1
|
Bhosale AA, Zhao Y, Zhang X. Electric Field and SAR Reduction in High Impedance RF Arrays by Using High Permittivity Materials for 7T MR Imaging. ARXIV 2023:arXiv:2312.04491v1. [PMID: 38106453 PMCID: PMC10723527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Higher frequencies and shorter wavelengths present significant design issues at ultra-high fields, making multi-channel array setup a critical component for ultra-high field MR imaging. The requirement for multi-channel arrays, as well as ongoing efforts to increase the number of channels in an array, are always limited by the major issue known as inter-element coupling. This coupling affects the current and field distribution, noise correlation between channels, and frequency of array elements, lowering imaging quality and performance. To realize the full potential of UHF MRI, we must ensure that the coupling between array elements is kept to a minimum. High-impedance coils allow array systems to completely realize their potential by providing optimal isolation while requiring minimal design modifications. These minor design changes, which demand the use of low capacitance on the conventional loop to induce elevated impedance, result in a significant safety hazard that cannot be overlooked. High electric fields are formed across these low capacitance lumped elements, which may result in higher SAR values in the imaging subject, depositing more power and, ultimately, providing a greater risk of tissue heating-related injury to the human sample. We propose an innovative method of utilizing high-dielectric material to effectively reduce electric fields and SAR values in the imaging sample while preserving the B1 efficiency and inter-element decoupling between the array elements to address this important safety concern with minimal changes to the existing array design comprising high-impedance coils.
Collapse
Affiliation(s)
- Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
2
|
Li X, Zhang G, Zhu W, Zhang X, Zhu XH, Chen W. DOuble tuned and DOuble matched large-size loop coil (DODO) design and evaluation for 17O MRSI and 1H MRI application at 7T. PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE ... SCIENTIFIC MEETING AND EXHIBITION. INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE. SCIENTIFIC MEETING AND EXHIBITION 2023; 31:5077. [PMID: 37600534 PMCID: PMC10440072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Affiliation(s)
- Xin Li
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Guangle Zhang
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Wei Zhu
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Xiaoliang Zhang
- School of Engineering and Applied Sciences, University of Buffalo, Buffalo, NY, United States
| | - Xiao-Hong Zhu
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Wei Chen
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Zhu Y, Sappo CR, Grissom WA, Gore JC, Yan X. Dual-Tuned Lattice Balun for Multi-Nuclear MRI and MRS. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1420-1430. [PMID: 34990352 PMCID: PMC9812758 DOI: 10.1109/tmi.2022.3140717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Balun or trap circuits are critical components for suppressing common-mode currents flowing on the outer conductors of coaxial cables in RF coil systems for Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS). Common-mode currents affect coils' tuning and matching, induce losses, pick up extra noise from the surrounding environment, lead to undesired cross-talk, and cause safety concerns in animal and human imaging. First proposed for microwave antenna applications, the Lattice balun has been widely used in MRI coils. It has a small footprint and can be easily integrated with coil tuning/matching circuits. However, the Lattice balun is typically a single-tuned circuit and cannot be used for multi-nuclear MRI and MRS with two RF frequencies. This work describes a dual-tuned Lattice balun design that is suitable for multi-nuclear MRI/MRS. It was first analyzed theoretically to derive component values. RF circuit simulations were then performed to validate the theoretical analysis and provide guidance for practical construction. Based on the simulation results, a dual-tuned balun circuit was built for 7T 1H/23Na MRI and bench tested. The fabricated dual-tuned balun exhibits superior performance at the Larmor frequencies of both 1H and 23Na, with less than 0.15 dB insertion loss and better than 17 dB common-mode rejection ratio at both frequencies.
