1
|
Jahani MM, Mashayekhi P, Omrani MD, Khosravi A, Dehghanifard A, Azad Manjiri S, Zahraei M, Mabani M, Seifi S, Salimi B, Rostami P. Assessing the Sensitivity of Nested PCR Followed by Direct Sequencing on Exosomal DNA for EGFR Mutation Detection in NSCL. IRANIAN BIOMEDICAL JOURNAL 2024; 28:208-15. [PMID: 39289877 PMCID: PMC11444484 DOI: 10.61186/ibj.4289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/29/2024] [Indexed: 09/19/2024]
Abstract
Background Early and minimally invasive detection of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) patients is a promising tool to select patients for targeted therapy in order to improve their prognosis. This study aimed to identify a sensitive, cost-effective, and easily accessible noninvasive method for detecting the EGFR-targetable mutations in the plasma exosomal DNA (exoDNA)+ of patients with NSCLC. Methods This retrospective observational study was conducted over 10 months, from December 2022 to October 2023, at Masih Daneshvari Hospital in Tehran, Iran. A total of 30 patients with stage II-IV NSCLC and targetable mutation in the EGFR gene were included in the study. Nested PCR and Sanger sequencing were used to evaluate EGFR mutations in the DNA extracted from circulating exosomes. Results The study found a sensitivity of 76.6% for EGFR mutation detection on exoDNA compared to tissue results. No significant impact was observed based on tumor staging, histology, mutation type, smoking status, gender, or age. Conclusion Therapeutically targetable driver mutations in the EGFR gene can be accurately detected using nested PCR followed by direct sequencing of plasma exoDNA from patients with NSCLC. This approach facilitates timely and more personalized treatment for NSCLC patients, ultimately improving patient prognosis. Additionally, this method reduces the reliance on invasive tissue biopsies and their associated complications.
Collapse
Affiliation(s)
- Mohammad Mehdi Jahani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Mashayekhi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adnan Khosravi
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dehghanifard
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sanam Azad Manjiri
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahyar Zahraei
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Mabani
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Seifi
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Salimi
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Rostami
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Chen Q, Zhang J, Wang X, Zong W, Sun L, Qin J, Yin Y. Two case reports: EML4-ALK rearrangement large cell neuroendocrine carcinoma and literature review. Front Oncol 2023; 13:1227980. [PMID: 38023218 PMCID: PMC10646488 DOI: 10.3389/fonc.2023.1227980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Anaplastic lymphoma kinase gene (ALK) rearrangement is present in only approximately 5% of non-small cell lung cancers (NSCLCs) and is scarce in LCNEC patients. The conventional first-line treatment options are chemotherapy combined with immunotherapy or chemotherapy followed by palliative radiotherapy. In this report, we present two cases of metastatic LCNEC with EML4-ALK fusion that were treated with ALK-TKI inhibitors and demonstrated a rapid therapeutic response. Both patients were nonsmoking women who declined cytotoxic chemotherapy, underwent Next-Generation Sequencing (NGS), and confirmed EML4-ALK fusion. They were treated with alectinib as first-line therapy, and the tumors showed significant shrinkage after two months, achieving a PR (defined as a more than 30% decrease in the sum of maximal dimensions). The PFS was 22 months and 32 months, respectively, until the last follow-up. A systematic review of all previously reported cases of LCNEC with ALK mutations identified only 21 cases. These cases were characterized by being female (71.4%), nonsmoking (85.7%), diagnosed at a relatively young age (median age 51.1), and stage IV (89.5%), with an overall response rate (ORR) of 90.5%. PFS and OS were significantly longer than those treated with conventional chemotherapy/immunotherapy. Based on the clinical characteristics and the effective therapeutic outcomes with ALK inhibitors in LCNEC patients with ALK fusion, we recommend routine ALK IHC (economical, affordable, and convenient, but with higher false positives) as a screening method in advanced LCNEC patients, particularly nonsmoking females or those who are not candidates for or unwilling to undergo cytotoxic chemotherapy. Further molecular profiling is necessary to confirm these potential beneficiaries. We suggest TKI inhibitors as the first-line treatment for metastatic LCNEC with ALK fusion. Additional studies on larger cohorts are required to assess the prevalence of ALK gene fusions and their sensitivity to various ALK inhibitors.
Collapse
Affiliation(s)
- Qin Chen
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Jingjing Zhang
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Xuan Wang
- Department of Neurosurgery, Tianjin, China
| | - Wenkang Zong
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Leina Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jianwen Qin
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Yan Yin
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
3
|
Behnke A, Cayre A, De Maglio G, Giannini G, Habran L, Tarsitano M, Chetta M, Cappellen D, Lespagnol A, Le Naoures C, Massazza G, Destro A, Bonzheim I, Rau A, Battmann A, Kah B, Watkin E, Hummel M. FACILITATE: A real-world, multicenter, prospective study investigating the utility of a rapid, fully automated real-time PCR assay versus local reference methods for detecting epidermal growth factor receptor variants in NSCLC. Pathol Oncol Res 2023; 29:1610707. [PMID: 36798672 PMCID: PMC9927408 DOI: 10.3389/pore.2023.1610707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Accurate testing for epidermal growth factor receptor (EGFR) variants is essential for informing treatment decisions in non-small cell lung cancer (NSCLC). Automated diagnostic workflows may allow more streamlined initiation of targeted treatments, where appropriate, while comprehensive variant analysis is ongoing. FACILITATE, a real-world, prospective, multicenter, European study, evaluated performance and analytical turnaround time of the Idylla™ EGFR Mutation Test compared with local reference methods. Sixteen sites obtained formalin-fixed paraffin-embedded biopsy samples with ≥ 10% neoplastic cells from patients with NSCLC. Consecutive 5 μm sections from patient samples were tested for clinically relevant NSCLC-associated EGFR variants using the Idylla™ EGFR Mutation Test and local reference methods; performance (concordance) and analytical turnaround time were compared. Between January 2019 and November 2020, 1,474 parallel analyses were conducted. Overall percentage agreement was 97.7% [n = 1,418; 95% confidence interval (CI): 96.8-98.3], positive agreement, 87.4% (n = 182; 95% CI: 81.8-91.4) and negative agreement, 99.2% (n = 1,236; 95% CI: 98.5-99.6). There were 38 (2.6%) discordant cases. Ninety percent of results were returned with an analytical turnaround time of within 1 week using the Idylla™ EGFR Mutation Test versus ∼22 days using reference methods. The Idylla™ EGFR Mutation Test performed well versus local methods and had shorter analytical turnaround time. The Idylla™ EGFR Mutation Test can thus support application of personalized medicine in NSCLC.
Collapse
Affiliation(s)
- Anke Behnke
- Charité-Universitätsmedizin Berlin, Institute of Pathology and Berlin Institute of Health, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Cayre
- Département de Pathologie, Centre Jean-Perrin, Clermont-Ferrand, France
| | - Giovanna De Maglio
- Azienda Sanitaria Universitaria Friuli Centrale, Pathology Department, Santa Maria della Misericordia Hospital, Udine, Italy
| | - Giuseppe Giannini
- Department Molecular Medicine, Università di Roma La Sapienza, Rome, Italy
| | - Lionel Habran
- Anatomopathology Department, CHU Liège, Liège, Belgium
| | - Marina Tarsitano
- Di Laboratorio, A.O.R.N. Cardarelli, Medical Genetics Laboratory, and Ospedale Antonio Cardarelli, U.O.C. di Genetica Medica, Naples, Italy
| | - Massimiliano Chetta
- Di Laboratorio, A.O.R.N. Cardarelli, Medical Genetics Laboratory, and Ospedale Antonio Cardarelli, U.O.C. di Genetica Medica, Naples, Italy
| | - David Cappellen
- Service de Biologie des Tumeurs, Centre Hospitalier Universitaire de Bordeaux, Hôpital du Haut Lévêque, Pessac, France
| | - Alexandra Lespagnol
- CHU de Rennes, Laboratoire de Génétique Somatique des Cancers, Rennes, France
| | - Cecile Le Naoures
- CHU de Rennes, Service d’Anatomie et Cytologie Pathologiques, Rennes, France
| | - Gabriella Massazza
- Dipartimento Medicina di Laboratorio Anatomia Patologica, ASST Papa Giovanni XXIII, Bergamo, BG, Italy
| | - Annarita Destro
- Pathology Department, Humanitas Clinical and Research Center—IRCCS, Milan, Italy
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Achim Rau
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Achim Battmann
- Institut für Pathologie und Zytodiagnostik am Krankenhaus Nordwest, Frankfurt, Germany
| | - Bettina Kah
- Institut für Hämatopathologie Hamburg, Hamburg, Germany
| | | | - Michael Hummel
- Charité-Universitätsmedizin Berlin, Institute of Pathology and Berlin Institute of Health, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Michael Hummel,
| |
Collapse
|
4
|
Gococo-Benore DA, Boyle A, Wylie N, Drusbosky L, Khoor A, Starr JS. Atypical Lung Carcinoid With EML4/ALK Fusion Detected With Circulating Tumor DNA. Cureus 2022; 14:e22276. [PMID: 35350512 PMCID: PMC8933274 DOI: 10.7759/cureus.22276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Atypical carcinoids are a rare subset of neuroendocrine tumors that originate from cells within the bronchopulmonary tree. Compared to typical carcinoids, atypical carcinoids are associated with a worse prognosis. EML4-ALK fusions are reported in 5% of non-small cell lung carcinoma, but are rare in atypical carcinoids with only five previously reported cases. We report a case of a 70-year-old female with atypical carcinoid with metastasis to the liver and axial skeleton. She did not respond to standard of care chemotherapy with carboplatin and etoposide and was elected to enroll in hospice because of worsening clinical status. However, a circulating tumor DNA (ctDNA) sample was obtained the same day which revealed an EML4-ALK fusion gene. She immediately began therapy with the second-generation ALK inhibitor alectinib, with a remarkable symptomatic and radiographic response. Seven months later, the disease progression was demonstrated in the liver and the patient was switched to the third-generation ALK inhibitor lorlatinib. At the time of writing, the patient has continued to demonstrate sustained clinical, radiographic, and biochemical responses while on lorlatnib for two years. The dramatic treatment results highlighted in this case make the argument to consider ctDNA after the diagnosis of locally advanced or metastatic atypical carcinoid.
