1
|
Ren R, Zhang G, Ma J, Zheng Y, Zhao Y, Zhang Y, Zhao L. Nebulized seabuckthorn seed oil inhalation attenuates Alzheimer's disease progression in APP/PS1 mice. Sci Rep 2025; 15:6368. [PMID: 39984555 PMCID: PMC11845625 DOI: 10.1038/s41598-025-89747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Seabuckthorn (Hippophae rhamnoides L.) is known for its medicinal properties in treating various diseases, including neurological conditions. However, the therapeutic effect of inhaled seabuckthorn seed oil (SSO) on Alzheimer's disease (AD) remains not fully understood. This study explores the effects of nebulized inhalation of SSO in 9-month-old APP/PS1 mice over 21 days. The results showed that nebulized SSO improved memory and cognition. Using 7.0T MRI to monitor blood oxygenation level dependent (BOLD) signals revealed that SSO altered the Amplitude of Low Frequency Fluctuations (ALFF) and Regional Homogeneity (ReHo) signaling such as in the amygdala and substantia innominate, and hippocampus. Enzyme-linked immuno sorbent assay (ELISA) and pathological analyses indicated reduced neuroinflammation in plasma and brain, decreased neuronal necrosis, lower β-amyloid (Aβ) protein levels, reduced amyloid deposition, and increased tyrosine hydroxylase activity. Additionally, SSO promoted gut microbiota remodeling by increasing alpha diversity and boosting levels of probiotics such as Verrucomicrobia, Bifidobacterium, Prevotella, and Akkermansia, without adverse effects on lung tissue. Nebulized inhalation of SSO may slow AD progression by modulating inflammation and amyloid deposition. Nebulized inhalation offered a potential method for enhancing drug delivery across the blood-brain barrier with reduced systemic side effects.
Collapse
Affiliation(s)
- Ruichen Ren
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Junqing Ma
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yongze Zheng
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yuxuan Zhao
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yang Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
2
|
Majewska A, Le L, Feidler A, Li H, Kara-Pabani K, Lamantia C, O'Banion MK. Noradrenergic signaling controls Alzheimer's disease pathology via activation of microglial β2 adrenergic receptors. RESEARCH SQUARE 2024:rs.3.rs-3976896. [PMID: 38464247 PMCID: PMC10925421 DOI: 10.21203/rs.3.rs-3976896/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Norepinephrine (NE) is a potent anti-inflammatory agent in the brain. In Alzheimer's disease (AD), the loss of NE signaling heightens neuroinflammation and exacerbates amyloid pathology. NE inhibits surveillance activity of microglia, the brain's resident immune cells, via their β2 adrenergic receptors (β2ARs). Here, we investigate the role of microglial β2AR signaling in AD pathology in the 5xFAD mouse model of AD. We found that loss of cortical NE projections preceded the degeneration of NE-producing neurons and that microglia in 5xFAD mice, especially those microglia that were associated with plaques, significantly downregulated β2AR gene expression early in amyloid pathology. Importantly, dampening microglial β2AR signaling worsened plaque load and the associated neuritic damage, while stimulating microglial β2AR signaling attenuated amyloid pathology. Our results suggest that microglial β2AR could be explored as a potential therapeutic target to modify AD pathology.
