1
|
Sheremet NL, Ronzina IA, Andreeva NA, Zhorzholadze NV, Murakhovskaya YK, Nevinitsyna TA, Shmelkova MS, Krylova TD, Tsygankova PG, Gerasimidi ES, Lyamzaev KG, Skulachev MV, Karger EM. [Electrophysiological and psychophysical studies in assessment of visual functions in patients with hereditary optic neuropathy]. Vestn Oftalmol 2022; 138:5-14. [PMID: 35488557 DOI: 10.17116/oftalma20221380215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To study the capabilities of electrophysiological and psychophysical examination methods for assessment of the functional state of ganglion cells, retina and optic nerve in patients with hereditary optic neuropathy (HON). MATERIAL AND METHODS The study included 60 patients (118 eyes) with a genetically confirmed diagnosis of HON. All study patients underwent visual field test (VFT), spectral optical coherence tomography (OCT), flash and pattern visual evoked potentials (VEP) (Flash-VEP, FVEP; Pattern-VEP, PVEP), photopic electroretinography with photonegative response (PhNR) registration and the color vision test. In 24 patients (46 eyes), these parameters were assessed before the start of treatment and one year later. The treatment involved the mitochondria-targeted antioxidant SkQ1 - plastoquinonyl-decyl-triphenylphosphonium bromide (PDTP) in the form of eye drops. RESULTS The main PVEP components for 1.0° and 0.3° were registered in 20% and in 14% of patient eyes with HON and high visual functions, respectively. After one year of PDTP use, a significant decrease in P100 peak latency was found only in the group with disease duration of ≤1.5 years as of the time of treatment start (p<0.05). Significant differences were observed in the PhNR amplitude (p<0.004) between patients of the main and the control groups, as well as in the PhNR amplitude between patients with visual acuity of ≤0.1 and ≥0.13 (p<0.01). Patients with high visual functions were found to have a correlation between the PhNR amplitude, GCC thickness and the global loss index (GLV). CONCLUSION Along with VFT, OCT and color vision tests, electrophysiological studies are one of the main methods of examining patients with HON. After one year of PDTP use, there was a significant decrease in the FVEP P2 peak latency in the group with a disease duration of ≤1.5 years as of the time of treatment start. The PhNR amplitude in patients with high visual functions was found to correlate with structural changes in the ganglion cell layer and the retinal nerve fiber layer.
Collapse
Affiliation(s)
- N L Sheremet
- Research Institute of Eye Diseases, Moscow, Russia
| | - I A Ronzina
- Research Institute of Eye Diseases, Moscow, Russia
| | - N A Andreeva
- Research Institute of Eye Diseases, Moscow, Russia
| | | | | | | | | | - T D Krylova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | - E S Gerasimidi
- Institute of Mitoengineering of the Lomonosov Moscow State University, Moscow, Russia
| | - K G Lyamzaev
- Institute of Mitoengineering of the Lomonosov Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology of the Lomonosov Moscow State University, Moscow, Russia
| | - M V Skulachev
- Institute of Mitoengineering of the Lomonosov Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology of the Lomonosov Moscow State University, Moscow, Russia
| | - E M Karger
- Institute of Mitoengineering of the Lomonosov Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology of the Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Naguib S, Backstrom JR, Gil M, Calkins DJ, Rex TS. Retinal oxidative stress activates the NRF2/ARE pathway: An early endogenous protective response to ocular hypertension. Redox Biol 2021; 42:101883. [PMID: 33579667 PMCID: PMC8113046 DOI: 10.1016/j.redox.2021.101883] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/27/2023] Open
Abstract
Oxidative stress contributes to degeneration of retinal ganglion cells and their axons in glaucoma, a leading cause of irreversible blindness worldwide, through sensitivity to intraocular pressure (IOP). Here, we investigated early elevations in reactive oxygen species (ROS) and a role for the NRF2-KEAP1-ARE endogenous antioxidant response pathway using microbead occlusion to elevate IOP in mice. ROS levels peaked in the retina at 1- and 2-wks following IOP elevation and remained elevated out to 5-wks. Phosphorylation of NRF2 and antioxidant gene transcription and protein levels increased concomitantly at 2-wks after IOP elevation, along with phosphorylation of PI3K and AKT. Inhibiting PI3K or AKT signaling prevented NRF2 phosphorylation and reduced transcription of antioxidant-regulated genes. Ocular hypertensive mice lacking Nrf2 had elevated ROS and a diminished increase in antioxidant gene expression. They also exhibited earlier axon degeneration and loss of visual function. In conclusion, the NRF2-KEAP1-ARE pathway is endogenously activated early in ocular hypertension due to phosphorylation of NRF2 by the PI3K/AKT pathway and serves to slow the onset of axon degeneration and vision loss in glaucoma. These data suggest that exogenous activation of this pathway might further slow glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Sarah Naguib
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Jon R Backstrom
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Melanie Gil
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - David J Calkins
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Tonia S Rex
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Raharja A, Leo SM, Chow I, Indusegaran M, Hammond CJ, Mahroo OA, Wong SH. Exploratory Study of the Association between the Severity of Idiopathic Intracranial Hypertension and Electroretinogram Photopic Negative Response Amplitude Obtained Using a Handheld Device. Life (Basel) 2021; 11:life11050437. [PMID: 34068365 PMCID: PMC8153331 DOI: 10.3390/life11050437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
The photopic negative response (PhNR) is a negative component of the photopic flash electroretinogram that follows the b-wave and is thought to arise from the retinal ganglion cells. Reduction in its amplitude in idiopathic intracranial hypertension (IIH) has been previously documented using formal electroretinography. This study explored the use of a handheld device (RETeval, LKC technologies, Gaithersburg, MD, USA) in 72 IIH patients of varying stages and severity (and seven controls) and investigated associations between PhNR parameters and disease severity. PhNR amplitudes at 72 ms (P72) and p-ratio (ratio to b-wave peak value) differed significantly across groups, with a trend towards smaller amplitudes in those with severe IIH, defined as papilloedema with Modified Frisén Scale (MFS) ≥ 3, retinal nerve fibre layer (RNFL) ≥ 150 μm or atrophic papilloedema (p = 0.0048 and p = 0.018 for P72 and p-ratio, respectively). PhNR parameters did not correlate with MFS, RNFL thickness, standard automated perimetry mean deviation or macular ganglion cell layer volume. This study suggests that PhNR measurement using a handheld device is feasible and could potentially augment the assessment of disease severity in IIH. The clinical utility of PhNR monitoring in IIH patients requires further investigation.