Collapse
|
5
|
Liu APY, Northcott PA, Robinson GW, Gajjar A. Circulating tumor DNA profiling for childhood brain tumors: Technical challenges and evidence for utility. J Transl Med 2022; 102:134-142. [PMID: 34934181 DOI: 10.1038/s41374-021-00719-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
Cell-free DNA (cfDNA) profiling as liquid biopsy has proven value in adult-onset malignancies, serving as a patient-specific surrogate for residual disease and providing a non-invasive tool for serial interrogation of tumor genomics. However, its application in neoplasms of the central nervous system (CNS) has not been as extensively studied. Unique considerations and methodological challenges exist, which need to be addressed before cfDNA studies can be incorporated as a clinical assay for primary CNS diseases. Here, we review the current status of applying cfDNA analysis in patients with CNS tumors, with special attention to diagnosis in pediatric patients. Technical concerns, evidence for utility, and potential developments are discussed.
Collapse
Affiliation(s)
- Anthony Pak-Yin Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, China.
| | - Paul A Northcott
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Giles W Robinson
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|
6
|
Ferreira D, Miranda J, Martins-Lopes P, Adega F, Chaves R. Future Perspectives in Detecting EGFR and ALK Gene Alterations in Liquid Biopsies of Patients with NSCLC. Int J Mol Sci 2021; 22:ijms22083815. [PMID: 33916986 PMCID: PMC8067613 DOI: 10.3390/ijms22083815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a major cause of death worldwide. Alterations in such genes as EGFR and ALK are considered important biomarkers in NSCLC due to the existence of targeted therapies with specific tyrosine kinase inhibitors (TKIs). However, specific resistance-related mutations can occur during TKI treatment, which often result in therapy inefficacy. Liquid biopsies arise as a reliable tool for the early detection of these types of alterations, allowing a non-invasive follow-up of the patients. Furthermore, they can be essential for cancer screening, initial diagnosis and to check surgery success. Despite the great advantages of liquid biopsies in NSCLC and the high input that next-generation sequencing (NGS) approaches can provide in this field, its use in oncology is still limited. With improvement of assay sensitivity and the establishment of clinical guidelines for liquid biopsy analysis, it is expected that they will be used in routine procedures. This review focuses on the usefulness of liquid biopsies of NSCLC patients as a means to detect alterations in EGFR and ALK genes and in disease management, highlighting the impact of NGS methods.
Collapse
Affiliation(s)
- Daniela Ferreira
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
| | - Juliana Miranda
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
| | - Paula Martins-Lopes
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
- Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Filomena Adega
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
| | - Raquel Chaves
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
- Correspondence: ; Tel.: +351-259-350936
| |
Collapse
|
7
|
Wang X, Liu Y, Meng Z, Wu Y, Wang S, Jin G, Qin Y, Wang F, Wang J, Zhou H, Su X, Fu X, Wang X, Shi X, Wen Z, Jia X, Qin Q, Gao Y, Guo W, Lu S. Plasma EGFR mutation abundance affects clinical response to first-line EGFR-TKIs in patients with advanced non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:635. [PMID: 33987333 PMCID: PMC8106032 DOI: 10.21037/atm-20-7155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Activated epidermal growth factor receptor (EGFR) mutation is the main pathogenic cause of non-small cell lung cancer (NSCLC) in Asia. However, the impact of plasma EGFR mutation abundance, especially of the ultra-low abundance of EGFR mutation detected by highly sensitive techniques on clinical outcomes of first-line EGFR tyrosine kinase inhibitors (TKIs) for advanced NSCLC patients remains unclear. Methods We qualitatively detected baseline EGFR status of NSCLC tissues using amplification-refractory mutation system and quantified the plasma abundance of EGFR mutations through next-generation sequencing (NGS). Every 8–12 weeks, we performed dynamic detection of plasma mutation abundance and imaging evaluation. We analyzed the association between plasma abundance of EGFR sensitizing mutations, tumor size, tumor shrinkage percentage, concomitant TP53 mutations, and clinical response to TKIs. Results This prospective study enrolled 135 patients with advanced NSCLC. The objective response rate (ORR) and disease control rate (DCR) for EGFR mutation–positive patients were 50.0% and 87.0%, respectively. When the cutoff value of plasma EGFR mutation abundance was 0.1%, the ORRs of TKI-treated patients were significantly different (60.0% for the >0.1% group vs. 21.4% for the ≤0.1% group, P=0.028). Median progression-free survival (PFS) was significantly longer for participants with a mutation abundance above 0.1% compared to those with a 0.01–0.1% abundance (log rank, P=0.0115). There was no significant association between plasma abundance of EGFR sensitizing mutations and tumor size, tumor shrinkage percentage, or concomitant TP53 mutations. Cox multivariate analysis demonstrated that plasma mutation abundance was an independent predictive factor for PFS [hazard ratio (HR) 2.41, 95% confidence interval (CI): 1.12–5.20; P=0.025]. We identified 11 participants with the acquired T790M resistance mutation according to serial dynamic plasma samples. Conclusions Liquid biopsy screening based on highly sensitive NGS is reliable for detecting drug resistance and actionable somatic mutations. The plasma abundance of the EGFR driver mutation affected clinical response to EGFR-TKIs in advanced NSCLC patients; prolongation of PFS was also observed in patients with an ultra-low abundance of EGFR sensitizing mutations.
