1
|
Lee S, Lee GS, Moon JH, Jung J. Policosanol suppresses tumor progression in a gastric cancer xenograft model. Toxicol Res 2022; 38:567-575. [PMID: 36277362 PMCID: PMC9532484 DOI: 10.1007/s43188-022-00139-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the most common cancer worldwide and the third leading cause of cancer death, with the fifth highest incidence. The development of effective chemotherapeutic agents is needed to decrease GC mortality. Policosanol (PC) extracted from Cuban sugar cane wax is a healthy functional food ingredient that helps improve blood cholesterol levels and blood pressure. Its various physiological activities, such as antioxidant, anti-inflammatory, and anticancer activities, have been reported recently. Nevertheless, the therapeutic efficacy of PC in gastric xenograft models is unclear. We aimed to investigate the anticancer effect of PC on human GC SNU-16 cells and a xenograft mouse model. PC significantly inhibited GC cell viability and delayed tumor growth without toxicity in the SNU-16-derived xenograft model. Therefore, we investigated protein expression levels in tumor tissues; the expression levels of Ki-67, a proliferation marker, and cdc2 were decreased. In addition, we performed proteomic analysis and found thirteen differentially expressed proteins. Our results suggested that PC inhibited GC progression via cdc2 suppression and extracellular matrix protein regulation. Notably, our findings might contribute to the development of novel and effective therapeutic strategies for GC.
Collapse
Affiliation(s)
- Sunyi Lee
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
| | - Ga Seul Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
- College of Pharmacy, Duksung Women’s University, 33, Samyang-ro 144-gil, Dobong-gu, Seoul, 01369 Korea
| |
Collapse
|
2
|
Weng G, Duan Y, Zhong Y, Song B, Zheng J, Zhang S, Yin Y, Deng J. Plant Extracts in Obesity: A Role of Gut Microbiota. Front Nutr 2021; 8:727951. [PMID: 34631766 PMCID: PMC8495072 DOI: 10.3389/fnut.2021.727951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity has become one of the most serious chronic diseases threatening human health. Its occurrence and development are closely associated with gut microbiota since the disorders of gut microbiota can promote endotoxin production and induce inflammatory response. Recently, numerous plant extracts have been proven to mitigate lipid dysmetabolism and obesity syndrome by regulating the abundance and composition of gut microbiota. In this review, we summarize the potential roles of different plant extracts including mulberry leaf extract, policosanol, cortex moutan, green tea, honokiol, and capsaicin in regulating obesity via gut microbiota. Based on the current findings, plant extracts may be promising agents for the prevention and treatment of obesity and its related metabolic diseases, and the mechanisms might be associated with gut microbiota.
Collapse
Affiliation(s)
- Guangying Weng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bo Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Zhou Y, Cao F, Wu Q, Luo Y, Guo T, Han S, Huang M, Hu Z, Bai J, Luo F, Lin Q. Dietary Supplementation of Octacosanol Improves Exercise-Induced Fatigue and Its Molecular Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7603-7618. [PMID: 34223764 DOI: 10.1021/acs.jafc.1c01764] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several publications report that octacosanol (OCT) has different biological functions. This study was designed to evaluate the antifatigue effect and molecular mechanism of octacosanol (200 mg/(kg day)) in forced exercise-induced fatigue models of trained male C57BL/6 mice. Results showed that octacosanol ameliorated the mice's autonomic activities, forelimb grip strength, and swimming endurance, and the levels of liver glycogen (LG), muscle glycogen (MG), blood lactic acid (BLA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were also regulated. Gene analysis results showed that treatment with OCT upregulated 29 genes, while 38 genes were downregulated in gastrocnemius tissue. Gene ontology (GO) analyses indicated that these genes enriched functions in relation to myofibril, contractile fiber, and calcium-dependent adenosinetriphosphatase (ATPase) activity. Octacosanol supplementation significantly adjusted the messenger RNA (mRNA) and protein expression levels related to fatigue performance. Octacosanol has an observably mitigating effect in exercise-induced fatigue models, and its molecular mechanism may be related to the regulation of tripartite motif-containing 63 (Trim63), periaxin (Prx), calcium voltage-gated channel subunit α1 H (Cacna1h), and myosin-binding protein C (Mybpc3) expression.
