1
|
Mata-Martínez P, Bergón-Gutiérrez M, del Fresno C. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Front Immunol 2022; 13:812148. [PMID: 35237264 PMCID: PMC8882614 DOI: 10.3389/fimmu.2022.812148] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
The C-type lectin receptor Dectin-1 was originally described as the β-glucan receptor expressed in myeloid cells, with crucial functions in antifungal responses. However, over time, different ligands both of microbial-derived and endogenous origin have been shown to be recognized by Dectin-1. The outcomes of this recognition are diverse, including pro-inflammatory responses such as cytokine production, reactive oxygen species generation and phagocytosis. Nonetheless, tolerant responses have been also attributed to Dectin-1, depending on the specific ligand engaged. Dectin-1 recognition of their ligands triggers a plethora of downstream signaling pathways, with complex interrelationships. These signaling routes can be modulated by diverse factors such as phosphatases or tetraspanins, resulting either in pro-inflammatory or regulatory responses. Since its first depiction, Dectin-1 has recently gained a renewed attention due to its role in the induction of trained immunity. This process of long-term memory of innate immune cells can be triggered by β-glucans, and Dectin-1 is crucial for its initiation. The main signaling pathways involved in this process have been described, although the understanding of the above-mentioned complexity in the β-glucan-induced trained immunity is still scarce. In here, we have reviewed and updated all these factors related to the biology of Dectin-1, highlighting the gaps that deserve further research. We believe on the relevance to fully understand how this receptor works, and therefore, how we could harness it in different pathological conditions as diverse as fungal infections, autoimmunity, or cancer.
Collapse
Affiliation(s)
| | | | - Carlos del Fresno
- Immune response and Immunomodulation Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
2
|
Arunachalam D, Ramanathan SM, Menon A, Madhav L, Ramaswamy G, Namperumalsamy VP, Prajna L, Kuppamuthu D. Expression of immune response genes in human corneal epithelial cells interacting with Aspergillus flavus conidia. BMC Genomics 2022; 23:5. [PMID: 34983375 PMCID: PMC8728928 DOI: 10.1186/s12864-021-08218-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
Background Aspergillus flavus, one of the causative agents of human fungal keratitis, can be phagocytosed by human corneal epithelial (HCE) cells and the conidia containing phagosomes mature into phagolysosomes. But the immunological responses of human corneal epithelial cells interacting with A. flavus are not clear. In this study, we report the expression of immune response related genes of HCE cells exposed to A. flavus spores using targeted transcriptomics. Methods Human corneal epithelial cell line and primary cultures were grown in a six-well plate and used for coculture experiments. Internalization of the conidia was confirmed by immunofluorescence microscopy of the colocalized endosomal markers CD71 and LAMP1. Total RNA was isolated, and the quantity and quality of the isolated RNA were assessed using Qubit and Bioanalyzer. NanoString nCounter platform was used for the analysis of mRNA abundance using the Human Immunology panel. R-package and nSolver software were used for data analysis. KEGG and FunRich 3.1.3 tools were used to analyze the differentially expressed genes. Results Different morphotypes of conidia were observed after 6 h of coculture with human corneal epithelial cells and found to be internalized by epithelial cells. NanoString profiling showed more than 20 differentially expressed genes in immortalized human corneal epithelial cell line and more than ten differentially expressed genes in primary corneal epithelial cells. Distinct set of genes were altered in their expression in cell line and primary corneal epithelial cells. KEGG pathway analysis revealed that genes associated with TNF signaling, NF-KB signaling, and Th17 signaling were up-regulated, and genes associated with chemokine signaling and B cell receptor signaling were down regulated. FunRich pathway analysis showed that pathways such as CDC42 signaling, PI3K signaling, and Arf6 trafficking events were activated by the clinical isolates CI1123 and CI1698 in both type of cells. Conclusions Combining the transcript analysis data from cell lines and primary cultures, we showed the up regulation of immune defense genes in A. flavus infected cells. At the same time, chemokine signaling and B cell signaling pathways are downregulated. The variability in the expression levels in the immortalized cell line and the primary cultures is likely due to the variable epigenetic reprogramming in the immortalized cells and primary cultures in the absence of any changes in the genome. It highlights the importance of using both cell types in host-pathogen interaction studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08218-5.
