1
|
Pan C, Duan H, Wu Y, Zhu C, Yi C, Duan Y, Lu D, Guo C, Wu D, Wang Y, Fu X, Xu J, Chen Y, Luo M, Tian W, Pan T, Xu W, Zhang S, Huang J. Inhibition of DNA‑PK by gefitinib causes synergism between gefitinib and cisplatin in NSCLC. Int J Oncol 2020; 57:939-955. [PMID: 32945394 PMCID: PMC7473755 DOI: 10.3892/ijo.2020.5103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 05/04/2020] [Indexed: 01/14/2023] Open
Abstract
Lung cancer has the highest incidence and mortality rates among the malignant tumor types worldwide. Platinum‑based chemotherapy is the main treatment for advanced non‑small‑cell lung cancer (NSCLC), and epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) have greatly improved the survival of patients with EGFR‑sensitive mutations. However, there is no standard therapy for treating patients who are EGFR‑TKI resistant. Combining EGFR‑TKIs and platinum‑based chemotherapy is the most popular strategy in the clinical practice. However, the synergistic mechanism between EGFR‑TKIs and platinum remains unknown. Therefore, the aim of the present study was to determine the synergistic mechanism of gefitinib (an EGFR‑TKI) and cisplatin (a main platinum‑based drug). MTT assay, apoptosis analysis, tumorsphere formation and an orthotropic xenograft mouse model were used to examine the combination effects of gefitinib and cisplatin on NSCLC. Co‑immunoprecipitation and immunofluorescence were used to identify the underlying mechanism. It was found that gefitinib could selectively inhibit EGFR from entering the nucleus, decrease DNA‑PK activity and enhance the cytotoxicity of cisplatin on NSCLC. Collectively, the results suggested that inhibition of DNA‑dependent protein kinase by gefitinib may be due to the synergistic mechanism between gefitinib and cisplatin. Thus, the present study provides a novel insight into potential biomarkers for the selection of combination therapy of gefitinib and cisplatin.
Collapse
Affiliation(s)
- Chi Pan
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Huijie Duan
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yinan Wu
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chunpeng Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chenghao Yi
- Department of Breast Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yin Duan
- Department of Breast Surgery, The Zhejiang Provincial Hospital of Traditional Chinese Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Demin Lu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Cheng Guo
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Deqi Wu
- Department of Gastrointestinal Thyroid and Breast Surgery, The Shulan (Hangzhou) Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanyan Wang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xianhua Fu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jing Xu
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Meng Luo
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Tian
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Tao Pan
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wenhong Xu
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Suzhan Zhang
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianjin Huang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
2
|
Baicalin suppresses lung cancer growth by targeting PDZ-binding kinase/T-LAK cell-originated protein kinase. Biosci Rep 2019; 39:BSR20181692. [PMID: 30898980 PMCID: PMC6454021 DOI: 10.1042/bsr20181692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 01/17/2023] Open
Abstract
Baicalin is the main bioactive component extracted from the traditional Chinese medicine Baical Skullcap Root, and its anti-tumor activity has been studied in previous studies. PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), a serine/threonine protein kinase, is highly expressed in many cancer cells and stimulates the tumorigenic properties, and so, it is a pivotal target for agent to cure cancers. We reported for the first time that baicalin suppressed PBK/TOPK activities by directly binding with PBK/TOPK in vitro and in vivo. Ex vivo studies showed that baicalin suppressed PBK/TOPK activity in JB6 Cl41 cells and H441 lung cancer cells. Moreover, knockdown of PBK/TOPK in H441 cells decreased their sensitivity to baicalin. In vivo study indicated that injection of baicalin in H441 tumor-bearing mice effectively suppressed cancer growth. The PBK/TOPK downstream signaling molecules Histone H3 and ERK2 in tumor tissues were also decreased after baicalin treatment. Taken together, baicalin can inhibit proliferation of lung cancer cells as a PBK/TOPK inhibitor both in vitro and in vivo.