Collapse
Affiliation(s)
| | | | | | - Herman Li
- University of Rochester Medical Center
| | | | | | | |
Collapse
|
3
|
Le L, Feidler AM, Li H, Kara-Pabani K, Lamantia C, O'Banion MK, Majewska KA. Noradrenergic signaling controls Alzheimer's disease pathology via activation of microglial β2 adrenergic receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569564. [PMID: 38106167 PMCID: PMC10723313 DOI: 10.1101/2023.12.01.569564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In Alzheimer's disease (AD) pathophysiology, plaque and tangle accumulation trigger an inflammatory response that mounts positive feed-back loops between inflammation and protein aggregation, aggravating neurite damage and neuronal death. One of the earliest brain regions to undergo neurodegeneration is the locus coeruleus (LC), the predominant site of norepinephrine (NE) production in the central nervous system (CNS). In animal models of AD, dampening the impact of noradrenergic signaling pathways, either through administration of beta blockers or pharmacological ablation of the LC, heightened neuroinflammation through increased levels of pro-inflammatory mediators. Since microglia are the resident immune cells of the CNS, it is reasonable to postulate that they are responsible for translating the loss of NE tone into exacerbated disease pathology. Recent findings from our lab demonstrated that noradrenergic signaling inhibits microglia dynamics via β2 adrenergic receptors (β2ARs), suggesting a potential anti-inflammatory role for microglial β2AR signaling. Thus, we hypothesize that microglial β2 adrenergic signaling is progressively impaired during AD progression, which leads to the chronic immune vigilant state of microglia that worsens disease pathology. First, we characterized changes in microglial β2AR signaling as a function of amyloid pathology. We found that LC neurons and their projections degenerate early and progressively in the 5xFAD mouse model of AD; accompanied by mild decrease in the levels of norepinephrine and its metabolite normetanephrine. Interestingly, while 5xFAD microglia, especially plaque-associated microglia, significant downregulated β2AR gene expression early in amyloid pathology, they did not lose their responsiveness to β2AR stimulation. Most importantly, we demonstrated that specific microglial β2AR deletion worsened disease pathology while chronic β2AR stimulation resulted in attenuation of amyloid pathology and associated neuritic damage, suggesting microglial β2AR might be used as potential therapeutic target to modify AD pathology.
Collapse
Affiliation(s)
- L Le
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY
| | - A M Feidler
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY
| | - H Li
- Medical Scientist Training Program, University of Rochester, Rochester NY
| | - K Kara-Pabani
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY
| | - C Lamantia
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY
| | - M K O'Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY
| | - K A Majewska
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY
- Center for Visual Science, University of Rochester, Rochester NY
| |
Collapse
|
4
|
Markussen NB, Knopper RW, Hasselholt S, Skoven CS, Nyengaard JR, Østergaard L, Hansen B. Locus coeruleus ablation in mice: protocol optimization, stereology and behavioral impact. Front Cell Neurosci 2023; 17:1138624. [PMID: 37180952 PMCID: PMC10172584 DOI: 10.3389/fncel.2023.1138624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The Locus Coeruleus (LC) is in the brainstem and supplies key brain structures with noradrenaline, including the forebrain and hippocampus. The LC impacts specific behaviors such as anxiety, fear, and motivation, as well as physiological phenomena that impact brain functions in general, including sleep, blood flow regulation, and capillary permeability. Nevertheless, the short- and long-term consequences of LC dysfunction remain unclear. The LC is among the brain structures first affected in patients suffering from neurodegenerative diseases such as Parkinson's disease and Alzheimer's Disease, hinting that LC dysfunction may play a central role in disease development and progression. Animal models with modified or disrupted LC function are essential to further our understanding of LC function in the normal brain, the consequences of LC dysfunction, and its putative roles in disease development. For this, well-characterized animal models of LC dysfunction are needed. Here, we establish the optimal dose of selective neurotoxin N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (DSP-4) for LC ablation. Using histology and stereology, we compare LC volume and neuron number in LC ablated (LCA) mice and controls to assess the efficacy of LC ablation with different numbers of DSP-4 injections. All LCA groups show a consistent decrease in LC cell count and LC volume. We then proceed to characterize the behavior of LCA mice using a light-dark box test, Barnes maze test, and non-invasive sleep-wakefulness monitoring. Behaviorally, LCA mice differ subtly from control mice, with LCA mice generally being more curious and less anxious compared to controls consistent with known LC function and projections. We note an interesting contrast in that control mice have varying LC size and neuron count but consistent behavior whereas LCA mice (as expected) have consistently sized LC but erratic behavior. Our study provides a thorough characterization of an LC ablation model, firmly consolidating it as a valid model system for the study of LC dysfunction.