Collapse
Affiliation(s)
- Xiaohong Wang
- Chest Oncology Medicine, Baotou Cancer Hospital, Baotou, China
| | - Yonggang Liu
- Chest Oncology Medicine, Baotou Cancer Hospital, Baotou, China
| | - Zhiying Meng
- Chest Oncology Medicine, Baotou Cancer Hospital, Baotou, China
| | - Yun Wu
- Department of Oncology, Baotou Central Hospital, Baotou, China
| | - Shubin Wang
- Department of Oncology, Baotou Central Hospital, Baotou, China
| | - Gaowa Jin
- Oncology Division II, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Yingchun Qin
- Oncology Division II, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Fengyun Wang
- Oncology Department, The Third Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jing Wang
- Oncology Department, The Third Affiliated Hospital of Baotou Medical College, Baotou, China
| | | | | | - Xiuhua Fu
- Department of Respiratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiaolan Wang
- Department of Oncology Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiaoyu Shi
- Department of Oncology, Bayan Nur Hospital, Bayan Nur, China
| | - Zhenping Wen
- Department of Oncology, The Inner Mongolia Cancer Hospital, Hohhot, China
| | - Xiaoqiong Jia
- Department of Oncology, The Inner Mongolia Cancer Hospital, Hohhot, China
| | - Qiong Qin
- Department of Oncology, The People's Hospital of DaLaTe Banner, Ordos, China
| | - Yongqiang Gao
- Department of Oncology, The People's Hospital of DaLaTe Banner, Ordos, China
| | - Weidong Guo
- Oncology Department, Baogang Hospital, Baotou, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Southwood M, Krenz T, Cant N, Maurya M, Gazdova J, Maxwell P, McGready C, Moseley E, Hughes S, Stewart P, Salto-Tellez M, Groelz D, Rassl D. Systematic evaluation of PAXgene® tissue fixation for the histopathological and molecular study of lung cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 6:40-54. [PMID: 31571426 PMCID: PMC6966705 DOI: 10.1002/cjp2.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
Abstract
Whilst adequate for most existing pathological tests, formalin is generally considered a poor DNA preservative and use of alternative fixatives may prove advantageous for molecular testing of tumour material; an increasingly common approach to identify targetable driver mutations in lung cancer patients. We collected paired PAXgene® tissue-fixed and formalin-fixed samples of block-sized tumour and lung parenchyma, Temno-needle core tumour biopsies and fine needle tumour aspirates (FNAs) from non-small cell lung cancer resection specimens. Traditionally processed formalin fixed paraffin wax embedded (FFPE) samples were compared to paired PAXgene® tissue fixed paraffin-embedded (PFPE) samples. We evaluated suitability for common laboratory tests (H&E staining and immunohistochemistry) and performance for downstream molecular investigations relevant to lung cancer, including RT-PCR and next generation DNA sequencing (NGS). Adequate and comparable H&E staining was seen in all sample types and nuclear staining was preferable in PAXgene® fixed Temno tumour biopsies and tumour FNA samples. Immunohistochemical staining was broadly comparable. PFPE samples enabled greater yields of less-fragmented DNA than FFPE comparators. PFPE samples were also superior for PCR and NGS performance, both in terms of quality control metrics and for variant calling. Critically we identified a greater number of genetic variants in the epidermal growth factor receptor gene when using PFPE samples and the Ingenuity® Variant Analysis pipeline. In summary, PFPE samples are adequate for histopathological diagnosis and suitable for the majority of existing laboratory tests. PAXgene® fixation is superior for DNA and RNA integrity, particularly in low-yield samples and facilitates improved NGS performance, including the detection of actionable lung cancer mutations for precision medicine in lung cancer samples.
Collapse
Affiliation(s)
- Mark Southwood
- Pathology Research, Royal Papworth Hospital NHS Foundation Trust, University of Cambridge Clinical School of Medicine, Cambridge, UK
| | - Tomasz Krenz
- Sample Technologies Department, QIAGEN GmbH, Hilden, Germany
| | - Natasha Cant
- Sample Technologies Department, QIAGEN Ltd., Manchester, UK
| | - Manisha Maurya
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Jana Gazdova
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Perry Maxwell
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Claire McGready
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Ellen Moseley
- Pathology Research, Royal Papworth Hospital NHS Foundation Trust, University of Cambridge Clinical School of Medicine, Cambridge, UK
| | - Susan Hughes
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Peter Stewart
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Manuel Salto-Tellez
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Daniel Groelz
- Sample Technologies Department, QIAGEN GmbH, Hilden, Germany
| | - Doris Rassl
- Pathology Research, Royal Papworth Hospital NHS Foundation Trust, University of Cambridge Clinical School of Medicine, Cambridge, UK
| | | |
Collapse
|
9
|
Towards Circulating-Tumor DNA-Based Precision Medicine. J Clin Med 2019; 8:jcm8091365. [PMID: 31480647 PMCID: PMC6780195 DOI: 10.3390/jcm8091365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023] Open
Abstract
In the era of precision medicine, targeted therapies have been implemented for various diseases. Genomic information guides decision-making in cancer treatment. The improvements in next-generation sequencing and polymerase chain reaction have made it possible to access the genetic information using circulating-tumor DNAs (ctDNAs). Molecular characteristics of individual tumors can be obtained by analysis of ctDNAs, thus making them excellent tools to guide decision-making during treatment. In oncology, the use of ctDNAs in clinical practice is now gaining importance. Molecular analysis of ctDNAs has potential for multiple clinical applications, including early diagnosis, prognosis of disease, prognostic and/or predictive biomarkers, and monitoring response to therapy and clonal evolution. In this paper, we highlight the applications of ctDNAs in cancer management, especially in metastatic setting, and summarize recent studies about the use of ctDNAs as predictive biomarkers for the therapeutic adaptation/response in lung cancer, breast cancer, and colorectal cancer. These studies offer the evidence to use ctDNAs as a promising approach to solve unmet clinical needs.
Collapse
|
10
|
Zhang Q, Nong J, Wang J, Yan Z, Yi L, Gao X, Liu Z, Zhang H, Zhang S. Isolation of circulating tumor cells and detection of EGFR mutations in patients with non-small-cell lung cancer. Oncol Lett 2019; 17:3799-3807. [PMID: 30881500 PMCID: PMC6403494 DOI: 10.3892/ol.2019.10016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/02/2018] [Indexed: 01/07/2023] Open
Abstract
The aim of the present study was to develop a procedure for the isolation of circulating tumor cells (CTCs), and to evaluate its application in the detection of epidermal growth factor receptor (EGFR) mutations, and potential heterogeneity in patients with non-small-cell lung cancer (NSCLC). Peripheral blood samples were collected from 91 patients with lung cancer, 10 patients with benign disease and 10 healthy volunteers. CTCs were enriched by positive immunomagnetic separation, detected by immunocytochemistry, and processed for single-cell capture. Pure CTC DNA was amplified, and the EGFR gene was analyzed using the amplification refractory mutation system (ARMS) and digital polymerase chain reaction (dPCR). The CTC capture rate in patients with lung cancer was 61.5% (56/91), whereas no CTCs were detected in patients with benign lung disease or in healthy volunteers. The CTC-positive detection rates were 69.3% (52/75) and 25.0% (4/16) in patients with TNM stage III and IV disease, respectively. Markedly more CTCs were captured from patients with small-cell lung cancer compared with patients with other types of cancer. In patients who were positive for EGFR mutations, the detection rate of these mutations was low (16.67%, 2/12), at the single CTC level. The sensitivity increased as the number of CTCs per sample increased. A total of four patients displayed consistent detection of EGFR mutations at the 10-cell level, and one patient exhibited a clear, inconsistent and rare mutation (G719×) between CTCs. A simplified technique for isolating CTCs from blood was established, though multiple CTCs were required to sensitively detect mutations in these cells. The detection of EGFR mutations in CTCs and tissue specimens was generally homogeneous, and therefore, the CTC-level mutation analysis may potentially contribute to the discovery of heterogeneous mutations.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Jingying Nong
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Jinghui Wang
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Zhuohong Yan
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Ling Yi
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Xin Gao
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Zhidong Liu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Shucai Zhang
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| |
Collapse
|
11
|
Zhuang H. Research progress on the impact of radiation on TKI resistance mechanisms in NSCLC. J Cancer 2018; 9:3797-3801. [PMID: 30405851 PMCID: PMC6216000 DOI: 10.7150/jca.26364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022] Open
Abstract
Resistance to tyrosine kinase inhibitor (TKI) therapy is often accompanied by various genetic alterations, and radiation is an important weapon for changing the DNA of tumor cells. In radiotherapy combined with TKI therapy for non-small cell lung cancer (NSCLC), the two treatment strategies affect and interact with each other, resulting in complex tumor resistance mechanisms. Accordingly, tumor progression management after radiotherapy combined with TKI therapy should be different from that after TKI therapy alone. However, current clinical practice is entirely based on the resistance mechanisms of simple TKI therapy. Therefore, it is imperative to investigate the impact of radiation on the mechanism of TKI resistance. However, due to the complexity of the resistance mechanisms under the combined effect of both therapies, such studies remain extremely challenging and time-consuming.
Collapse
Affiliation(s)
- Hongqing Zhuang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
12
|
Zhou Y, Ma Y, Shi H, Du Y, Huang Y. Epidermal growth factor receptor T790M mutations in non-small cell lung cancer (NSCLC) of Yunnan in southwestern China. Sci Rep 2018; 8:15426. [PMID: 30337598 PMCID: PMC6194063 DOI: 10.1038/s41598-018-33816-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023] Open
Abstract
To explore the effect of epidermal growth factor receptor (EGFR) T790M mutation status on non-small cell lung cancer (NSCLC) in Yunnan province of southwestern China. First, this study used the super amplification refractory mutation system (Super ARMS) polymerase chain reaction (PCR) and Droplet Digital PCR (dd PCR) to evaluate the T790M gene mutation, in plasmatic ctDNA samples from 212 cases of NSCLC. The association between T790M mutations and clinical parameters were further explored. Next, to investigate the mechanism of drug resistance that resulted from T790M mutation, subgroup analyses according to duration of medicine (EGFR-TKIs) were carried out. Finally, we also evaluate the effectiveness of blood-based circulating tumor DNA (ctDNA) on detecting the T790M mutation by calculating Super ARMS’s detection efficiency. We found that the T790M mutation rate was 8.4% (18/212) in overall patients. The T790M mutation was more frequent in patients with brain metastasis 30.0% (12/40) (p < 0.01). We found that post-TKI samples 42.8% (15/35) were associated with a higher T790M mutation rate (p < 0.01). Subgroup analysis showed that the duration of TKI therapy for 6 to 10 months 66.6% (8/12) (p < 0.01) and >10 months 75.0% (9/12) (p < 0.01) were also associated with a higher T790M mutation rate. Super ARMS’s sensitivity, specificity, PPV, NPV, and accuracy were 100.0%, 99.4%, 94.7%, 100.0%, and 99.5% respectively. Generally, the EGFR-T790M mutation was more common in NSCLC patients with brain metastasis and those who received TKI therapy for more than 6 months. Moreover, Super ARMS is a sensitive, efficient, and practical clinic method for dynamically monitoring T790M mutation status and effectively guiding clinic treatment.