Collapse
|
3
|
Karachaliou N, Fernandez-Bruno M, Bracht JWP, Rosell R. EGFR first- and second-generation TKIs-there is still place for them in EGFR-mutant NSCLC patients. Transl Cancer Res 2019; 8:S23-S47. [PMID: 35117062 PMCID: PMC8797317 DOI: 10.21037/tcr.2018.10.06] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/08/2018] [Indexed: 11/06/2022]
Abstract
Identification of epidermal growth factor receptor (EGFR) as a molecular target has radically changed the treatment of metastatic non-small cell lung cancer (NSCLC) from standard chemotherapy to personalized, targeted therapy. First-, second- and third-generation EGFR tyrosine kinase inhibitors (TKIs) are now available for the treatment of EGFR-mutant NSCLC patients. This review will focus on the clinical development of first- and second-generation EGFR TKIs. We will emphasize on essential points like the head-to-head comparison among EGFR TKIs, their activity on brain metastases, mechanisms of resistance, as well as their combination with anti-angiogenic compounds, other targeted therapies, or immunotherapy. The efficacy of first- and second-generation EGFR TKIs in early-stage EGFR-mutant NSCLC will be also finally reviewed.
Collapse
Affiliation(s)
- Niki Karachaliou
- QuironSalud Group, Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, Barcelona, Spain
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
| | - Manuel Fernandez-Bruno
- QuironSalud Group, Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, Barcelona, Spain
| | | | - Rafael Rosell
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
- Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Institute of Oncology Rosell (IOR), Quiron-Dexeus University Institute, Barcelona, Spain
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
4
|
Schöffski P, Wozniak A, Stacchiotti S, Rutkowski P, Blay JY, Lindner LH, Strauss SJ, Anthoney A, Duffaud F, Richter S, Grünwald V, Leahy MG, Reichardt P, Sufliarsky J, van der Graaf WT, Sciot R, Debiec-Rychter M, van Cann T, Marréaud S, Lia M, Raveloarivahy T, Collette L, Bauer S. Activity and safety of crizotinib in patients with advanced clear-cell sarcoma with MET alterations: European Organization for Research and Treatment of Cancer phase II trial 90101 'CREATE'. Ann Oncol 2018; 28:3000-3008. [PMID: 28950372 DOI: 10.1093/annonc/mdx527] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Clear-cell sarcoma (CCSA) is an orphan malignancy, characterized by a specific t(12;22) translocation, leading to rearrangement of the EWSR1 gene and overexpression of MET. We prospectively investigated the efficacy and safety of the tyrosine kinase inhibitor crizotinib in patients with advanced or metastatic CCSA. Patients and methods Patients with CCSA received oral crizotinib 250 mg twice daily. Primary end point was objective response rate (ORR), secondary end points included duration of response, disease control rate (DCR), progression-free survival (PFS), progression-free rate (PFR), overall survival (OS), OS rate and safety. The study design focused on MET+ disease with documented rearrangement of the EWSR1 gene by fluorescence in situ hybridization. Results Among 43 consenting patients with the local diagnosis of CCSA, 36 had centrally confirmed CCSA, 28 of whom were eligible, treated and assessable. Twenty-six out of the 28 patients had MET+ disease, of whom one achieved a confirmed partial response and 17 had stable disease (SD) (ORR 3.8%, 95% confidence interval: 0.1-19.6). Further efficacy end points in MET+ CCSA were DCR: 69.2% (48.2% to 85.7%), median PFS: 131 days (49-235), median OS: 277 days (232-442). The 3-, 6-, 12- and 24-month PFR was 53.8% (34.6-73.0), 26.9% (9.8-43.9), 7.7% (1.3-21.7) and 7.7% (1.3-21.7), respectively. Among two assessable MET- patients, one had stable disease and one had progression. The most common treatment-related adverse events were nausea [18/34 (52.9%)], fatigue [17/34 (50.0%)], vomiting [12/34 (35.3%)], diarrhoea [11/34 (32.4%)], constipation [9/34 (26.5%)] and blurred vision [7/34 (20.6%)]. Conclusions The PFS with crizotinib in MET+ CCSA is similar to results achieved first-line in non-selected metastatic soft tissue sarcomas with single-agent doxorubicin. The PFS is similar to results achieved with pazopanib in previously treated sarcoma patients. Clinical trial number EORTC 90101, EudraCT number 2011-001988-52, NCT01524926.