Collapse
Affiliation(s)
- Nanna Bertin Markussen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus West Knopper
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Stine Hasselholt
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christian Stald Skoven
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Mercan D, Heneka MT. The Contribution of the Locus Coeruleus-Noradrenaline System Degeneration during the Progression of Alzheimer's Disease. BIOLOGY 2022; 11:1822. [PMID: 36552331 PMCID: PMC9775634 DOI: 10.3390/biology11121822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), which is characterized by extracellular accumulation of amyloid-beta peptide and intracellular aggregation of hyperphosphorylated tau, is the most common form of dementia. Memory loss, cognitive decline and disorientation are the ultimate consequences of neuronal death, synapse loss and neuroinflammation in AD. In general, there are many brain regions affected but neuronal loss in the locus coeruleus (LC) is one of the earliest indicators of neurodegeneration in AD. Since the LC is the main source of noradrenaline (NA) in the brain, degeneration of the LC in AD leads to decreased NA levels, causing increased neuroinflammation, enhanced amyloid and tau burden, decreased phagocytosis and impairment in cognition and long-term synaptic plasticity. In this review, we summarized current findings on the locus coeruleus-noradrenaline system and consequences of its dysfunction which is now recognized as an important contributor to AD progression.
Collapse
Affiliation(s)
- Dilek Mercan
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Michael Thomas Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Waterhouse BD, Predale HK, Plummer NW, Jensen P, Chandler DJ. Probing the structure and function of locus coeruleus projections to CNS motor centers. Front Neural Circuits 2022; 16:895481. [PMID: 36247730 PMCID: PMC9556855 DOI: 10.3389/fncir.2022.895481] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The brainstem nucleus locus coeruleus (LC) sends projections to the forebrain, brainstem, cerebellum and spinal cord and is a source of the neurotransmitter norepinephrine (NE) in these areas. For more than 50 years, LC was considered to be homogeneous in structure and function such that NE would be released uniformly and act simultaneously on the cells and circuits that receive LC projections. However, recent studies have provided evidence that LC is modular in design, with segregated output channels and the potential for differential release and action of NE in its projection fields. These new findings have prompted a radical shift in our thinking about LC operations and demand revision of theoretical constructs regarding impact of the LC-NE system on behavioral outcomes in health and disease. Within this context, a major gap in our knowledge is the relationship between the LC-NE system and CNS motor control centers. While we know much about the organization of the LC-NE system with respect to sensory and cognitive circuitries and the impact of LC output on sensory guided behaviors and executive function, much less is known about the role of the LC-NE pathway in motor network operations and movement control. As a starting point for closing this gap in understanding, we propose using an intersectional recombinase-based viral-genetic strategy TrAC (Tracing Axon Collaterals) as well as established ex vivo electrophysiological assays to characterize efferent connectivity and physiological attributes of mouse LC-motor network projection neurons. The novel hypothesis to be tested is that LC cells with projections to CNS motor centers are scattered throughout the rostral-caudal extent of the nucleus but collectively display a common set of electrophysiological properties. Additionally, we expect to find these LC projection neurons maintain an organized network of axon collaterals capable of supporting selective, synchronous release of NE in motor circuitries for the purpose of coordinately regulating operations across networks that are responsible for balance and movement dynamics. Investigation of this hypothesis will advance our knowledge of the role of the LC-NE system in motor control and provide a basis for treating movement disorders resulting from disease, injury, or normal aging.