Collapse
Affiliation(s)
- Yongchun Zhou
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan cancer Hospital), Kunming, 650118, P.R. China.,International Joint Laboratory on High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, P.R. China
| | - Yuhui Ma
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan cancer Hospital), Kunming, 650118, P.R. China
| | - Hutao Shi
- Department of imaging, The Kunming Tongren hospital, Kunming, 650118, P.R. China
| | - Yaxi Du
- Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, P.R. China
| | - Yunchao Huang
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan cancer Hospital), Kunming, 650118, P.R. China. .,Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan cancer Hospital), Kunming, 650118, P.R. China. .,International Joint Laboratory on High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, P.R. China.
| |
Collapse
|
13
|
Kessler MD, Pawar NR, Martin SS, Antalis TM, O'Connor TD. Improving Cancer Detection and Treatment with Liquid Biopsies and ptDNA. Trends Cancer 2018; 4:643-654. [PMID: 30149882 DOI: 10.1016/j.trecan.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022]
Abstract
Liquid biopsy, or the capacity to noninvasively isolate and analyze plasma tumor DNA (ptDNA) using blood samples, represents an important tool for modern oncology that enables increasingly safe, personalized, and robust cancer diagnosis and treatment. Here, we review advances in the development and implementation of liquid biopsy approaches, and we focus on the capacity of liquid biopsy to noninvasively detect oncological disease and enhance early detection strategies. In addition to noting the distinctions between mutation-targeted and mutation-agnostic approaches, we discuss the potential for genomic analysis and longitudinal testing to identify somatic lesions early and to guide intervention at more manageable disease stages.
Collapse
Affiliation(s)
- Michael D Kessler
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore MD 21201, USA.
| | - Nisha R Pawar
- Department of Medicine, University of Maryland School of Medicine, Baltimore MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore MD 21201, USA
| | - Stuart S Martin
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Toni M Antalis
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore MD 21201, USA
| |
Collapse
|
14
|
Heydt C, Michels S, Thress KS, Bergner S, Wolf J, Buettner R. Novel approaches against epidermal growth factor receptor tyrosine kinase inhibitor resistance. Oncotarget 2018; 9:15418-15434. [PMID: 29632655 PMCID: PMC5880615 DOI: 10.18632/oncotarget.24624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The identification and characterization of molecular biomarkers has helped to revolutionize non-small-cell lung cancer (NSCLC) management, as it transitions from target-focused to patient-based treatment, centered on the evolving genomic profile of the individual. Determination of epidermal growth factor receptor (EGFR) mutation status represents a critical step in the diagnostic process. The recent emergence of acquired resistance to "third-generation" EGFR tyrosine kinase inhibitors (TKIs) via multiple mechanisms serves to illustrate the important influence of tumor heterogeneity on prognostic outcomes in patients with NSCLC. DESIGN This literature review examines the emergence of TKI resistance and the course of disease progression and, consequently, the clinical decision-making process in NSCLC. RESULTS Molecular markers of acquired resistance, of which T790M and HER2 or MET amplifications are the most common, help to guide ongoing treatment past the point of progression. Although tissue biopsy techniques remain the gold standard, the emergence of liquid biopsies and advances in analytical techniques may eventually allow "real-time" monitoring of tumor evolution and, in this way, help to optimize targeted treatment approaches. CONCLUSIONS The influence of inter- and intra-tumor heterogeneity on resistance mechanisms should be considered when treating patients using resistance-specific therapies. New tools are necessary to analyze changes in heterogeneity and clonal composition during drug treatment. The refinement and standardization of diagnostic procedures and increased accessibility to technology will ultimately help in personalizing the management of NSCLC.
Collapse
Affiliation(s)
- Carina Heydt
- Molecular Pathological Diagnostics, Institute of Pathology, University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
| | - Sebastian Michels
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, University Hospital of Cologne, Cologne, Germany
| | | | - Sven Bergner
- Medical Affairs, AstraZeneca Oncology, Wedel, Germany
| | - Jürgen Wolf
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, University Hospital of Cologne, Cologne, Germany
| | - Reinhard Buettner
- Molecular Pathological Diagnostics, Institute of Pathology, University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
15
|
Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer 2018; 17:38. [PMID: 29455650 PMCID: PMC5817870 DOI: 10.1186/s12943-018-0777-1] [Citation(s) in RCA: 476] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances in diagnosis and treatment are enabling a more targeted approach to treating lung cancers. Therapy targeting the specific oncogenic driver mutation could inhibit tumor progression and provide a favorable prognosis in clinical practice. Activating mutations of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) are a favorable predictive factor for EGFR tyrosine kinase inhibitors (TKIs) treatment. For lung cancer patients with EGFR-exon 19 deletions or an exon 21 Leu858Arg mutation, the standard first-line treatment is first-generation (gefitinib, erlotinib), or second-generation (afatinib) TKIs. EGFR TKIs improve response rates, time to progression, and overall survival. Unfortunately, patients with EGFR mutant lung cancer develop disease progression after a median of 10 to 14 months on EGFR TKI. Different mechanisms of acquired resistance to first-generation and second-generation EGFR TKIs have been reported. Optimal treatment for the various mechanisms of acquired resistance is not yet clearly defined, except for the T790M mutation. Repeated tissue biopsy is important to explore resistance mechanisms, but it has limitations and risks. Liquid biopsy is a valid alternative to tissue re-biopsy. Osimertinib has been approved for patients with T790M-positive NSCLC with acquired resistance to EGFR TKI. For other TKI-resistant mechanisms, combination therapy may be considered. In addition, the use of immunotherapy in lung cancer treatment has evolved rapidly. Understanding and clarifying the biology of the resistance mechanisms of EGFR-mutant NSCLC could guide future drug development, leading to more precise therapy and advances in treatment.
Collapse
Affiliation(s)
- Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
16
|
Seki Y, Fujiwara Y, Kohno T, Yoshida K, Goto Y, Horinouchi H, Kanda S, Nokihara H, Yamamoto N, Kuwano K, Ohe Y. Circulating cell-free plasma tumour DNA shows a higher incidence of EGFR mutations in patients with extrathoracic disease progression. ESMO Open 2018; 3:e000292. [PMID: 29464111 PMCID: PMC5812398 DOI: 10.1136/esmoopen-2017-000292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
Background Non-invasive monitoring of epidermal growth factor receptor (EGFR) mutations conferring sensitivity and resistance to tyrosine kinase inhibitors (TKIs) is vital for efficient therapy of lung adenocarcinoma (LADC). Although plasma circulating cell-free tumour DNA (ctDNA) is detectable at an early stage, the size of the tumour does not strongly correlate with concentration of whole cell-free DNA (cfDNA), including normal leucocyte DNA. We sought to examine the clinical features of patients with LADC whose cfDNA examination held clues for analysis of cancer genomics. Methods Forty-four plasma samples from 37 patients with LADC receiving EGFR-TKI therapy, including 20 who developed resistance, were prospectively subjected to droplet digital PCR-cfDNA analysis to detect EGFR mutations and analysed according to clinical features. Results cfDNA samples from 28 (64%) of the 44 samples were positive for TKI-sensitive mutations. Samples from 19 (95%) of the 20 EGFR-TKI-resistant patients were positive for TKI-sensitive mutations. In 24 patients without TKI resistance, 7 (54%) of 13 patients with regional lymph node metastases, 4 (67%) of 6 patients with advanced T stage (T3 or T4) and 8 (57%) of 14 patients with extrathoracic disease progression were also positive for TKI-sensitive mutations. cfDNA analysis from patients with acquired TKI-resistance disease or extrathoracic disease progression correlated with a high detection rate of TKIsensitive mutations (acquired resistance: risk ratio=2.53, 95% CI 1.50 to 4.29; extrathoracic disease progression: risk ratio=5.71, 95% CI 0.84 to 36.74). Conclusions cfDNA in patients with EGFR-TKI-resistance or extrathoracic disease progression may be useful for analysis of cancer genomics. Trial registration number UMIN 000017581.
