1
|
Hyer DE, Ding X, Rong Y. Proton therapy needs further technological development to fulfill the promise of becoming a superior treatment modality (compared to photon therapy). J Appl Clin Med Phys 2021; 22:4-11. [PMID: 34730268 PMCID: PMC8598137 DOI: 10.1002/acm2.13450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Daniel E. Hyer
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| | - Xuanfeng Ding
- Department of Radiation OncologyWilliam Beaumont HospitalRoyal ParkMichiganUSA
| | - Yi Rong
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| |
Collapse
|
2
|
Wong SL, Alshaikhi J, Grimes H, Amos RA, Poynter A, Rompokos V, Gulliford S, Royle G, Liao Z, Sharma RA, Mendes R. Retrospective Planning Study of Patients with Superior Sulcus Tumours Comparing Pencil Beam Scanning Protons to Volumetric-Modulated Arc Therapy. Clin Oncol (R Coll Radiol) 2021; 33:e118-e131. [PMID: 32798157 PMCID: PMC7883303 DOI: 10.1016/j.clon.2020.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/30/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022]
Abstract
AIMS Twenty per cent of patients with non-small cell lung cancer present with stage III locally advanced disease. Precision radiotherapy with pencil beam scanning (PBS) protons may improve outcomes. However, stage III is a heterogeneous group and accounting for complex tumour motion is challenging. As yet, it remains unclear as to whom will benefit. In our retrospective planning study, we explored if patients with superior sulcus tumours (SSTs) are a select cohort who might benefit from this treatment. MATERIALS AND METHODS Patients with SSTs treated with radical radiotherapy using four-dimensional planning computed tomography between 2010 and 2015 were identified. Tumour motion was assessed and excluded if greater than 5 mm. Photon volumetric-modulated arc therapy (VMAT) and PBS proton single-field optimisation plans, with and without inhomogeneity corrections, were generated retrospectively. Robustness analysis was assessed for VMAT and PBS plans involving: (i) 5 mm geometric uncertainty, with an additional 3.5% range uncertainty for proton plans; (ii) verification plans at maximal inhalation and exhalation. Comparative dosimetric and robustness analyses were carried out. RESULTS Ten patients were suitable. The mean clinical target volume D95 was 98.1% ± 0.4 (97.5-98.8) and 98.4% ± 0.2 (98.1-98.9) for PBS and VMAT plans, respectively. All normal tissue tolerances were achieved. The same four PBS and VMAT plans failed robustness assessment. Inhomogeneity corrections minimally impacted proton plan robustness and made it worse in one case. The most important factor affecting target coverage and robustness was the clinical target volume entering the spinal canal. Proton plans significantly reduced the mean lung dose (by 21.9%), lung V5, V10, V20 (by 47.9%, 36.4%, 12.1%, respectively), mean heart dose (by 21.4%) and thoracic vertebra dose (by 29.2%) (P < 0.05). CONCLUSIONS In this planning study, robust PBS plans were achievable in carefully selected patients. Considerable dose reductions to the lung, heart and thoracic vertebra were possible without compromising target coverage. Sparing these lymphopenia-related organs may be particularly important in this era of immunotherapy.
Collapse
Affiliation(s)
- S-L Wong
- University College London Cancer Institute, London, UK; Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK.