Collapse
Affiliation(s)
- Barry D. Waterhouse
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States,*Correspondence: Barry D. Waterhouse,
| | - Haven K. Predale
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| | - Nicholas W. Plummer
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Patricia Jensen
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Daniel J. Chandler
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| |
Collapse
|
7
|
Sacchini S, Fernández A, Mompeó B, Ramírez R, Arbelo M, Holgersen U, Quesada-Canales O, Castro-Alonso A, Andrada M. Toothed Whales Have Black Neurons in the Blue Spot. Vet Sci 2022; 9:vetsci9100525. [PMID: 36288139 PMCID: PMC9610827 DOI: 10.3390/vetsci9100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Neuromelanin is a dark pigment that is present in several types of neurons of the brain. The role of human neuromelanin is a matter of controversy and, over the past few years, has been attributed to having a dual nature, either in a protective role to shield neurons from toxic compounds, or as a trigger of neuroinflammation. This pigment has been researched mainly in the human brain, but it has also been found in the neurons of monkeys, horses, giraffes, cattle, sheep, goats, dogs, rats, and even in frogs and tadpoles. Even so, neuromelanin in humans and primates presents unique features that are not shown in other animals. A study on the morphology of the locus ceruleus (a key brain structure) of the family Delphinidae highlighted the presence of a large amount of neuromelanin within this brain area. In an attempt to better define the ultrastructure of neuromelanin in toothed whales, two brain specimens of the suborder Odontoceti were investigated. The two toothed whales that were examined presented melanin granules associated with lipid droplets and membranes that bore a striking resemblance with human neuromelanin. Its accumulation takes place over the entire life span, and appears to contain the story of one’s life exposure to several endogenous and environmental metals and/or compounds. Abstract Neuromelanin (NM) is a dark polymer pigment that is located mostly in the human substantia nigra, and in the locus ceruleus, referred to as “the blue spot”. NM increases linearly with age, and has been described mainly in the human brain; however, it also occurs in the neurons of monkeys, horses, giraffes, cattle, sheep, goats, dogs, rats, and even in frogs. While in most of these mammals NM shows the histochemical and ultrastructural features typical of lipofuscins, human NM is confined within cytoplasmic organelles that are surrounded by a double membrane, suggesting an autophagic origin. In a study on the morphology of the locus ceruleus of the family Delphinidae, the presence of a variable quantity of NM in the interior of locus ceruleus neurons was observed for the first time; meanwhile, nothing is known about its ultrastructure and composition. Transmission electron microscopy demonstrated in two toothed whales—an Atlantic spotted dolphin (Stenella frontalis; family Delphinidae) and a Blainville’s beaked whale (Mesoplodon densirostris; family Ziphiidae)—the presence of melanin granules associated with lipid droplets and membranes that were very similar to that of human NM. The relationship between NM and neuronal vulnerability must be studied in depth, and cetaceans may offer a new natural-spontaneous comparative model for the study of NM and its implication in neurodegenerative diseases.
Collapse
Affiliation(s)
- Simona Sacchini
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, c/Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
- Correspondence: ; Tel.: +34-928-451477
| | - Antonio Fernández
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
| | - Blanca Mompeó
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, c/Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Raquel Ramírez
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, c/Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
| | - Unn Holgersen
- Nordland Research Institute, P.O. Box 1490, 8049 Bodø, Norway
| | - Oscar Quesada-Canales
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
| | - Ayoze Castro-Alonso
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
| | - Marisa Andrada
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
| |
Collapse
|
8
|
Nelson AR. Peripheral Pathways to Neurovascular Unit Dysfunction, Cognitive Impairment, and Alzheimer’s Disease. Front Aging Neurosci 2022; 14:858429. [PMID: 35517047 PMCID: PMC9062225 DOI: 10.3389/fnagi.2022.858429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. It was first described more than a century ago, and scientists are acquiring new data and learning novel information about the disease every day. Although there are nuances and details continuously being unraveled, many key players were identified in the early 1900’s by Dr. Oskar Fischer and Dr. Alois Alzheimer, including amyloid-beta (Aβ), tau, vascular abnormalities, gliosis, and a possible role of infections. More recently, there has been growing interest in and appreciation for neurovascular unit dysfunction that occurs early in mild cognitive impairment (MCI) before and independent of Aβ and tau brain accumulation. In the last decade, evidence that Aβ and tau oligomers are antimicrobial peptides generated in response to infection has expanded our knowledge and challenged preconceived notions. The concept that pathogenic germs cause infections generating an innate immune response (e.g., Aβ and tau produced by peripheral organs) that is associated with incident dementia is worthwhile considering in the context of sporadic AD with an unknown root cause. Therefore, the peripheral amyloid hypothesis to cognitive impairment and AD is proposed and remains to be vetted by future research. Meanwhile, humans remain complex variable organisms with individual risk factors that define their immune status, neurovascular function, and neuronal plasticity. In this focused review, the idea that infections and organ dysfunction contribute to Alzheimer’s disease, through the generation of peripheral amyloids and/or neurovascular unit dysfunction will be explored and discussed. Ultimately, many questions remain to be answered and critical areas of future exploration are highlighted.