Collapse
Affiliation(s)
- Divya Arunachalam
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India.,Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Shruthi Mahalakshmi Ramanathan
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Athul Menon
- Theracues Innovations Private Limited, Bangalore, India, Karnataka
| | - Lekshmi Madhav
- Theracues Innovations Private Limited, Bangalore, India, Karnataka
| | | | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Eye Hospital, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Dharmalingam Kuppamuthu
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India. .,Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India. .,Aravind Medical Research Foundation, Dr. G.Venkataswamy Eye Research Institute, Aravind Eye Care System, No.1 Anna Nagar, Madurai, Tamil Nadu, India.
| |
Collapse
|
3
|
The sino-nasal warzone: transcriptomic and genomic studies on sino-nasal aspergillosis in dogs. NPJ Biofilms Microbiomes 2020; 6:51. [PMID: 33184275 PMCID: PMC7665010 DOI: 10.1038/s41522-020-00163-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
We previously showed that each dog with chronic non-invasive sino-nasal aspergillosis (SNA) was infected with a single genotype of Aspergillus fumigatus. Here, we studied the transcriptome of this fungal pathogen and the canine host within the biofilm resulting from the infection. We describe here transcriptomes resulting from natural infections in animal species with A. fumigatus. The host transcriptome showed high expression of IL-8 and alarmins, uncontrolled inflammatory reaction and dysregulation of the Th17 response. The fungal transcriptome showed in particular expression of genes involved in secondary metabolites and nutrient acquisition. Single-nucleotide polymorphism analysis of fungal isolates from the biofilms showed large genetic variability and changes related with adaptation to host environmental factors. This was accompanied with large phenotypic variability in in vitro stress assays, even between isolates from the same canine patient. Our analysis provides insights in genetic and phenotypic variability of Aspergillus fumigatus in biofilms of naturally infected dogs reflecting in-host adaptation. Absence of a Th17 response and dampening of the Th1 response contributes to the formation of a chronic sino-nasal warzone.
Collapse
|
4
|
Experimental Models for Fungal Keratitis: An Overview of Principles and Protocols. Cells 2020; 9:cells9071713. [PMID: 32708830 PMCID: PMC7408389 DOI: 10.3390/cells9071713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Fungal keratitis is a potentially blinding infection of the cornea that afflicts diverse patient populations worldwide. The development of better treatment options requires a more thorough understanding of both microbial and host determinants of pathology, and a spectrum of experimental models have been developed toward this end. In vivo (animal) models most accurately capture complex pathological outcomes, but protocols may be challenging to implement and vary widely across research groups. In vitro models allow for the molecular dissection of specific host cell–fungal interactions, but they do so without the appropriate environmental/structural context; ex vivo (corneal explant) models provide the benefits of intact corneal tissue, but they do not provide certain pathological features, such as inflammation. In this review, we endeavor to outline the key features of these experimental models as well as describe key technical variations that could impact study design and outcomes.