Collapse
Affiliation(s)
- P Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven.,Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - A Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - S Stacchiotti
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale Tumori, Milano, Italy
| | - P Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute, Warsaw.,Oncology Center, Warsaw, Poland
| | - J-Y Blay
- Department of Medical Oncology, Centre Léon Bérard & Université Claude Bernard Lyon I, Lyon, France
| | - L H Lindner
- Medical Clinic III, University Hospital of Munich, Munich, Germany
| | - S J Strauss
- Department of Oncology, University College London Hospital NHS Trust, London
| | - A Anthoney
- Institute of Oncology, Leeds Teaching Hospitals National Health Service Trust, St. James's University Hospital, Leeds, UK
| | - F Duffaud
- Department of Medical Oncology, CHU la Timone Boulevard J Moulin Marseille, Marseille.,Aix Marseille University (AMU), Marseille, France
| | - S Richter
- University Cancer Center, Dresden.,Medical Department I, University Hospital Carl Gustav Carus, Dresden
| | - V Grünwald
- Department of Haematology, Haemostasis and Oncology, Hannover Medical School, Hannover, Germany
| | - M G Leahy
- The Christie NHS Foundation Trust, Manchester, UK
| | - P Reichardt
- HELIOS Klinikum Berlin-Buch, Sarcoma Center Berlin-Brandenburg, Berlin, Germany
| | | | - W T van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,The Institute of Cancer Research, London, UK
| | - R Sciot
- Department of Pathology, University Hospitals Leuven, Leuven
| | | | - T van Cann
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven.,Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - S Marréaud
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - M Lia
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - T Raveloarivahy
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - L Collette
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - S Bauer
- Department of Internal Medicine, West German Cancer Center, University Hospital, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
5
|
Xia J, Bai H, Yan B, Li R, Shao M, Xiong L, Han B. Mimicking the BIM BH3 domain overcomes resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer. Oncotarget 2017; 8:108522-108533. [PMID: 29312548 PMCID: PMC5752461 DOI: 10.18632/oncotarget.19411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/18/2017] [Indexed: 01/11/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are widely applied to treat EGFR-mutant non-small cell lung cancer (NSCLC). BIM is a BH3 domain-containing protein encoded by BCL2L11. Some EGFR-mutant NSCLC patients showing BIM deletion polymorphism are resistant to EGFR TKIs. We retrospectively investigated BIM deletion polymorphism in NSCLC patients, its correlation with EGFR TKI (erlotinib) resistance, and the mechanism underlying the drug resistance. Among 245 EGFR-mutant NSCLC patients examined, BIM deletion polymorphism was detected in 43 (12.24%). Median progression-free and overall survival was markedly shorter in patients with BIM deletion polymorphism than with BIM wide-type. Moreover, NSCLC cells expressing EGFR-mutant harboring BIM polymorphism were more resistant to erlotinib-induced apoptosis than BIM wide-type cells. However, combined use of erlotinib and the BH3-mimetic ABT-737 up-regulated BIM expression and overcame erlotinib resistance in EGFR-mutant NSCLC cells harboring BIM deletion polymorphism. In vivo, erlotinib suppressed growth of BIM wide-type NSCLC cell xenographs by inducing apoptosis. Combined with ABT-737, erlotinib also suppressed NSCLC xenographs expressing EGFR-mutant harboring BIM deletion polymorphism. These results indicate that BIM polymorphism is closely related to a poor clinical response to EGFR TKIs in EGFR-mutant NSCLC patients, and that the BH3-mimetic ABT-737 restores BIM functionality and EGFR-TKI sensitivity.
Collapse
Affiliation(s)
- Jinjing Xia
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hao Bai
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Bo Yan
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Rong Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Minhua Shao
- Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200030, China
| | - Liwen Xiong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
6
|
Astrocyte-elevated gene-1 confers resistance to pemetrexed in non-small cell lung cancer by upregulating thymidylate synthase expression. Oncotarget 2017; 8:61901-61916. [PMID: 28977913 PMCID: PMC5617473 DOI: 10.18632/oncotarget.18717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022] Open
Abstract
Previous studies have suggested that astrocyte-elevated gene-1 (AEG-1) contributes to the mechanisms of resistance to various chemotherapeutics. In this study, we investigated whether AEG-1 expression level correlated with that of thymidylate synthase (TS), as higher TS expression is known to be associated with the resistance to pemetrexed chemotherapy in patients with advanced lung adenocarcinoma. Using pemetrexed-resistant lung adenocarcinoma PC-9 cell line, we demonstrated that transfection of AEG-1 siRNA lowered TS expression and decreased pemetrexed IC50 value. In contrast, overexpression of AEG-1 was associated with increased expression of TS and higher pemetrexed IC50 value. Immunohistochemical staining of clinical biopsy samples showed that patients with lower AEG-1 expression had longer overall survival time. Moreover, analysis of repeated biopsy samples revealed that an increase in the TS level from baseline to disease progression was significantly associated with the elevation of AEG-1 expression. In conclusion, our data demonstrated that TS expression might be regulated by AEG-1 and that increased expression of these proteins contributes to lung cancer disease progression and may be associated with the development of resistance to pemetrexed.