| | - J Alshaikhi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; Saudi Particle Therapy Centre, Riyadh, Saudi Arabia
| | - H Grimes
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - R A Amos
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK; Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - A Poynter
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - V Rompokos
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - S Gulliford
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - G Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Z Liao
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - R A Sharma
- University College London Cancer Institute, London, UK; Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK; NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - R Mendes
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Yuan TZ, Zhan ZJ, Qian CN. New frontiers in proton therapy: applications in cancers. Cancer Commun (Lond) 2019; 39:61. [PMID: 31640788 PMCID: PMC6805548 DOI: 10.1186/s40880-019-0407-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Proton therapy offers dominant advantages over photon therapy due to the unique depth-dose characteristics of proton, which can cause a dramatic reduction in normal tissue doses both distal and proximal to the tumor target volume. In turn, this feature may allow dose escalation to the tumor target volume while sparing the tumor-neighboring susceptible organs at risk, which has the potential to reduce treatment toxicity and improve local control rate, quality of life and survival. Some dosimetric studies in various cancers have demonstrated the advantages over photon therapy in dose distributions. Further, it has been observed that proton therapy confers to substantial clinical advantage over photon therapy in head and neck, breast, hepatocellular, and non-small cell lung cancers. As such, proton therapy is regarded as the standard modality of radiotherapy in many pediatric cancers from the technical point of view. However, due to the limited clinical evidence, there have been concerns about the high cost of proton therapy from an economic point of view. Considering the treatment expenses for late radiation-induced toxicities, cost-effective analysis in many studies have shown that proton therapy is the most cost-effective option for brain, head and neck and selected breast cancers. Additional studies are warranted to better unveil the cost-effective values of proton therapy and to develop newer ways for better protection of normal tissues. This review aims at reviewing the recent studies on proton therapy to explore its benefits and cost-effectiveness in cancers. We strongly believe that proton therapy will be a common radiotherapy modality for most types of solid cancers in the future.
Collapse
Affiliation(s)
- Tai-Ze Yuan
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, 510045, Guangdong, P. R. China
| | - Ze-Jiang Zhan
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, 510095, Guangdong, P. R. China
| | - Chao-Nan Qian
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, 510045, Guangdong, P. R. China.
| |
Collapse
|
4
|
Wang XS, Shi Q, Williams LA, Komaki R, Gomez DR, Lin SH, Chang JY, O'Reilly MS, Bokhari RH, Cox JD, Mohan R, Cleeland CS, Liao Z. Prospective Study of Patient-Reported Symptom Burden in Patients With Non-Small-Cell Lung Cancer Undergoing Proton or Photon Chemoradiation Therapy. J Pain Symptom Manage 2016; 51:832-8. [PMID: 26891607 PMCID: PMC4875833 DOI: 10.1016/j.jpainsymman.2015.12.316] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 12/25/2022]
Abstract
CONTEXT Intensity-modulated radiation therapy (IMRT), three-dimensional conformal radiation therapy (3DCRT), and proton-beam therapy (PBT) are chemoradiotherapy modalities for treating locally advanced non-small-cell lung cancer. Although therapy is carefully planned to maximize treatment benefit while minimizing risk for adverse side effects, most patients develop radiation-induced symptom burden. OBJECTIVES To demonstrate the MD Anderson Symptom Inventory's ability to detect fine differences in symptom development among these modalities. METHODS This was a longitudinal observational study. Patients with unresectable primary or recurrent non-small-cell lung cancer (n = 82) underwent 3DCRT, IMRT, or PBT. Patients rated MD Anderson Symptom Inventory symptoms weekly for up to 12 weeks. We used mixed-effect modeling to estimate development of symptoms and functional interference. RESULTS The PBT group received a significantly higher radiation target dose than did the IMRT and 3DCRT groups (P < 0.001). Fatigue was the most severe symptom over time for all groups. Controlling for patient and clinical factors (age, sex, race, cancer stage, performance status, body mass index, previous cancer therapy, total radiation dose), we found that pain, as a major esophagitis-related symptom, increased more during therapy (P = 0.019) and decreased more after (P = 0.013) therapy in the 3DCRT and IMRT groups than in the PBT group. Compared with the PBT group, the 3DCRT and IMRT groups reported greater decrease in systemic symptoms (fatigue, drowsiness, lack of appetite, disturbed sleep) after therapy (P = 0.016). CONCLUSION Patients receiving PBT reported significantly less severe symptoms than did patients receiving IMRT or 3DCRT. These results should be confirmed in a randomized study with comparable tumor burden among therapies.
Collapse
Affiliation(s)
- Xin Shelley Wang
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Qiuling Shi
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Loretta A Williams
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael S O'Reilly
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Raza H Bokhari
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James D Cox
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charles S Cleeland
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|