Collapse
|
4
|
Meng Y, Mo Z, Hao J, Peng Y, Yan H, Mu J, Ma D, Zhang X, Li Y. High-resolution intravascular magnetic resonance imaging of the coronary artery wall at 3.0 Tesla: toward evaluation of atherosclerotic plaque vulnerability. Quant Imaging Med Surg 2021; 11:4522-4529. [PMID: 34737920 DOI: 10.21037/qims-21-286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/05/2021] [Indexed: 11/06/2022]
Abstract
Background To validate the feasibility of generating high-resolution intravascular 3.0 Tesla (T) magnetic resonance imaging of the coronary artery wall to further plaque imaging. Methods A receive-only 0.014-inch diameter magnetic resonance imaging guidewire (MRIG) was manufactured for intravascular imaging within a phantom experiment and the coronary artery wall of the swine. For coronary artery wall imaging, both high-resolution images and conventional resolution images were acquired. A 16-channel commercial surface coil for magnetic resonance imaging was employed for the control group. Results For the phantom experiment, the MRIG showed a higher signal-to-noise ratio than the surface coil. The peak signal-to-noise ratio of the MRIG and the surface coil-generated imaging were 213.6 and 19.8, respectively. The signal-to-noise ratio decreased rapidly as the distance from the MRIG increased. For the coronary artery wall experiment, the vessel wall imaging by the MRIG could be identified clearly, whereas the vessel wall imaging by the surface coil was blurred. The average signal-to-noise ratio of the artery wall was 21.1±5.40 by the MRIG compared to 8.4±2.19 by the surface coil, where the resolution was set at 0.2 mm × 0.2 mm × 2 mm. As expected, the high-resolution sequence clearly showed more details than the conventional resolution sequence set at 0.7 mm × 0.7 mm × 2.0 mm. Histological examination showed no evidence of mechanical injuries in the target vessel walls. Conclusions The study validated the feasibility of generating magnetic resonance imaging (MRI) at 0.2 mm × 0.2 mm × 2 mm for the coronary artery wall using a 0.014 inch MRIG.
Collapse
Affiliation(s)
- Yanfeng Meng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhiguang Mo
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,The Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Jinying Hao
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yueyou Peng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Yan
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingbo Mu
- Department of Cardiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Dengfeng Ma
- Department of Cardiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, NY, USA
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,The Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| |
Collapse
|
5
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
6
|
Yan X, Wei L, Chu S, Xue R, Zhang X. Eight-Channel Monopole Array Using ICE Decoupling for Human Head MR Imaging at 7 T. APPLIED MAGNETIC RESONANCE 2016; 47:527-538. [PMID: 29033501 PMCID: PMC5638452 DOI: 10.1007/s00723-016-0775-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/09/2016] [Indexed: 06/03/2023]
Abstract
Due to the unique structure of radiative coil elements, traditional decoupling methods face technical challenges in reducing the electromagnetic coupling of the radiative arrays. In this study, we aim to investigate the possibility of using the recently introduced induced current elimination (ICE) decoupling technique for cylindrical shaped radiative coil array designs. To evaluate the method, an eight-channel transmit/receive monopole array with the ICE decoupling, suitable for human head imaging at 7 T, was built and comparatively investigated. In vivo human head images were acquired and geometry factor maps were measured and calculated to evaluate the performance of the ICE-decoupled monopole array. Compared with the monopole array without decoupling methods, the ICE-decoupled monopole array had a higher signal-to-noise ratio and demonstrated improved parallel imaging ability. The experimental results indicate that the ICE decoupling method is a promising solution to addressing the coupling issue of radiative array at ultrahigh fields.
Collapse
Affiliation(s)
- Xinqiang Yan
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Long Wei
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Suoda Chu
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Brain Disorders, Beijing 100053, China
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, Byers Hall, Room 102, 1700 4th ST, San Francisco, CA 941582330, USA
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Yan X, Xue R, Zhang X. Closely-spaced double-row microstrip RF arrays for parallel MR imaging at ultrahigh fields. APPLIED MAGNETIC RESONANCE 2015; 46:1239-1248. [PMID: 26508810 PMCID: PMC4617305 DOI: 10.1007/s00723-015-0712-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Radiofrequency (RF) coil arrays with high count of elements, e.g., closely-spaced multi-row arrays, exhibit superior parallel imaging performance in MRI. However, it is technically challenging and time-consuming to build multi-row arrays due to complex coupling issues. This paper presents a novel and simple method for closely-spaced multi-row RF array designs. Induced current elimination (ICE) decoupling method has shown the capability of reducing coupling between microstrip elements from different rows. In this study, its capability for decoupling array elements from the same row was investigated and validated by bench tests, with an isolation improvement from -8.9 dB to -20.7 dB. Based on this feature, a closely-spaced double-row microstrip array with 16 elements was built at 7T. S21 between any two elements of the 16-channel closely-spaced was better than -14 dB. In addition, its feasibility and performance was validated by MRI experiments. No significant image reconstruction- related noise amplifications were observed for parallel imaging even when reduced factor (R) achieves 4. The experimental results demonstrated that the proposed design might be a simple and efficient approach in fabricating closely-spaced multi-row RF arrays.