Collapse
Affiliation(s)
- Yoshitaka Seki
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Yutaka Fujiwara
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazushi Yoshida
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shintaro Kanda
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Nokihara
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
17
|
Epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) of Yunnan in southwestern China. Oncotarget 2017; 8:15023-15033. [PMID: 28107191 PMCID: PMC5362464 DOI: 10.18632/oncotarget.14706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022] Open
Abstract
To investigate the Epidermal Growth Factor Receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) in Yunnan province in southwestern China, we detected EGFR mutation by Amplification Refractory Mutation System (ARMS) polymerase chain reaction (PCR) using DNA samples from 447 pathologically confirmed NSCLC specimens (175 tissue, 256 plasma and 16 cytologic samples). The relationship between EGFR mutations and demographic and clinical factors were further explored. Subgroup analyses according to sample type (tissue and plasma) and histological type (adenocarcinoma) were done. We found the mutation rate was 34.9% in overall patients (42.3%, 29.7%, and 37.5% for tissue, plasma, and cytologic samples respectively). We found female (p < 0.0001), no smoking (p = 0.001), adenocarcinoma (p < 0.0001), and tissue specimen (p = 0.026) were associated with higher EGFR mutation rate. The most common mutations were exon 19 deletions (40%) and L858R point (30%) mutation. Interestingly, NSCLC patients from Xuanwei harbored a strikingly divergent mutational pattern for EGFR when compared with non-Xuanwei patients (higher G719X, G719X+S768I mutations, but lower 19 deletion and L858R mutations). Generally, EGFR mutation rate and pattern in Yunnan province was in accord with other Asian populations. However, Xuanwei subgroup showed strikingly divergent EGFR mutation spectrum from other general population. Our analysis also indicated that cftDNA analysis for EGFR mutations detection was feasibility for the patients lacking sufficient tissue for molecular analyses.
Collapse
|
18
|
Goto T, Hirotsu Y, Nakagomi T, Shikata D, Yokoyama Y, Amemiya K, Tsutsui T, Kakizaki Y, Oyama T, Mochizuki H, Miyashita Y, Omata M. Detection of tumor-derived DNA dispersed in the airway improves the diagnostic accuracy of bronchoscopy for lung cancer. Oncotarget 2017; 8:79404-79413. [PMID: 29108319 PMCID: PMC5668052 DOI: 10.18632/oncotarget.18159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
The diagnostic accuracy of bronchoscopy for detecting lung cancer, especially peripheral lung cancer with lesions outside the endoscopically visible range, remains unsatisfactory. The aim of this study was to perform next-generation sequencing on bronchoscopic specimens to determine whether this improves the accuracy of bronchoscopy for diagnosing lung cancer and to identify factors influencing sensitivity. The bronchoscopic sensitivity for diagnosing lung cancer was initially evaluated in 191 patients who underwent lobectomy after bronchoscopy at our hospital. Sputum, bronchial wash fluid, and resected lung cancer specimens were subsequently collected from 18 patients with peripheral small cell lung cancer for genomic analysis. DNA was extracted from formalin-fixed, paraffin-embedded surgical tissue specimens and the supernatant and cell fractions of sputum and bronchial wash fluid. Deep sequencing was performed using a lung cancer panel covering all exons of 53 lung cancer-related genes. The bronchoscopic sensitivity for diagnosing lung cancer at our hospital was 60.7%. Multivariate analysis revealed that this was influenced by tumor size and location, but not histological type or lymph node metastasis. The sensitivity was the highest for biopsy followed by curettage and bronchial wash specimens. DNA mutations homologous to those identified in the primary lesions were detected in the bronchial wash fluid of 10 patients (55.6%), while only 2 patients (11.1%) were diagnosed with lung cancer based on conventional cytological examinations. In conclusion, the addition of genomic analysis to routine pathological examinations improves the diagnostic accuracy of bronchoscopy.
Collapse
Affiliation(s)
- Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Prefectural Central Hospital, Yamanashi, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Takahiro Nakagomi
- Lung Cancer and Respiratory Disease Center, Yamanashi Prefectural Central Hospital, Yamanashi, Japan
| | - Daichi Shikata
- Lung Cancer and Respiratory Disease Center, Yamanashi Prefectural Central Hospital, Yamanashi, Japan
| | - Yujiro Yokoyama
- Lung Cancer and Respiratory Disease Center, Yamanashi Prefectural Central Hospital, Yamanashi, Japan
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Toshiharu Tsutsui
- Lung Cancer and Respiratory Disease Center, Yamanashi Prefectural Central Hospital, Yamanashi, Japan
| | - Yumiko Kakizaki
- Lung Cancer and Respiratory Disease Center, Yamanashi Prefectural Central Hospital, Yamanashi, Japan
| | - Toshio Oyama
- Department of Pathology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yoshihiro Miyashita
- Lung Cancer and Respiratory Disease Center, Yamanashi Prefectural Central Hospital, Yamanashi, Japan
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Alcaide M, Yu S, Davidson J, Albuquerque M, Bushell K, Fornika D, Arthur S, Grande BM, McNamara S, Tertre MCD, Batist G, Huntsman DG, Cavallone L, Aguilar A, Basik M, Johnson NA, Deyell RJ, Rassekh SR, Morin RD. Targeted error-suppressed quantification of circulating tumor DNA using semi-degenerate barcoded adapters and biotinylated baits. Sci Rep 2017; 7:10574. [PMID: 28874686 PMCID: PMC5585219 DOI: 10.1038/s41598-017-10269-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 08/02/2017] [Indexed: 12/12/2022] Open
Abstract
Ultrasensitive methods for rare allele detection are critical to leverage the full potential offered by liquid biopsies. Here, we describe a novel molecular barcoding method for the precise detection and quantification of circulating tumor DNA (ctDNA). The major benefits of our design include straightforward and cost-effective production of barcoded adapters to tag individual DNA molecules before PCR and sequencing, and better control over cross-contamination between experiments. We validated our approach in a cohort of 24 patients with a broad spectrum of cancer diagnoses by targeting and quantifying single-nucleotide variants (SNVs), indels and genomic rearrangements in plasma samples. By using personalized panels targeting a priori known mutations, we demonstrate comprehensive error-suppression capabilities for SNVs and detection thresholds for ctDNA below 0.1%. We also show that our semi-degenerate barcoded adapters hold promise for noninvasive genotyping in the absence of tumor biopsies and monitoring of minimal residual disease in longitudinal plasma samples. The benefits demonstrated here include broad applicability, flexibility, affordability and reproducibility in the research and clinical settings.
Collapse
Affiliation(s)
- Miguel Alcaide
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Stephen Yu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Jordan Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Marco Albuquerque
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kevin Bushell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Daniel Fornika
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Sarah Arthur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Suzan McNamara
- Quebec Clinical Research Organization in Cancer (Q-CROC), Exactis Innovation and the Segal Cancer Centre, Montreal, QC, Canada
| | - Mathilde Couetoux du Tertre
- Quebec Clinical Research Organization in Cancer (Q-CROC), Exactis Innovation and the Segal Cancer Centre, Montreal, QC, Canada
| | - Gerald Batist
- Quebec Clinical Research Organization in Cancer (Q-CROC), Exactis Innovation and the Segal Cancer Centre, Montreal, QC, Canada
| | - David G Huntsman
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine and Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Luca Cavallone
- Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adriana Aguilar
- Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada
| | - Mark Basik
- Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada
| | - Nathalie A Johnson
- Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada
| | - Rebecca J Deyell
- Division of Oncology, Hematology and Bone Marrow Transplant, British Columbia Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - S Rod Rassekh
- Division of Oncology, Hematology and Bone Marrow Transplant, British Columbia Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
20
|
Goto T, Hirotsu Y, Amemiya K, Nakagomi T, Shikata D, Yokoyama Y, Okimoto K, Oyama T, Mochizuki H, Omata M. Distribution of circulating tumor DNA in lung cancer: analysis of the primary lung and bone marrow along with the pulmonary venous and peripheral blood. Oncotarget 2017; 8:59268-59281. [PMID: 28938635 PMCID: PMC5601731 DOI: 10.18632/oncotarget.19538] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor DNA (ctDNA), extracted from plasma, is a non-invasive surrogate biomarker. However, the distribution of ctDNA in the body still remains to be elucidated. In this study, resected lung tumors, with simultaneous blood and bone marrow samples, were analyzed to elucidate the distribution of ctDNA. Rib bone marrow, pulmonary venous blood (Pul.V) and peripheral blood (Peri.B) were obtained from 30 patients. The liquid samples were divided into cell pellets and supernatant by centrifugation; a total of 212 DNA samples were subjected to massively parallel sequencing. ctDNA was detected in 5 patients. Given that the frequency of mutations in the primary tumor was considered to be 100%, those in the other specimens were as follows; Pul.V plasma 20%, Peri.B plasma 11%, and the other samples 0%. Furthermore, ctDNA reflected the predominant mutations in the primary lesion. Clinically, the presence of ctDNA was associated with significantly poorer survival. These results suggest ctDNA “spill over” into an immediate outflow tract (Pul.V), and from there is disseminated to the entire body. Thus, it can be inferred that ctDNA reflects the cancer progression and could function as a prognostic marker.