Collapse
|
5
|
Zhang M, Jiang L, Li F, Xu Y, Lv S, Wang B. Simultaneous dermatophytosis and keratomycosis caused by Trichophyton interdigitale infection: a case report and literature review. BMC Infect Dis 2019; 19:983. [PMID: 31752715 PMCID: PMC6873498 DOI: 10.1186/s12879-019-4612-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 10/31/2019] [Indexed: 11/11/2022] Open
Abstract
Background Dermatophytosis is a fungal infectious disease caused by dermatophytes, which produce protease and keratinase to digest keratin, leading to the colonization, invasion, and infection of the stratum corneum of the skin, hair shafts, and nails. Trichophyton interdigitale belongs to Trichophyton mentagrophytes complex, which is the common pathogen causing dermatophytosis. Fungal keratitis, also called keratomycosis, is an infectious disease of cornea. Case presentation Here, we report a case of simultaneous dermatophytosis and keratomycosis caused by Trichophyton interdigitale. A 67-year-old man presented with extensive erythema all over the body since 4 years ago, fungal infection of left eye for 2 years, and loss of vision in the eye. These symptoms had become aggravated in the last month. Dermatological examinations showed extensive erythematous plaques with clear borders and scales, scattered red papules with ulceration, and scabs throughout the body. Onychomycosis was observed on the nails of left hand, conjunctival infection with secretion and loss of vision were noted in left eye. Hyaline septate hyphae were observed under direct microscopic examination, fungal culture and internal transcribed spacer sequencing revealed T. interdigitale. Histopathological examination suggested infectious granuloma. A diagnosis of dermatophytosis and keratomycosis caused by T. interdigitale with loss of vision in left eye was made. The patient was treated with luliconazole cream (two applications per day) and itraconazole (100 mg, BID, PO). Complete clinical remission was achieved after 1 month. Subsequently, the patient underwent left eye enucleation in the ophthalmology department. Conclusions In the present study, we reported a case of simultaneous dermatophytosis and keratomycosis caused by T. interdigitale, and reviewed the literature on corneal infection caused by Trichophyton. A total of 10 articles with 45 patients were published between 1973 and 2018. The pathogen of 27 patient were identified to species level. There were T. schoenleinii (17), T. mentagrophytes (4), T. verrucosum (3), T. rubrum (1), T. erinacei (1), and T. interdigitale (1). Five patients had corneal trauma, one had contact lens use history. Direct microscopic examination, fungal culture, and analysis of physiological characteristics were the main methods of identification. Early diagnosis and prompt treatment may help improve the management and outcomes.
Collapse
Affiliation(s)
- Mingrui Zhang
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Lanxiang Jiang
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Fuqiu Li
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China.
| | - Yangchun Xu
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Sha Lv
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Bing Wang
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| |
Collapse
|
6
|
Gour N, Lajoie S, Smole U, White M, Hu D, Goddard P, Huntsman S, Eng C, Mak A, Oh S, Kim JH, Sharma A, Plante S, Salem IH, Resch Y, Xiao X, Yao N, Singh A, Vrtala S, Chakir J, Burchard EG, Lane AP, Wills-Karp M. Dysregulated invertebrate tropomyosin-dectin-1 interaction confers susceptibility to allergic diseases. Sci Immunol 2018; 3:3/20/eaam9841. [PMID: 29475849 DOI: 10.1126/sciimmunol.aam9841] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/25/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
The key factors underlying the development of allergic diseases-the propensity for a minority of individuals to develop dysfunctional responses to harmless environmental molecules-remain undefined. We report a pathway of immune counter-regulation that suppresses the development of aeroallergy and shrimp-induced anaphylaxis. In mice, signaling through epithelially expressed dectin-1 suppresses the development of type 2 immune responses through inhibition of interleukin-33 (IL-33) secretion and the subsequent recruitment of IL-13-producing innate lymphoid cells. Although this homeostatic pathway is functional in respiratory epithelial cells from healthy humans, it is dramatically impaired in epithelial cells from asthmatic and chronic rhinosinusitis patients, resulting in elevated IL-33 production. Moreover, we identify an association between a single-nucleotide polymorphism (SNP) in the dectin-1 gene loci and reduced pulmonary function in two cohorts of asthmatics. This intronic SNP is a predicted eQTL (expression quantitative trait locus) that is associated with reduced dectin-1 expression in human tissue. We identify invertebrate tropomyosin, a ubiquitous arthropod-derived molecule, as an immunobiologically relevant dectin-1 ligand that normally serves to restrain IL-33 release and dampen type 2 immunity in healthy individuals. However, invertebrate tropomyosin presented in the context of impaired dectin-1 function, as observed in allergic individuals, leads to unrestrained IL-33 secretion and skewing of immune responses toward type 2 immunity. Collectively, we uncover a previously unrecognized mechanism of protection against allergy to a conserved recognition element omnipresent in our environment.