Collapse
|
9
|
Chen Y, Chen T, Hou R. Locus coeruleus in the pathogenesis of Alzheimer's disease: A systematic review. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12257. [PMID: 35282658 PMCID: PMC8900465 DOI: 10.1002/trc2.12257] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023]
Abstract
The locus coeruleus (LC) is a nucleus in the brain stem producing noradrenaline. While cognitive decline in Alzheimer's disease (AD) has primarily been related to cholinergic depletion, evidence indicates extensive LC degeneration as its earliest pathological marker. The current study aimed to systematically evaluate current evidence investigating the role of the LC in the pathogenesis of AD. A systematic search of the literature was performed on electronic databases including PubMed and Web of Science. Twelve animal, human post mortem, and human imaging studies were included in this review. Screening, data extraction, and quality assessment were undertaken following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for preferred reporting of systematic reviews. Significant associations were identified between LC changes and cognitive decline. Significant reductions in fiber density, neuronal number, and LC volume were seen to correlate with other pathological degenerative markers. Current evidence indicates an important role of the LC in pathogenesis of AD and suggests its potential in both diagnosis and treatment of AD. This systematic review advances our understanding of the role of the LC in AD by synthesizing available evidence, identifying research gaps, highlighting methodological challenges, and making recommendations for future work.
Collapse
Affiliation(s)
- Yuqing Chen
- School of Clinical MedicineAddenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | - Teng Chen
- Department of NeurosurgeryQilu Hospital of Shandong UniversityJinanShandongChina
| | - Ruihua Hou
- Clinical and Experimental SciencesFaculty of MedicineUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
10
|
Slater C, Wang Q. Alzheimer's disease: An evolving understanding of noradrenergic involvement and the promising future of electroceutical therapies. Clin Transl Med 2021; 11:e397. [PMID: 33931975 PMCID: PMC8087948 DOI: 10.1002/ctm2.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) poses a significant global health concern over the next several decades. Multiple hypotheses have been put forth that attempt to explain the underlying pathophysiology of AD. Many of these are briefly reviewed here, but to-date no disease-altering therapy has been achieved. Despite this, recent work expanding on the role of noradrenergic system dysfunction in both the pathogenesis and symptomatic exacerbation of AD has shown promise. The role norepinephrine (NE) plays in AD remains complicated but pre-tangle tau has consistently been shown to arise in the locus coeruleus (LC) of patients with AD decades before symptom onset. The current research reviewed here indicates NE can facilitate neuroprotective and memory-enhancing effects through β adrenergic receptors, while α2A adrenergic receptors may exacerbate amyloid toxicity through a contribution to tau hyperphosphorylation. AD appears to involve a disruption in the balance between these two receptors and their various subtypes. There is also a poorly characterized interplay between the noradrenergic and cholinergic systems. LC deterioration leads to maladaptation in the remaining LC-NE system and