Collapse
Affiliation(s)
- Xinqiang Yan
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158, USA
| |
Collapse
|
8
|
Yan X, Zhang X. Decoupling and matching network for monopole antenna arrays in ultrahigh field MRI. Quant Imaging Med Surg 2015; 5:546-51. [PMID: 26435918 DOI: 10.3978/j.issn.2223-4292.2015.07.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Radiative coil arrays, e.g., dipole or monopole arrays, are increasingly used in MR signal excitation and reception for ultrahigh field MRI. Technically, it is challenging to suppress the electromagnetic (EM) coupling of radiative array elements due to their unique structures. METHODS In this study, we proposed a combined decoupling and matching network (DMN) for monopole arrays for MRI applications. Compared with separate decoupling network and matching network, the combined network proposed here needs less components and rather suitable for decoupling radiative arrays in MRI. RESULTS Our study shows that the transmission coefficient between two coupled monopoles can be reduced from -5 dB to -24.8 dB by using the combined DMN. It is also clearly demonstrated in this study that this decoupling method is a port decoupling method rather than an element decoupling method. CONCLUSIONS With the proposed DMN, the monopole coil provides locally strong and spatially diverse B1 fields, which is essential to the improvement of MR sensitivity and parallel imaging performance.
Collapse
Affiliation(s)
- Xinqiang Yan
- 1 Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ; 2 Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California, USA
| | - Xiaoliang Zhang
- 1 Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ; 2 Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California, USA
| |
Collapse
|
9
|
Milshteyn E, Zhang X. The Need and Initial Practice of Parallel Imaging and Compressed Sensing in Hyperpolarized 13C MRI in vivo. ACTA ACUST UNITED AC 2015; 4. [PMID: 26900533 DOI: 10.4172/2167-7964.1000e133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eugene Milshteyn
- University of California Berkeley and University of California San Francisco Joint Bioengineering Program, USA; Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco (UCSF), USA
| | - Xiaoliang Zhang
- University of California Berkeley and University of California San Francisco Joint Bioengineering Program, USA; Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco (UCSF), USA
| |
Collapse
|
10
|
Yan X, Wei L, Xue R, Zhang X. Hybrid monopole/loop coil array for human head MR imaging at 7T. APPLIED MAGNETIC RESONANCE 2015; 46:541-550. [PMID: 26120252 PMCID: PMC4479412 DOI: 10.1007/s00723-015-0656-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The monopole coil and loop coil have orthogonal radiofrequency (RF) fields and thus are intrinsically decoupled electromagnetically if they are laid out appropriately. In this study, we proposed a hybrid monopole/loop technique which could combine the advantages of both loop arrays and monopole arrays. To investigate this technique, a hybrid RF coil array containing 4 monopole channels and 4 loop channels was developed for human head MR imaging at 7T. In vivo MR imaging and g-factor results using monopole-only channels, loop-only channels and all channels of the hybrid array were acquired and evaluated. Compared with the monopole-only and loop-only channels, the proposed hybrid array has higher SNR and better parallel imaging performance. Sufficient electromagnetic decoupling and diverse RF magnetic field (B1) distributions of monopole channels and loop channels may contribute to this performance improvement. From experimental results, the hybrid monopole/loop array has low g-factor and excellent SNR at both periphery and center of the brain, which is valuable for human head imaging at ultrahigh fields.
Collapse
Affiliation(s)
- Xinqiang Yan
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Wei
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- China and Beijing Institute for Brain Disorders, Beijing 100053, China
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158, USA
| |
Collapse
|
11
|
Yan X, Pedersen JO, Wei L, Zhang X, Xue R. Multichannel Double-Row Transmission Line Array for Human MR Imaging at Ultrahigh Fields. IEEE Trans Biomed Eng 2015; 62:1652-9. [PMID: 25706499 DOI: 10.1109/tbme.2015.2401976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In microstrip transmission line (MTL) transmit/receive (transceive) arrays used for ultrahigh field MRI, the array length is often constrained by the required resonant frequency, limiting the image coverage. The purpose of this study is to increase the imaging coverage and also improve its parallel imaging capability by utilizing a double-row design. METHODS A 16-channel double-row MTL transceive array was designed, constructed, and tested for human head imaging at 7 T. Array elements between two rows were decoupled by using the induced current elimination or magnetic wall decoupling technique. In vivo human head images were acquired, and g-factor results were calculated to evaluate the performance of this double-row array. RESULTS Testing results showed that all coil elements were well decoupled with a better than -18 dB transmission coefficient between any two elements. The double-row array improves the imaging quality of the lower portion of the human head, and has low g-factors even at high acceleration rates. CONCLUSION Compared with a regular single-row MTL array, the double-row array demonstrated a larger imaging coverage along the z-direction with improved parallel imaging capability. SIGNIFICANCE The proposed technique is particularly suitable for the design of large-sized transceive arrays with large channel counts, which ultimately benefits the imaging performance in human MRI.
Collapse
|