Collapse
Affiliation(s)
- Naina Gour
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stephane Lajoie
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Ursula Smole
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marquitta White
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Donglei Hu
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pagé Goddard
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott Huntsman
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Celeste Eng
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Angel Mak
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sam Oh
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jung-Hyun Kim
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Annu Sharma
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sophie Plante
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Ikhlass Haj Salem
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Yvonne Resch
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Xiao Xiao
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nu Yao
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Anju Singh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jamila Chakir
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Esteban G Burchard
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew P Lane
- Division of Rhinology and Sinus Surgery, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Kolar SS, Baidouri H, McDermott AM. Role of Pattern Recognition Receptors in the Modulation of Antimicrobial Peptide Expression in the Corneal Epithelial Innate Response to F. solani. Invest Ophthalmol Vis Sci 2017; 58:2463-2472. [PMID: 28460048 PMCID: PMC5413214 DOI: 10.1167/iovs.16-20658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Fusarium solani (F. solani) keratitis is a potentially sight-threatening fungal infection of the cornea. Antimicrobial peptides (AMPs), such as human β-defensins (hBDs) and cathelicidins, essential components of the immune system, likely have a protective role against F. solani keratitis. We examined the role of pattern recognition receptors (PRRs), Dectin-1, and TLR2 in F. solani–induced modulation of AMP expression in vitro. Methods Human corneal epithelial cells (HCECs) were exposed to heat-inactivated F. solani or pathogen-associated molecular patterns (PAMPs) of F. solani (Zymosan or Zymosan Depleted) for 6, 12, or 24 hours following which AMP mRNA and protein levels were determined. Involvement of TLR2 and Dectin-1 was confirmed by using siRNA knock-down (TLR2 and Dectin-1) or chemical inhibitor BAY 61-3606 (Dectin-1). The functional significance of AMP upregulation was tested using culture supernatant from F. solani or PAMP-treated HCECs against F. solani in the presence of hBD2 or LL37 neutralizing antibody. Results We confirm that HCECs express Dectin-1 and TLR2. HCECs demonstrated upregulation of AMPs hBD2 and cathelicidin LL37 following exposure to heat-inactivated F. solani or PAMPs. TLR2 and Dectin-1 knockdown and BAY 61-3606 treatment decreased AMP mRNA upregulation confirming PRR involvement. The culture supernatant from F. solani or PAMP-treated HCECs showed substantial killing of F. solani and hBD2 or LL37 neutralizing antibody significantly decreased this effect implicating involvement of these AMPs. Conclusions These findings demonstrate that Dectin-1 and TLR2 have an important role in regulating F. solani-induced AMP expression in corneal epithelial cells.
Collapse
Affiliation(s)
- Satya Sree Kolar
- The Ocular Surface Institute, University of Houston, College of Optometry, Houston, Texas, United States
| | - Hasna Baidouri
- The Ocular Surface Institute, University of Houston, College of Optometry, Houston, Texas, United States
| | - Alison M McDermott
- The Ocular Surface Institute, University of Houston, College of Optometry, Houston, Texas, United States
| |
Collapse
|
8
|
Zheng NX, Wang Y, Hu DD, Yan L, Jiang YY. The role of pattern recognition receptors in the innate recognition of Candida albicans. Virulence 2016; 6:347-61. [PMID: 25714264 DOI: 10.1080/21505594.2015.1014270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Candida albicans is both a commensal microorganism in healthy individuals and a major fungal pathogen causing high mortality in immunocompromised patients. Yeast-hypha morphological transition is a well known virulence trait of C. albicans. Host innate immunity to C. albicans critically requires pattern recognition receptors (PRRs). In this review, we summarize the PRRs involved in the recognition of C. albicans in epithelial cells, endothelial cells, and phagocytic cells separately. We figure out the differential recognition of yeasts and hyphae, the findings on PRR-deficient mice, and the discoveries on human PRR-related single nucleotide polymorphisms (SNPs).