subsequently inhibits cholinergic neuron function, eventually leading to the classic cholinergic disruption seen in AD. Understanding AD as a dysfunctional noradrenergic system, provides new avenues for the use of advanced neural stimulation techniques to both study and therapeutically target the earliest stages of neuropathology. Direct LC stimulation and non-invasive vagus nerve stimulation (VNS) have both demonstrated potential use as AD therapeutics. Significant work remains, though, to better understand the role of the noradrenergic system in AD and how electroceuticals can provide disease-altering treatments.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Qi Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
11
|
Cao S, Fisher DW, Rodriguez G, Yu T, Dong H. Comparisons of neuroinflammation, microglial activation, and degeneration of the locus coeruleus-norepinephrine system in APP/PS1 and aging mice. J Neuroinflammation 2021; 18:10. [PMID: 33407625 PMCID: PMC7789762 DOI: 10.1186/s12974-020-02054-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The role of microglia in Alzheimer's disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. METHODS In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. RESULTS Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. CONCLUSION These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563002, Guizhou, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington Medical Center, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Tian Yu
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563002, Guizhou, China
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
QuinoxalineTacrine QT78, a Cholinesterase Inhibitor as a Potential Ligand for Alzheimer's Disease Therapy. Molecules 2019; 24:molecules24081503. [PMID: 30999586 PMCID: PMC6514705 DOI: 10.3390/molecules24081503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
We report the synthesis and relevant pharmacological properties of the quinoxalinetacrine (QT) hybrid QT78 in a project targeted to identify new non-hepatotoxic tacrine derivatives for Alzheimer’s disease therapy. We have found that QT78 is less toxic than tacrine at high concentrations (from 100 μM to 1 mM), less potent than tacrine as a ChE inhibitor, but shows selective BuChE inhibition (IC50 (hAChE) = 22.0 ± 1.3 μM; IC50 (hBuChE) = 6.79 ± 0.33 μM). Moreover, QT78 showed effective and strong neuroprotection against diverse toxic stimuli, such as rotenone plus oligomycin-A or okadaic acid, of biological significance for Alzheimer’s disease.
Collapse
|
13
|
Abstract
The locus coeruleus (LC) is the largest catecholaminergic nucleus and extensively projects to widespread areas of the brain and spinal cord. The LC is the largest source of noradrenaline in the brain. To date, the only examined Delphinidae species for the LC has been a bottlenose dolphin (Tursiops truncatus). In our experimental series including different Delphinidae species, the LC was composed of five subdivisions: A6d, A6v, A7, A5, and A4. The examined animals had the A4 subdivision, which had not been previously described in the only Delphinidae in which this nucleus was investigated. Moreover, the neurons had a large amount of neuromelanin in the interior of their perikarya, making this nucleus highly similar to that of humans and non-human primates. This report also presents the first description of neuromelanin in the cetaceans’ LC complex, as well as in the cetaceans’ brain.