Collapse
Affiliation(s)
- Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Takahiro Nakagomi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Daichi Shikata
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yujiro Yokoyama
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Kenichiro Okimoto
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Toshio Oyama
- Department of Pathology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan.,University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Shi C, Zheng Y, Li Y, Sun H, Liu S. Association between clinical characteristics and the diagnostic accuracy of circulating single-molecule amplification and resequencing technology on detection epidermal growth factor receptor mutation status in plasma of lung adenocarcinoma. J Clin Lab Anal 2017; 32. [PMID: 28670719 DOI: 10.1002/jcla.22271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality in the world. Circulating single-molecule amplification and resequencing technology (cSMART) can successfully detect epidermal growth factor receptor (EGFR) mutation in non-small cell lung cancer (NSCLC). However, few studies have investigated the association between clinical characteristics and the diagnostic accuracy of cSMART technique in lung adenocarcinoma. METHODS We enrolled 95 patients, which included paraffin embedded tumor tissues and matched plasma samples. Retrospectively analyzed the correlation between clinical characteristics and sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of cSMART. RESULTS Of the 95 lung adenocarcinoma cancer patients, 49 (51.5%) and 40 (42.1%) harbored EGFR mutations respectively in tissue and plasma. In younger than 60 years group, sensitivity, specificity and consistency for cSMART were 81.0%, 100%, and 90.9% (P<.001). In metastasis group, sensitivity, specificity, and consistency for cSMART were 92.9%, 77.8%, and 87.0% (P=.001). By univariate analysis, younger than 60 years (OR=5.938; 95% confidence interval: 1.835-19.210; P=.001); metastasis group (OR=4.482; 95% confidence interval: 1.432-14.024; P=.007) were significantly correlated with a higher accuracy. By multivariate analysis, younger than 60 years (P=.003) and metastasis (P=.004) were confirmed as independent factors for diagnostic accuracy of EGFR mutation in plasma through cSMART. CONCLUSION cSMART is feasible for detection EGFR mutation in plasma when tissue is unavailable. Age and metastasis might be considered as independent factors in diagnostic accuracy of cSMART in lung adenocarcinoma.
Collapse
Affiliation(s)
- Chao Shi
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Zheng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yin Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haibo Sun
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shilei Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Zhang HY, Yang W, Lu JB. Knockdown of GluA2 induces apoptosis in non-small-cell lung cancer A549 cells through the p53 signaling pathway. Oncol Lett 2017; 14:1005-1010. [PMID: 28693266 DOI: 10.3892/ol.2017.6234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are important glutamatergic receptors that mediate fast excitatory synaptic transmission in the brain. Previous studies have demonstrated that glutamate ionotropic receptor AMPA type subunit 2 (GluA2), one of the four subunits that comprise AMPA receptors, is a potential novel marker for poor prognosis in patients with human lung cancer. However, the mechanisms of GluA2-induced apoptosis, proliferation and migration in lung cancer remain unknown. The present study aimed to explore the mechanisms underlying these effects of GluA2 in human lung cancer by silencing GluA2 in A549 cells. Using the Cell Counting Kit-8 assay, western blot analysis and acridine orange/ethidium bromide staining, downregulation of GluA2 was revealed to significantly inhibit the proliferation and significantly promote the apoptosis of A549 cells. Knockdown of GluA2 was also revealed to be associated with increased caspase-3 activity, increased Bcl-2-associated X protein and Bcl-2-associated death promoter (Bad) expression, and decreased expression of B-cell lymphoma-2, p-Bad and X-linked inhibitor of apoptosis protein. In addition, GluA2 silencing upregulated cellular tumor antigen p53 (p53)/p21Cip1/Waf1/p16INK4a protein. In conclusion, these results indicate that the effects of GluA2 in lung cancer are mediated by the caspase-3 and p53/p21Cip1/Waf1/p16INK4a signaling pathways. Therefore, GluA2 may be a potential novel therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Hong-Yan Zhang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 150000, P.R. China
| | - Wei Yang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 150000, P.R. China
| | - Ji-Bin Lu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 150000, P.R. China
| |
Collapse
|
23
|
Saad N, Poudel A, Basnet A, Gajra A. Epidermal growth factor receptor T790M mutation-positive metastatic non-small-cell lung cancer: focus on osimertinib (AZD9291). Onco Targets Ther 2017; 10:1757-1766. [PMID: 28367058 PMCID: PMC5370386 DOI: 10.2147/ott.s100650] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Adenocarcinoma is the most common type of non-small-cell lung cancer (NSCLC). Adenocarcinoma with epidermal growth factor receptor (EGFR) mutations accounts for 8%–30% of all cases of NSCLC depending on the geography and ethnicity. EGFR-mutated NSCLC usually responds to first-line therapy with EGFR tyrosine kinase inhibitors (TKIs). However, there is eventual loss of efficacy to TKIs due to development of resistance. The most frequent cause for resistance is a second EGFR mutation in exon 20 (T790M), which is encountered in up to 62% of patients. Osimertinib is one of the third-generation EGFR TKIs with a high selective potency against T790M mutants. In Phase I trial of osimertinib in advanced lung cancer after progression on EGFR TKIs, the response rate and disease control rate were 61% and 95%, respectively. A subsequent Phase II (AURA2) trial demonstrated a disease control rate of 92%, a response rate of 71%, a median duration of response of 7.8 months, and a median progression-free survival of 8.6 months. Osimertinib was approved by the US Food & Drug Administration in November 2015 for patients whose tumors exhibited T790M mutation and for those with progressive disease on other EGFR TKIs. In this review, we address the role of EGFR TKIs in the management of EGFR mutation lung cancer and the mechanisms of resistance to TKIs with a focus on the role of osimertinib. Data from completed trials of osimertinib, ongoing trials, as well as novel diagnostic methods to detect EGFR T790M mutation are reviewed.
Collapse
Affiliation(s)
- Nibal Saad
- Internal Medicine Department, Division of Hematology and Oncology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Aarati Poudel
- Internal Medicine Department, Division of Hematology and Oncology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alina Basnet
- Internal Medicine Department, Division of Hematology and Oncology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ajeet Gajra
- Internal Medicine Department, Division of Hematology and Oncology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
24
|
Molecular mechanisms of therapy resistance in solid tumors: chasing "moving" targets. Virchows Arch 2017; 471:155-164. [PMID: 28280929 DOI: 10.1007/s00428-017-2101-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
The goal of personalized cancer therapy is to treat tumors based on genomic aberrations that drive their survival and progression. Most patients who receive targeted therapies typically develop resistance and disease progression within a year's time. This review focuses on the heterogeneous mechanisms of therapy resistance to tyrosine kinase inhibitors, endocrine/hormone therapy and checkpoint blockade using non-small cell lung cancer, breast and castration-resistant prostate cancer, and melanoma as classical examples, respectively. In addition, testing for resistance mechanisms and therapeutic approaches to overcoming resistance is addressed.
Collapse
|
25
|
Abstract
During cancer progression and treatment, multiple subclonal populations of tumour cells compete with one another, with selective pressures leading to the emergence of predominant subclones that replicate and spread most proficiently, and are least susceptible to treatment. At present, the molecular landscapes of solid tumours are established using surgical or biopsy tissue samples. Tissue-based tumour profiles are, however, subject to sampling bias, provide only a snapshot of tumour heterogeneity, and cannot be obtained repeatedly. Genomic profiles of circulating cell-free tumour DNA (ctDNA) have been shown to closely match those of the corresponding tumours, with important implications for both molecular pathology and clinical oncology. Analyses of circulating nucleic acids, commonly referred to as 'liquid biopsies', can be used to monitor response to treatment, assess the emergence of drug resistance, and quantify minimal residual disease. In addition to blood, several other body fluids, such as urine, saliva, pleural effusions, and cerebrospinal fluid, can contain tumour-derived genetic information. The molecular profiles gathered from ctDNA can be further complemented with those obtained through analysis of circulating tumour cells (CTCs), as well as RNA, proteins, and lipids contained within vesicles, such as exosomes. In this Review, we examine how different forms of liquid biopsies can be exploited to guide patient care and should ultimately be integrated into clinical practice, focusing on liquid biopsy of ctDNA - arguably the most clinically advanced approach.