Collapse
Affiliation(s)
- Nan-Xin Zheng
- a Changzheng Hospital ; Second Military Medical University ; Shanghai , China
| | | | | | | | | |
Collapse
|
9
|
Zhu CC, Zhao GQ, Lin J, Hu LT, Xu Q, Peng XD, Wang X, Qiu S. Dectin-1 agonist curdlan modulates innate immunity to Aspergillus fumigatus in human corneal epithelial cells. Int J Ophthalmol 2015; 8:690-6. [PMID: 26309863 DOI: 10.3980/j.issn.2222-3959.2015.04.09] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/19/2015] [Indexed: 01/08/2023] Open
Abstract
AIM To explore the immunomodulatory effects of curdlan on innate immune responses against Aspergillus fumigatus (A. fumigatus) in cultured human corneal epithelial cells (HCECs), and whether C-type lectin receptor Dectin-1 mediates the immunomodulatory effects of curdlan. METHODS The HCECs were stimulated by curdlan in different concentrations (50, 100, 200, 400 µg/mL) for various time. Then HCECs pretreated with or without laminarin (Dectin-1 blocker, 0.3 mg/mL) and curdlan were stimulated by A. fumigatus hyphae. The mRNA and protein production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were determined by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The protein level of Dectin-1 was measured by Western blot. RESULTS Curdlan stimulated mRNA expression of TNF-α and IL-6 in a dose and time dependent manner in HCECs. Curdlan pretreatment before A. fumigatus hyphae stimulation significantly enhanced the expression of TNF-α and IL-6 at mRNA and protein levels compared with A. fumigatus hyphae stimulation group (P<0.05). Both curdlan and A. fumigatus hyphae up-regulated Dectin-1 protein expression in HCECs, and Dectin-1 expression was elevated to 1.5- to 2-fold by curdlan pretreatment followed hyphae stimulation. The Dectin-1 blocker laminarin suppressed the mRNA expression and protein production of TNF-α and IL-6 induced by curdlan and hyphae (P<0.05). CONCLUSION These findings demonstrated that curdlan pretreatment enhanced the inflammatory response induced by A. fumigatus hyphae in HCECs. Dectin-1 is essential for the immunomodulatory effects of curdlan. Curdlan may have high clinical application values in fungal keratitis treatment.
Collapse
Affiliation(s)
- Cheng-Cheng Zhu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Ting Hu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xu-Dong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xue Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Sheng Qiu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
10
|
Peng XD, Zhao GQ, Lin J, Jiang N, Xu Q, Zhu CC, Qu JQ, Cong L, Li H. Fungus induces the release of IL-8 in human corneal epithelial cells, via Dectin-1-mediated protein kinase C pathways. Int J Ophthalmol 2015; 8:441-7. [PMID: 26085988 DOI: 10.3980/j.issn.2222-3959.2015.03.02] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
AIM To identify whether Aspergillus fumigatus (A. fumigatus) hyphae antigens induced the release of interleukin-8 (IL-8) in anti-fungal innate immunity of cultured human corneal epithelial cells (HCECs) and determine the involvement of intracellular signalling pathways. METHODS HCECs were treated with A. fumigatus hyphae antigens with different concentrations and time. The cytoplasmic calcium of HCECs were assessed by fluorescence imaging. Western blot was used to detect the expression of Ca(2+)-dependent protein kinase C (PKC). The IL-8 levels were determined by specific human IL-8 enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR). Using a series of pharmacological inhibitors, we examined the upstream signalling pathway responsible for IL-8 expression in response to A. fumigatus hyphae antigens. RESULTS Cells exposed to A. fumigatus hyphae antigens showed higher level of IL-8 mRNA expression and protein production. We demonstrated here that stimulation of HCECs with A. fumigatus hyphae triggers an intracellular Ca(2+) flux and results in the activation of Ca(2+)-dependent PKC (α, βI and βII) which can be attenuated by pre-treatment of cells with laminarin, suggesting that Dectin-1 signals pathway induced cytoplasmic calcium and influence the activation of PKC in HCECs. Inhibitors of Ca(2+)-dependent PKC (Ro-31-8220 and Go6976) significantly abolished hyphae-induced expression of IL-8. CONCLUSION Our findings suggest that A. fumigatus hyphae-induced IL-8 expression was regulated by the activation of Dectin-1-mediated Ca(2+)-dependent PKC in HCECs.
Collapse
Affiliation(s)
- Xu-Dong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cheng-Cheng Zhu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jian-Qiu Qu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Lin Cong
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Hui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|