Collapse
Affiliation(s)
- Yaping Zhou
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Fuliang Cao
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qiang Wu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Yi Luo
- Department of Clinical Medicine, Medical College of Xiangya, Central South University, Changsha 410008, Hunan, China
| | - Tianyi Guo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Shuai Han
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Mengzhen Huang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Zuomin Hu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Qinlu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| |
Collapse
|
4
|
Harrabi S, Ferchichi A, Bacheli A, Fellah H. Policosanol composition, antioxidant and anti-arthritic activities of milk thistle (Silybium marianum L.) oil at different seed maturity stages. Lipids Health Dis 2018; 17:82. [PMID: 29661192 PMCID: PMC5902937 DOI: 10.1186/s12944-018-0682-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/19/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Several anti-arthritic drugs and synthetic antioxidants have wide pharmaceutical uses and are often associated with various side effects on the human health. Dietary seed oils and their minor components like policosanol may offer an effective alternative treatment for arthritic and oxidative-stress related diseases. The biological effects of seed oils were affected by different parameters such as the stage of seed maturity. Hence, this study seeks to determine the policosanol content, antioxidant and anti-arthritic activities of milk thistle (Silybium marianum L.) oil extracted at various stages of seed maturation. METHODS Milk thistle oil samples were extracted from seeds collected at three maturation stages (immature, intermediate, and mature). The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays were used to determine the antioxidant activity of the extracted oils. The anti-arthritic activity of oil samples was evaluated with bovine serum protein denaturation and egg albumin denaturation methods. Gas chromatography coupled to mass spectrometry (GC-MS) was employed to determine the policosanol profile. RESULTS Policosanol profile, antioxidant and anti-arthritic activities of milk thistle oil were influenced by the seed maturity stages. The oil extracted from the immature seeds had the highest total policosanol content (987.68 mg/kg of oil) and displayed the maximum antiradical activity (96.42% and 90.35% for DPPH test and ABTS assay, respectively). Nine aliphatic alcohols were identified in the milk thistle oil. The dominant poliosanol in the mature seed oil was octacosanol (75.44%), while triacontanol was the major compound (40.25%) in the immature seed oil. Additionally, the maximum inhibition of bovine serum protein denaturation (92.53%) and egg albumin denaturation (86.36%) were observed in immature seed oil as compared to mature seed oil. A high correlation was found between the total policosanol content, anti-arthritic activity and antioxidant capacity of oil. CONCLUSIONS The milk thistle oil exhibited a potential anti-arthritic and antioxidant activities and that it might contribute to the protection of humans from a variety of diseases like rheumatoid arthritis. Also, it could serve as natural antioxidant and anti-arthritic agents for application in the food industries and pharmaceutic. Policosanol level in the seed oils might contribute to their anti-arthritic and antioxidant activities.
Collapse
Affiliation(s)
- Saoussem Harrabi
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine Tunis, 15 street Djebel Lakhdar, Rabta, 1007, University of Tunis El Manar, Tunis, Tunisia
| | - Azza Ferchichi
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine Tunis, 15 street Djebel Lakhdar, Rabta, 1007, University of Tunis El Manar, Tunis, Tunisia
| | - Asma Bacheli
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine Tunis, 15 street Djebel Lakhdar, Rabta, 1007, University of Tunis El Manar, Tunis, Tunisia
| | - Hayet Fellah
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine Tunis, 15 street Djebel Lakhdar, Rabta, 1007, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
5
|
Octacosanol restores stress-affected sleep in mice by alleviating stress. Sci Rep 2017; 7:8892. [PMID: 28827687 PMCID: PMC5566941 DOI: 10.1038/s41598-017-08874-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/18/2017] [Indexed: 01/20/2023] Open
Abstract
Octacosanol, a component of various food materials, possesses prominent biological activities and functions. It fights against cellular stress by increasing glutathione level and thus scavenging oxygen reactive species. However, its anti-stress activity and role in sleep induction remained elusive. We hypothesize that octacosanol can restore stress-affected sleep by mitigating stress. Cage change strategy was used to induce mild stress and sleep disturbance in mice, and effects of octacosanol administration on amount of sleep and stress were investigated. Results showed that octacosanol did not change rapid eye movement (REM) or non-REM (NREM) sleep compared to vehicle in normal mice. However, in cage change experiment, octacosanol induces significant increase in NREM sleep at doses of 100 and 200 mg/kg (75.7 ± 14.9 and 82.7 ± 9.3 min/5 h) compared to vehicle (21.2 ± 5.1 min/5 h), and decreased sleep latency. Octacosanol induced sleep by increasing number of sleep episodes and decreasing wake episode duration. Plasma corticosterone levels were significantly reduced after octacosanol (200 mg/kg) administration, suggesting a decrease in stress level. Octacosanol-induced changes in sleep-wake parameters in stressed-mice were comparable to the values in normal mice. Together, these data clearly showed that, though octacosanol does not alter normal sleep, it clearly alleviates stress and restore stress-affected sleep.
Collapse
|