Collapse
|
14
|
Locus Coeruleus Ablation Exacerbates Cognitive Deficits, Neuropathology, and Lethality in P301S Tau Transgenic Mice. J Neurosci 2017; 38:74-92. [PMID: 29133432 DOI: 10.1523/jneurosci.1483-17.2017] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/03/2017] [Accepted: 11/03/2017] [Indexed: 12/24/2022] Open
Abstract
The brainstem locus coeruleus (LC) supplies norepinephrine to the forebrain and degenerates in Alzheimer's disease (AD). Loss of LC neurons is correlated with increased severity of other AD hallmarks, including β-amyloid (Aβ) plaques, tau neurofibrillary tangles, and cognitive deficits, suggesting that it contributes to the disease progression. Lesions of the LC in amyloid-based transgenic mouse models of AD exacerbate Aβ pathology, neuroinflammation, and cognitive deficits, but it is unknown how the loss of LC neurons affects tau-mediated pathology or behavioral abnormalities. Here we investigate the impact of LC degeneration in a mouse model of tauopathy by lesioning the LC of male and female P301S tau transgenic mice with the neurotoxin N-(2-chloroethyl)-N-ethyl-bromobenzylamine (DSP-4) starting at 2 months of age. By 6 months, deficits in hippocampal-dependent spatial (Morris water maze) and associative (contextual fear conditioning) memory were observed in lesioned P301S mice while performance remained intact in all other genotype and treatment groups, indicating that tau and LC degeneration act synergistically to impair cognition. By 10 months, the hippocampal neuroinflammation and neurodegeneration typically observed in unlesioned P301S mice were exacerbated by DSP-4, and mortality was also accelerated. These DSP-4-induced changes were accompanied by only a mild aggravation of tau pathology, suggesting that increased tau burden cannot fully account for the effects of LC degeneration. Combined, these experiments demonstrate that loss of LC noradrenergic neurons exacerbates multiple phenotypes caused by pathogenic tau, and provides complementary data to highlight the dual role LC degeneration has on both tau and Aβ pathologies in AD.SIGNIFICANCE STATEMENT Elucidating the mechanisms underlying AD is crucial to developing effective diagnostics and therapeutics. The degeneration of the LC and loss of noradrenergic transmission have been recognized as ubiquitous events in AD pathology, and previous studies demonstrated that LC lesions exacerbate pathology and cognitive deficits in amyloid-based mouse models. Here, we reveal a complementary role of LC degeneration on tau-mediated aspects of the disease by using selective lesions of the LC and the noradrenergic system to demonstrate an exacerbation of cognitive deficits, neuroinflammation, neurodegeneration in a transgenic mouse model of tauopathy. Our data support an integral role for the LC in modulating the severity of both canonical AD-associated pathologies, as well as the detrimental consequences of LC degeneration during disease progression.
Collapse
|
15
|
Mehta R, Singh A, Bókkon I, Nath Mallick B. REM sleep and its Loss-Associated Epigenetic Regulation with Reference to Noradrenaline in Particular. Curr Neuropharmacol 2016; 14:28-40. [PMID: 26813120 PMCID: PMC4787282 DOI: 10.2174/1570159x13666150414185737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/02/2015] [Accepted: 04/11/2015] [Indexed: 01/12/2023] Open
Abstract
Sleep is an essential physiological process, which has been divided into rapid eye movement sleep (REMS) and non-REMS (NREMS) in higher animals. REMS is a unique phenomenon that unlike other sleep-waking states is not under voluntary control. Directly or indirectly it influences or gets influenced by most of the physiological processes controlled by the brain. It has been proposed that REMS serves housekeeping function of the brain. Extensive research has shown that during REMS at least noradrenaline (NA) -ergic neurons must cease activity and upon REMS loss, there are increased levels of NA in the brain, which then induces many of the REMS loss associated acute and chronic effects. The NA level is controlled by many bio-molecules that are regulated at the molecular and transcriptional levels. Similarly, NA can also directly or indirectly modulate the synthesis and levels of many molecules, which in turn may affect physiological processes. The burgeoning field of behavioral neuroepigenetics has gained importance in recent years and explains the regulatory mechanisms underlying several behavioral phenomena. As REMS and its loss associated changes in NA modulate several pathophysiological processes, in this review we have attempted to explain on one hand how the epigenetic mechanisms regulating the gene expression of factors like tyrosine hydroxylase (TH), monoamine oxidase (MAO), noradrenaline transporter (NAT) control NA levels and on the other hand, how NA per se can affect other molecules in neural circuitry at the epigenetic level resulting in behavioral changes in health and diseases. An
understanding of these events will expose the molecular basis of REMS and its loss-associated pathophysiological changes; which are presented as a testable hypothesis for confirmation.