Collapse
|
7
|
Graner AN, Hellwinkel JE, Lencioni AM, Madsen HJ, Harland TA, Marchando P, Nguyen GJ, Wang M, Russell LM, Bemis LT, Anchordoquy TJ, Graner MW. HSP90 inhibitors in the context of heat shock and the unfolded protein response: effects on a primary canine pulmonary adenocarcinoma cell line. Int J Hyperthermia 2016; 33:303-317. [PMID: 27829290 DOI: 10.1080/02656736.2016.1256503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Agents targeting HSP90 and GRP94 are seldom tested in stressed contexts such as heat shock (HS) or the unfolded protein response (UPR). Tumor stress often activates HSPs and the UPR as pro-survival mechanisms. This begs the question of stress effects on chemotherapeutic efficacy, particularly with drugs targeting chaperones such as HSP90 or GRP94. We tested the utility of several HSP90 inhibitors, including PU-H71 (targeting GRP94), on a primary canine lung cancer line under HS/UPR stress compared to control conditions. METHODS We cultured canine bronchoalveolar adenocarcinoma cells that showed high endogenous HSP90 and GRP94 expression; these levels substantially increased upon HS or UPR induction. We treated cells with HSP90 inhibitors 17-DMAG, 17-AAG or PU-H71 under standard conditions, HS or UPR. Cell viability/survival was assayed. Antibody arrays measured intracellular signalling and apoptosis profiles. RESULTS HS and UPR had varying effects on cells treated with different HSP90 inhibitors; in particular, HS and UPR promoted resistance to inhibitors in short-term assays, but combinations of UPR stress and PU-H571 showed potent cytotoxic activity in longer-term assays. Array data indicated altered signalling pathways, with apoptotic and pro-survival implications. UPR induction + dual targeting of HSP90 and GRP94 swayed the balance toward apoptosis. CONCLUSION Cellular stresses, endemic to tumors, or interventionally inducible, can deflect or enhance chemo-efficacy, particularly with chaperone-targeting drugs. Stress is likely not held accountable when testing new pharmacologics or assessing currently-used drugs. A better understanding of stress impacts on drug activities should be critical in improving therapeutic targeting and in discerning mechanisms of drug resistance.
Collapse
Affiliation(s)
- Arin N Graner
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Justin E Hellwinkel
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Alex M Lencioni
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,c University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Helen J Madsen
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Tessa A Harland
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Paul Marchando
- d Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , CO , USA
| | - Ger J Nguyen
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Mary Wang
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Laura M Russell
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Lynne T Bemis
- e Department of Biomedical Sciences , University of Minnesota , Duluth , MN , USA
| | - Thomas J Anchordoquy
- f Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Denver , Aurora , CO , USA
| | - Michael W Graner
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| |
Collapse
|
8
|
Xingyu Z, Peijie M, Dan P, Youg W, Daojun W, Xinzheng C, Xijun Z, Yangrong S. Quercetin suppresses lung cancer growth by targeting Aurora B kinase. Cancer Med 2016; 5:3156-3165. [PMID: 27704720 PMCID: PMC5119971 DOI: 10.1002/cam4.891] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022] Open
Abstract
aurora B kinase is highly expressed in several cancer cells and promotes tumorigenesis and progression, and therefore, it is an important target for drug to treat tumors. Quercetin was identified to be an antitumor agent. Herein, we report for the first time that quercetin inhibited aurora B activities by directly binding with aurora B in vitro and in vivo. Ex vivo studies showed that quercetin inhibited aurora B activities in JB6 Cl41 cells and A549 lung cancer cells. Moreover, knockdown of aurora B in A549 cells decreased their sensitivities to quercetin. In vivo study demonstrated that injection of quercetin in A549 tumor‐bearing mice effectively suppressed cancer growth. The phosphorylation of histone 3 in tumor tissues was also decreased after quercetin treatment. In short, quercetin can suppress growth of lung cancer cells as an aurora B inhibitor both in vitro and in vivo.