Collapse
|
26
|
Chen QN, Wei CC, Wang ZX, Sun M. Long non-coding RNAs in anti-cancer drug resistance. Oncotarget 2017; 8:1925-1936. [PMID: 27713133 PMCID: PMC5352108 DOI: 10.18632/oncotarget.12461] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy is one of the basic treatments for cancers; however, drug resistance is mainly responsible for the failure of clinical treatment. The mechanism of drug resistance is complicated because of interaction among various factors including drug efflux, DNA damage repair, apoptosis and targets mutation. Long non-coding RNAs (lncRNAs) have been a focus of research in the field of bioscience, and the latest studies have revealed that lncRNAs play essential roles in drug resistance in breast cancer, gastric cancer and lung cancer, et al. Dysregulation of multiple targets and pathways by lncRNAs results in the occurrence of chemoresistance. In this review, we will discuss the mechanisms underlying lncRNA-mediated resistance to chemotherapy and the therapeutic potential of lncRNAs in future cancer treatment.
Collapse
Affiliation(s)
- Qin-nan Chen
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chen-chen Wei
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhao-xia Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
27
|
Mitchell SM, Ho T, Brown GS, Baker RT, Thomas ML, McEvoy A, Xu ZZ, Ross JP, Lockett TJ, Young GP, LaPointe LC, Pedersen SK, Molloy PL. Evaluation of Methylation Biomarkers for Detection of Circulating Tumor DNA and Application to Colorectal Cancer. Genes (Basel) 2016; 7:E125. [PMID: 27983717 PMCID: PMC5192501 DOI: 10.3390/genes7120125] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/03/2016] [Accepted: 11/29/2016] [Indexed: 12/29/2022] Open
Abstract
Solid tumors shed DNA into circulation, and there is growing evidence that the detection of circulating tumor DNA (ctDNA) has broad clinical utility, including monitoring of disease, prognosis, response to chemotherapy and tracking tumor heterogeneity. The appearance of ctDNA in the circulating cell-free DNA (ccfDNA) isolated from plasma or serum is commonly detected by identifying tumor-specific features such as insertions, deletions, mutations and/or aberrant methylation. Methylation is a normal cell regulatory event, and since the majority of ccfDNA is derived from white blood cells (WBC), it is important that tumour-specific DNA methylation markers show rare to no methylation events in WBC DNA. We have used a novel approach for assessment of low levels of DNA methylation in WBC DNA. DNA methylation in 29 previously identified regions (residing in 17 genes) was analyzed in WBC DNA and eight differentially-methylated regions (DMRs) were taken through to testing in clinical samples using methylation specific PCR assays. DMRs residing in four genes, BCAT1, GRASP, IKZF1 and IRF4, exhibited low positivity, 3.5% to 7%, in the plasma of colonoscopy-confirmed healthy subjects, with the sensitivity for detection of ctDNA in colonoscopy-confirmed patients with colorectal cancer being 65%, 54.5%, 67.6% and 59% respectively.
Collapse
Affiliation(s)
- Susan M Mitchell
- CSIRO Food and Nutrition, P.O. Box 52, North Ryde, NSW 1670, Australia.
| | - Thu Ho
- CSIRO Food and Nutrition, P.O. Box 52, North Ryde, NSW 1670, Australia.
| | - Glenn S Brown
- CSIRO Food and Nutrition, P.O. Box 52, North Ryde, NSW 1670, Australia.
| | - Rohan T Baker
- Clinical Genomics Pty Ltd., North Ryde, NSW 2113, Australia.
| | | | - Aidan McEvoy
- Clinical Genomics Pty Ltd., North Ryde, NSW 2113, Australia.
| | - Zheng-Zhou Xu
- CSIRO Food and Nutrition, P.O. Box 52, North Ryde, NSW 1670, Australia.
| | - Jason P Ross
- CSIRO Food and Nutrition, P.O. Box 52, North Ryde, NSW 1670, Australia.
| | - Trevor J Lockett
- CSIRO Food and Nutrition, P.O. Box 52, North Ryde, NSW 1670, Australia.
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer, Flinders University of South Australia, GPO Box 2100, Adelaide, SA 5001, Australia.
| | | | | | - Peter L Molloy
- CSIRO Food and Nutrition, P.O. Box 52, North Ryde, NSW 1670, Australia.
| |
Collapse
|
28
|
Minari R, Bordi P, Tiseo M. Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors in T790M-positive non-small cell lung cancer: review on emerged mechanisms of resistance. Transl Lung Cancer Res 2016; 5:695-708. [PMID: 28149764 DOI: 10.21037/tlcr.2016.12.02] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Osimertinib, third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), has been approved in the US and EU for the treatment of EGFR mutant T790M-positive non-small cell lung cancer (NSCLC) patients resistant to first- or second-generation EGFR-TKIs, such as gefitinib, erlotinib and afatinib. Although exciting survival data and response rates have been registered in patients treated with this and other third-generation EGFR-TKIs, unfortunately acquired resistance still occurs after approximately 10 months. Mechanisms determining progression of disease are heterogeneous and not fully understood. EGFR-dependent resistance mechanisms (such as new EGFR mutations), bypass pathway activation [as erb-b2 receptor tyrosine kinase 2 (HER2) or MET amplification] and histological transformation [in small cell lung cancer (SCLC)] have been reported, similarly to previous generation TKIs. Here, we review principle mechanisms of innate and acquired resistance described in literature both in clinical and preclinical settings during NSCLC treatment with third-generation EGFR-TKIs.
Collapse
Affiliation(s)
- Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Paola Bordi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
29
|
Shi X, Xu Y, Zhang C, Feng L, Sun Z, Han J, Su F, Zhang Y, Li C, Li X. Subpathway-LNCE: Identify dysfunctional subpathways competitively regulated by lncRNAs through integrating lncRNA-mRNA expression profile and pathway topologies. Oncotarget 2016; 7:69857-69870. [PMID: 27634882 PMCID: PMC5342520 DOI: 10.18632/oncotarget.12005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022] Open
Abstract
Recently, studies have reported that long noncoding RNAs (lncRNAs) can act as modulators of mRNAs through competitively binding to microRNAs (miRNAs) and have relevance to tumorigenesis as well as other diseases. Identify lncRNA competitively regulated subpathway not only can gain insight into the initiation and progression of disease, but also help for understanding the functional roles of lncRNAs in the disease context. Here, we present an effective method, Subpathway-LNCE, which was specifically designed to identify lncRNAs competitively regulated functions and the functional roles of these competitive regulation lncRNAs have not be well characterized in diseases. Moreover, the method integrated lncRNA-mRNA expression profile and pathway topologies. Using prostate cancer datasets and LUAD data sets, we confirmed the effectiveness of our method in identifying disease associated dysfunctional subpathway that regulated by lncRNAs. By analyzing kidney renal clear cell carcinoma related lncRNA competitively regulated subpathway network, we show that Subpathway-LNCE can help uncover disease key lncRNAs. Furthermore, we demonstrated that our method is reproducible and robust. Subpathway-LNCE provide a flexible tool to identify lncRNA competitively regulated signal subpathways underlying certain condition, and help to expound the functional roles of lncRNAs in various status. Subpathway-LNCE has been developed as an R package freely available at https://cran.rstudio.com/web/packages/SubpathwayLNCE/.
Collapse
Affiliation(s)
- Xinrui Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Li Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Zeguo Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Chunquan Li
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
30
|
Pérez-Callejo D, Romero A, Provencio M, Torrente M. Liquid biopsy based biomarkers in non-small cell lung cancer for diagnosis and treatment monitoring. Transl Lung Cancer Res 2016; 5:455-465. [PMID: 27826527 DOI: 10.21037/tlcr.2016.10.07] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advances in the knowledge of the biology of non-small cell lung cancer (NSCLC) have revealed molecular information used for systemic cancer therapy targeting metastatic disease, with an important impact on patients overall survival (OS) and quality of life. However, a biopsy of overt metastases is an invasive procedure limited to certain locations and not easily acceptable in the clinic. Moreover, a single biopsy cannot reflect the clonal heterogeneity of the tumor. The analysis of peripheral blood samples of cancer patients represents a new source of cancer-derived material, known as liquid biopsy, and its components can be obtained from almost all body fluids. These components have shown to reflect characteristics of the status of both the primary and metastatic diseases, helping the clinicians to move towards a personalized medicine. The present review focuses on the liquid biopsy components: circulating tumor cells (CTCS), circulating free DNA (cfDNA), exosomes and tumor-educated platelets (TEP); the isolation technologies used and their potential use for non-invasive screening, early diagnosis, prognosis, response to treatment and real time monitoring of the disease, in NSCLC patients.
