
5
|
Zhang YH, Cui SX, Wan SB, Wu SH, Qu XJ. Increased S1P induces S1PR2 internalization to blunt the sensitivity of colorectal cancer to 5-fluorouracil via promoting intracellular uracil generation. Acta Pharmacol Sin 2021; 42:460-469. [PMID: 32647340 PMCID: PMC8027438 DOI: 10.1038/s41401-020-0460-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), the backbone of most sphingolipids, activating S1P receptors (S1PRs) and the downstream G protein signaling has been implicated in chemoresistance. In this study we investigated the role of S1PR2 internalization in 5-fluorouracil (5-FU) resistance in human colorectal cancer (CRC). Clinical data of randomly selected 60 CRC specimens showed the correlation between S1PR2 internalization and increased intracellular uracil (P < 0.001). Then we explored the regulatory mechanisms in CRC model of villin-S1PR2-/- mice and CRC cell lines. We showed that co-administration of S1P promoted S1PR2 internalization from plasma membrane (PM) to endoplasmic reticulum (ER), thus blunted 5-FU efficacy against colorectal tumors in WT mice, compared to that in S1PR2-/- mice. In HCT116 and HT-29 cells, application of S1P (10 μM) empowered S1PR2 to internalize from PM to ER, thus inducing 5-FU resistance, whereas the specific S1PR2 inhibitor JTE-013 (10 μM) effectively inhibited S1P-induced S1PR2 internalization. Using Mag-Fluo-AM-labeling [Ca2+]ER and LC-ESI-MS/MS, we revealed that internalized S1PR2 triggered elevating [Ca2+]ER levels to activate PERK-eLF2α-ATF4 signaling in HCT116 cells. The activated ATF4 upregulated RNASET2-mediated uracil generation, which impaired exogenous 5-FU uptake to blunt 5-FU therapy. Overall, this study reveals a previously unrecognized mechanism of 5-FU resistance resulted from S1PR2 internalization-upregulated uracil generation in colorectal cancer, and provides the novel insight into the significance of S1PR2 localization in predicting the benefit of CRC patients from 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shu-Xiang Cui
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Sheng-Biao Wan
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Shu-Hua Wu
- Department of Pathology, Hospital of Binzhou Medical University, Binzhou 264003, China
| | - Xian-Jun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Lai YF, Wang HY, Peng RY. Establishment of injury models in studies of biological effects induced by microwave radiation. Mil Med Res 2021; 8:12. [PMID: 33597038 PMCID: PMC7890848 DOI: 10.1186/s40779-021-00303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Microwave radiation has been widely used in various fields, such as communication, industry, medical treatment, and military applications. Microwave radiation may cause injuries to both the structures and functions of various organs, such as the brain, heart, reproductive organs, and endocrine organs, which endanger human health. Therefore, it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation. The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies. In this article, we review the microwave exposure conditions, subjects used to establish injury models, the methods used for the assessment of the injuries, and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
Collapse
Affiliation(s)
- Yun-Fei Lai
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hao-Yu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
7
|
Shi S, Cui Q, Xu J, Tang Z, Shi B, Liu Z. Baicalin Suppresses Bilirubin-Induced Apoptosis and Inflammation by Regulating p38 Mitogen-Activated Protein Kinases (MAPK) Signaling in Neonatal Neurons. Med Sci Monit 2020; 26:e926441. [PMID: 32633271 PMCID: PMC7366788 DOI: 10.12659/msm.926441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Hyperbilirubinemia is associated with central nervous system damage in preterm neonates due to the neurotoxicity of bilirubin. This study explored the possible mechanisms of bilirubin’s neurotoxicity, and the protective effect of baicalin (BAI) was also investigated. Material/Methods Isolated neonatal rat hippocampal neurons were exposed to free bilirubin (Bf). BAI was used to treat these neurons. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate the cell viability. Terminal deoxynucleotidyl transferase-dUTP nick-end labeling (TUNEL) assay was used to detect apoptosis. Contents of inflammatory cytokines were determined by enzyme-linked immunosorbent assay (ELISA). Protein expression and phosphorylation levels were assessed by Western blotting. Nuclear translocation was observed by immunofluorescent staining. Results Bf incubation significantly induced apoptosis and decreased viabilities of neurons. The phosphorylation levels of MAP kinase kinase (MKK)3, MKK6, p38 mitogen-activated protein kinases (MAPK), nuclear translocation level of p65, and the expression levels of cleaved caspase3 and tumor necrosis factor (TNF)α were found to be dramatically higher in Bf-incubated neurons. BAI pre-treatment, however, increased cell viability by reducing cell apoptosis. BAI pre-treatment also reduced phosphorylation levels of MKK3, MKK6, p38 MAPK, and nuclear translocation level of p65, as well as the expression levels of cleaved caspase3 and TNFα, in Bf-incubated neurons. Conclusions BAI suppressed bilirubin-induced neuron apoptosis and inflammation by deactivating p38 MAPK signaling.
Collapse
Affiliation(s)
- Shuang Shi
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Jing Xu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Zhiguo Tang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Binya Shi
- Department of Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|