Collapse
Affiliation(s)
- Zhu Xingyu
- Department of Respiratory, The Second Affiliated Hospital to Shanxi College of Traditional Chinese Medicine, Xianyang, 712000, China
| | - Ma Peijie
- Department of Pharmacy, Baoji Central Hospital, Baoji, 721008, China
| | - Peng Dan
- Department of Pulmonary Medicine, Affiliated Hospital of Yan'an University, Yan'an, 716000, China
| | - Wang Youg
- Department of Chest Surgery, Ankang Central Hospital of Shanxi Province, Ankang, Shanxi, 725000, China
| | - Wang Daojun
- Department of Chest Surgery, Ankang Central Hospital of Shanxi Province, Ankang, Shanxi, 725000, China
| | - Chen Xinzheng
- Department of Nephrological, Baoji city chinese medicine hospital, Baoji, 721001, China
| | - Zhang Xijun
- Department of Thoracic Surgery, Chang 'an Hospital in Xi'an, Xi'an Shaanxi, 710016, China
| | - Song Yangrong
- Department of Chest Surgery, Tumor Hospital of Shannxi Province, Xi'an, Shannxi, 710061, China
| |
Collapse
|
9
|
Targeting the Mammalian Target of Rapamycin in Lung Cancer. Am J Med Sci 2016; 352:507-516. [PMID: 27865299 DOI: 10.1016/j.amjms.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/09/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Despite advances in its prevention and management, the prognosis of patients with lung cancer remains poor. Therefore, much attention is being given to factors that contribute to the development of this disease, the mechanisms that drive oncogenesis and tumor progression and the search for novel targets that could lead to the development of more effective treatments. One cellular pathway implicated in lung cancer development and progression is that of the mammalian target of rapamycin. Studies involving human tissues have linked lung cancer with abnormalities in this pathway. Furthermore, studies in vitro and in vivo using animal models of lung cancer reveal that targeting this pathway might represent an effective means of treating this disease. As a result, there is significant effort invested in the development of drugs targeting mammalian target of rapamycin and related pathways in the clinical setting.
Collapse
|
10
|
Suárez-Arroyo IJ, Rios-Fuller TJ, Feliz-Mosquea YR, Lacourt-Ventura M, Leal-Alviarez DJ, Maldonado-Martinez G, Cubano LA, Martínez-Montemayor MM. Ganoderma lucidum Combined with the EGFR Tyrosine Kinase Inhibitor, Erlotinib Synergize to Reduce Inflammatory Breast Cancer Progression. J Cancer 2016; 7:500-11. [PMID: 26958085 PMCID: PMC4780125 DOI: 10.7150/jca.13599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/12/2015] [Indexed: 01/06/2023] Open
Abstract
The high incidence of resistance to Tyrosine Kinase Inhibitors (TKIs) targeted against EGFR and downstream pathways has increased the necessity to identify agents that may be combined with these therapies to provide a sustained response for breast cancer patients. Here, we investigate the therapeutic potential of Ganoderma lucidum extract (GLE) in breast cancer, focusing on the regulation of the EGFR signaling cascade when treated with the EGFR TKI, Erlotinib. SUM-149, or intrinsic Erlotinib resistant MDA-MB-231 cells, and a successfully developed Erlotinib resistant cell line, rSUM-149 were treated with increasing concentrations of Erlotinib, GLE, or their combination (Erlotinib/GLE) for 72h. Treatment effects were tested on cell viability, cell proliferation, cell migration and invasion. To determine tumor progression, severe combined immunodeficient mice were injected with SUM-149 cells and then treated with Erlotinib/GLE or Erlotinib for 13 weeks. We assessed the protein expression of ERK1/2 and AKT in in vitro and in vivo models. Our results show that GLE synergizes with Erlotinib to sensitize SUM-149 cells to drug treatment, and overcomes intrinsic and developed Erlotinib resistance. Also, Erlotinib/GLE decreases SUM-149 cell viability, proliferation, migration and invasion. GLE increases Erlotinib sensitivity by inactivating AKT and ERK signaling pathways in our models. We conclude that a combinatorial therapeutic approach may be the best way to increase prognosis in breast cancer patients with EGFR overexpressing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luis A Cubano
- 1. Universidad Central del Caribe-School of Medicine, Bayamón, P.R
| | | |
Collapse
|
11
|
New crossroads for potential therapeutic intervention in cancer - intersections between CDCP1, EGFR family members and downstream signaling pathways. Oncoscience 2016; 3:5-8. [PMID: 26973855 PMCID: PMC4751911 DOI: 10.18632/oncoscience.286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/22/2016] [Indexed: 02/03/2023] Open
Abstract
Signaling pathways regulated by the receptor CDCP1 play central roles in promoting cancer and in mediating resistance to chemo- and targeted-therapies. In this perspective we briefly summarize these findings as well as data demonstrating poorer outcomes for several malignancies that exhibit elevated CDCP1 expression. Promising data from preclinical studies suggest that CDCP1 targeted agents, including therapeutic antibodies, could be useful in the treatment of cancer patients selected on the basis of activation of CDCP1 and its signaling partners including EGFR, HER2, Met and Src.
Collapse
|