Collapse
|
16
|
Theofilas P, Dunlop S, Heinsen H, Grinberg LT. Turning on the Light Within: Subcortical Nuclei of the Isodentritic Core and their Role in Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2016; 46:17-34. [PMID: 25720408 DOI: 10.3233/jad-142682] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pharmacological interventions in Alzheimer's disease (AD) are likely to be more efficacious if administered early in the course of the disease, foregoing the spread of irreversible changes in the brain. Research findings underline an early vulnerability of the isodendritic core (IC) network to AD neurofibrillary lesions. The IC constitutes a phylogenetically conserved subcortical system including the locus coeruleus in pons, dorsal raphe nucleus, and substantia nigra in the midbrain, and nucleus basalis of Meynert in basal forebrain. Through their ascending projections to the cortex, the IC neurons regulate homeostasis and behavior by synthesizing aminergic and cholinergic neurotransmitters. Here we reviewed the evidence demonstrating that neurons of the IC system show neurofibrillary tangles in the earliest stages of AD, prior to cortical pathology, and how this involvement may explain pre-amnestic symptoms, including depression, agitation, and sleep disturbances in AD patients. In fact, clinical and animal studies show a significant reduction of AD cognitive and behavioral symptoms following replenishment of neurotransmitters associated with the IC network. Therefore, the IC network represents a unique candidate for viable therapeutic intervention and should become a high priority for research in AD.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Dunlop
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Department of Psychiatrics, University of Wuerzburg, Germany
| | - Lea Tenenholz Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
17
|
Synthesis and Biological Evaluation of Benzochromenopyrimidinones as Cholinesterase Inhibitors and Potent Antioxidant, Non-Hepatotoxic Agents for Alzheimer's Disease. Molecules 2016; 21:molecules21050634. [PMID: 27187348 PMCID: PMC6273488 DOI: 10.3390/molecules21050634] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022] Open
Abstract
We report herein the straightforward two-step synthesis and biological assessment of novel racemic benzochromenopyrimidinones as non-hepatotoxic, acetylcholinesterase inhibitors with antioxidative properties. Among them, compound 3Bb displayed a mixed-type inhibition of human acetylcholinesterase (IC50 = 1.28 ± 0.03 μM), good antioxidant activity, and also proved to be non-hepatotoxic on human HepG2 cell line.
Collapse
|
18
|
Zhang S, Hu S, Chao HH, Li CSR. Resting-State Functional Connectivity of the Locus Coeruleus in Humans: In Comparison with the Ventral Tegmental Area/Substantia Nigra Pars Compacta and the Effects of Age. Cereb Cortex 2015. [PMID: 26223261 DOI: 10.1093/cercor/bhv172] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The locus coeruleus (LC) provides the primary noradrenergic inputs to the cerebral cortex. Despite numerous animal studies documenting the functions of the LC, research in humans is hampered by the small volume of this midbrain nucleus. Here, we took advantage of a probabilistic template, explored the cerebral functional connectivity of the LC with resting-state fMRI data of 250 healthy adults, and verified the findings by accounting for physiological noise in another data set. In addition, we contrasted connectivities of the LC and the ventral tegmental area/substantia nigra pars compacta. The results highlighted both shared and distinct connectivity of these 2 midbrain structures, as well as an opposite pattern of connectivity to bilateral amygdala, pulvinar, and right anterior insula. Additionally, LC connectivity to the fronto-parietal cortex and the cerebellum increases with age and connectivity to the visual cortex decreases with age. These findings may facilitate studies of the role of the LC in arousal, saliency responses and cognitive motor control and in the behavioral and cognitive manifestations during healthy and disordered aging. Although the first to demonstrate whole-brain LC connectivity, these findings need to be confirmed with high-resolution imaging.
Collapse
Affiliation(s)
| | | | - Herta H Chao
- Department of Internal Medicine, Yale University, New Haven, CT 06519, USA Medical Service, VA Connecticut Health Care System, West Haven, CT 06516, USA
| | - Chiang-Shan R Li
- Department of Psychiatry Department of Neurobiology Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA Connecticut Mental Health Center, New Haven, CT 06519, USA
| |
Collapse
|