Collapse
Affiliation(s)
- David Pérez-Callejo
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Atocha Romero
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Mariano Provencio
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - María Torrente
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| |
Collapse
|
31
|
Pérez-Ramírez C, Cañadas-Garre M, Robles AI, Molina MÁ, Faus-Dáder MJ, Calleja-Hernández MÁ. Liquid biopsy in early stage lung cancer. Transl Lung Cancer Res 2016; 5:517-524. [PMID: 27826533 DOI: 10.21037/tlcr.2016.10.15] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lung cancer is the leading cause of cancer-associated deaths worldwide. Surgery is the standard treatment for early-stage non-small cell lung cancer (NSCLC). However, 30% to 80% of these patients will die within 5 yearS of diagnosis. Circulating cell-free DNA (cfDNA) harbors pathologic characteristics of the original tumor, such as gene mutations or epigenetic alterations. Analysis of cfDNA has revolutionized the clinical care of advanced lung cancer patients undergoing targeted therapies. However, the low concentration of cfDNA in the blood of early-stage NSCLC patients has hampered its use for management of early disease. Continuing development of more specific and sensitive techniques for detection and analysis of cfDNA will soon enable its leverage in early stage and, perhaps, even screening settings. Therefore, cfDNA analysis may become a tool used for routine NSCLC diagnosis and for monitoring tumor burden, as well as for identifying hidden residual disease. In this review, we will focus on the current evidence of cfDNA in patients with early-stage NSCLC, new and upcoming approaches to identify circulating-tumor biomarkers, their clinical applications and future directions.
Collapse
Affiliation(s)
- Cristina Pérez-Ramírez
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014 Granada, Spain;; Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n 18071 Granada, Spain
| | - Marisa Cañadas-Garre
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014 Granada, Spain
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, National Cancer Institute, 37 Convent Dr, Bethesda, MD 20892, USA
| | - Miguel Ángel Molina
- Pangaea Biotech, S.L., Hospital Universitario Quirón Dexeus, C/ Sabino Arana, 5-19. 08028 Barcelona, Spain
| | - María José Faus-Dáder
- Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n 18071 Granada, Spain
| | - Miguel Ángel Calleja-Hernández
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014 Granada, Spain;; Department of Pharmacology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain
| |
Collapse
|
32
|
Calabuig-Fariñas S, Jantus-Lewintre E, Herreros-Pomares A, Camps C. Circulating tumor cells versus circulating tumor DNA in lung cancer-which one will win? Transl Lung Cancer Res 2016; 5:466-482. [PMID: 27826528 DOI: 10.21037/tlcr.2016.10.02] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Liquid biopsies appear to be a reliable alternative to conventional biopsies that can provide both precise molecular data useful for improving the clinical management of lung cancer patients as well as a less invasive way of monitoring tumor behavior. These advances are supported by important biotechnological developments in the fields of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Analysis of CTCs and ctDNA may be useful in treatment selection, for response monitoring, and in studying resistance mechanisms. This review focuses on the most recent technological achievements and the most relevant clinical applications for lung cancer patients in the CTC and ctDNA fields, highlighting those that are already (or are close to) being implemented in daily clinical practice.
Collapse
Affiliation(s)
- Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, General University Hospital Research Foundation, University General Hospital of Valencia, Valencia, Spain;; Department of Pathology, Universitat de València, Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Molecular Oncology Laboratory, General University Hospital Research Foundation, University General Hospital of Valencia, Valencia, Spain;; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Alejandro Herreros-Pomares
- Molecular Oncology Laboratory, General University Hospital Research Foundation, University General Hospital of Valencia, Valencia, Spain;; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Carlos Camps
- Molecular Oncology Laboratory, General University Hospital Research Foundation, University General Hospital of Valencia, Valencia, Spain;; Department of Medicine, Universitat de València, Valencia, Spain;; Department of Medical Oncology, University General Hospital of Valencia, Valencia, Spain
| |
Collapse
|
33
|
Alì G, Bruno R, Giordano M, Prediletto I, Marconi L, Zupo S, Fedeli F, Ribechini A, Chella A, Fontanini G. Small cell lung cancer transformation and the T790M mutation: A case report of two acquired mechanisms of TKI resistance detected in a tumor rebiopsy and plasma sample of EGFR-mutant lung adenocarcinoma. Oncol Lett 2016; 12:4009-4012. [PMID: 27895763 DOI: 10.3892/ol.2016.5193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/28/2016] [Indexed: 11/05/2022] Open
Abstract
The present study describes the case of a 45-year-old man diagnosed with metastatic lung adenocarcinoma, which harbored a deletion within exon 19 of the epidermal growth factor receptor (EGFR) gene. The patient was subsequently treated with gefitinib (250 mg/day orally from May 2013 to March 2014), but developed acquired resistance to the drug following 11 months of treatment. Tumor burden molecular analysis was performed on a tumor rebiopsy and plasma sample, and histological analysis was also performed on the tumor rebiopsy. A small cell transformation retaining the original EGFR mutation was detected in the tumor rebiopsy, while the T790M mutation together with the activating ex19del mutation were identified only in the plasma sample. The patient was treated with cytotoxic chemotherapy (off-label schedule with epirubicin 80 mg/mq and paclitaxel 160 mg/mq every 21 days for 6 cycles) and radiation (50.4 Gy administered in 28 fractions of 1.8 Gy once daily for 5.5 weeks) specific for small cell lung cancer, and may also have benefitted from treatment with a third generation T790M-specific EGFR-TKI. To better describe the mechanisms of resistance to TKI inhibitors and to optimize therapeutic regimens, the simultaneous analysis of tumor biopsies and circulating tumor DNA should be considered.
Collapse
Affiliation(s)
- Greta Alì
- Unit of Pathological Anatomy, University Hospital of Pisa, I-56126 Pisa, Italy
| | - Rossella Bruno
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, I-56126 Pisa, Italy
| | - Mirella Giordano
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, I-56126 Pisa, Italy
| | - Irene Prediletto
- Unit of Pneumology, University Hospital of Pisa, I-56124 Pisa, Italy
| | - Letizia Marconi
- Unit of Pneumology, University Hospital of Pisa, I-56124 Pisa, Italy
| | - Simonetta Zupo
- Unit of Molecular Diagnostics, Institute of Hospitalization and Scientific Care, National Institute for Cancer Research, I-16132 Genova, Italy
| | - Franco Fedeli
- Unit of Pathological Anatomy, Sant'Andrea Hospital, I-19124 La Spezia, Italy
| | - Alessandro Ribechini
- Endoscopic Section of Pneumology, University Hospital of Pisa, I-56124 Pisa, Italy
| | - Antonio Chella
- Unit of Pneumology, University Hospital of Pisa, I-56124 Pisa, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, I-56126 Pisa, Italy; Program of Pleuropulmonary Pathology, University Hospital of Pisa, I-56126 Pisa, Italy
| |
Collapse
|
34
|
Pathologists and liquid biopsies: to be or not to be? Virchows Arch 2016; 469:601-609. [PMID: 27553354 DOI: 10.1007/s00428-016-2004-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/25/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
Abstract
Recently, the advent of therapies targeting genomic alterations has improved the care of patients with certain types of cancer. While molecular targets were initially detected in nucleic acid samples extracted from tumor tissue, detection of nucleic acids in circulating blood has allowed the development of what has become known as liquid biopsies, which provide a complementary and alternative sample source allowing identification of genomic alterations that might be addressed by targeted therapy. Consequently, liquid biopsies might rapidly revolutionize oncology practice in allowing administration of more effective treatments. Liquid biopsies also provide an approach towards short-term monitoring of metastatic cancer patients to evaluate efficacy of treatment and/or early detection of secondary mutations responsible for resistance to treatment. In this context, pathologists, who have already been required in recent years to take interest in the domain of molecular pathology of cancer, now face new challenges. The attitude of pathologists to and level of involvement in the practice of liquid biopsies, including mastering the methods employed in molecular analysis of blood samples, need close attention. Regardless of the level of involvement of pathologists in this new field, it is mandatory that oncologists, biologists, geneticists, and pathologists work together to coordinate the pre-analytical, analytical, and post-analytical phases of molecular assessment of tissue and liquid samples of individual cancer patients. The challenges include (1) implementation of effective and efficient procedures for reception and analysis of liquid and tissue samples for histopathological and molecular evaluation and (2) assuring short turn-around times to facilitate rapid optimization of individual patient treatment. In this paper, we will review the following: (1) recent data concerning the concept of liquid biopsies in oncology and its development for patient care, (2) advantages and limitations of molecular analyses performed on blood samples compared to those performed on tissue samples, and (3) short-term challenges facing pathologists in dealing with liquid biopsies of cancer patients and new strategies to early detect metastatic tumor cell clones.
Collapse
|