Collapse
Affiliation(s)
- Antony Raharja
- Medical Eye Unit, St Thomas’ Hospital, London SE1 7EH, UK;
- Department of Ophthalmology, Guys & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.C.); (M.I.); (C.J.H.); (O.A.M.)
| | - Shaun M. Leo
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Isabelle Chow
- Department of Ophthalmology, Guys & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.C.); (M.I.); (C.J.H.); (O.A.M.)
- Section of Ophthalmology, King’s College London, London SE1 7EH, UK
| | - Mathura Indusegaran
- Department of Ophthalmology, Guys & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.C.); (M.I.); (C.J.H.); (O.A.M.)
- Section of Ophthalmology, King’s College London, London SE1 7EH, UK
| | - Christopher J. Hammond
- Department of Ophthalmology, Guys & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.C.); (M.I.); (C.J.H.); (O.A.M.)
- Section of Ophthalmology, King’s College London, London SE1 7EH, UK
| | - Omar A. Mahroo
- Department of Ophthalmology, Guys & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.C.); (M.I.); (C.J.H.); (O.A.M.)
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Section of Ophthalmology, King’s College London, London SE1 7EH, UK
| | - Sui H. Wong
- Medical Eye Unit, St Thomas’ Hospital, London SE1 7EH, UK;
- Department of Ophthalmology, Guys & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.C.); (M.I.); (C.J.H.); (O.A.M.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Correspondence:
| |
Collapse
|
4
|
Luo ZW, Wang HT, Wang N, Sheng WW, Jin M, Lu Y, Bai YJ, Zou SQ, Pang YL, Xu H, Zhang X. Establishment of an adult zebrafish model of retinal neurodegeneration induced by NMDA. Int J Ophthalmol 2019; 12:1250-1261. [PMID: 31456914 PMCID: PMC6694058 DOI: 10.18240/ijo.2019.08.04] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
AIM To establish a model of retinal neurodegeneration induced by N-Methyl-D-aspartic acid (NMDA) in adult zebrafish. METHODS We compared the effects of three different NMDA delivery methods on retinal neurodegeneration in adult zebrafish: immersion (I.M.), intravitreal injection (I.V.), and intraperitoneal injection (I.P.), and examined retinal pathology and degeneration by hematoxylin and eosin and TUNEL staining in the treated zebrafish. Effects of the NMDA receptor antagonist MK-801 and the natural product resveratrol on NMDA-induced retinal neurodegeneration were also assessed. RESULTS The thickened inner retina was seen in histology with 100 µmol/L NMDA by I.M. administration. Significant apoptosis in the retinal ganglion cell layer and retinal thickness reduction occurred in 0.5 mol/L NMDA I.P. administration group.Seizure-like behavioral changes, but no retinal histological alteration occurred in 16 mg/kg NMDA I.P. administration group. Resveratrol and MK-801 prevented NMDA-induced retinal neurodegeneration in the zebrafish. CONCLUSION Among the three drug administration methods, I.V. injection of NMDA is the most suitable for establishment of an acute retinal damage model in zebrafish. I.M. with NMDA is likely the best for use as a chronic retinal damage model. I.P. treatment with NMDA causes brain damage. Resveratrol and MK801 may be a clinically valuable treatment for retinal neurodegeneration.
Collapse
Affiliation(s)
- Zhi-Wen Luo
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Han-Tsing Wang
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| | - Ning Wang
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Wei-Wei Sheng
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
| | - Ye Lu
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
| | - Yi-Jiang Bai
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Su-Qi Zou
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| | - Yu-Lian Pang
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
| | - Hong Xu
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| |
Collapse
|
5
|
Huang W, Gao F, Hu F, Huang J, Wang M, Xu P, Zhang R, Chen J, Sun X, Zhang S, Wu J. Asiatic Acid Prevents Retinal Ganglion Cell Apoptosis in a Rat Model of Glaucoma. Front Neurosci 2018; 12:489. [PMID: 30079010 PMCID: PMC6062646 DOI: 10.3389/fnins.2018.00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/29/2018] [Indexed: 01/20/2023] Open
Abstract
Asiatic acid (AA), a pentacyclic triterpene derived from the tropical medicinal plant Centella asiatica, has been widely used as an antioxidant and anti-inflammatory agent. Evidence regarding the neuroprotective properties of AA is emerging. However, the protective effects of AA and its mechanism in glaucoma are poorly understood. In the current study, we investigate the neuroprotective effect and mechanism of AA on retinal ganglion cells (RGCs) in a rat model of glaucoma. Elevated intraocular pressure (IOP) was induced in adult rats by injecting microspheres into the anterior chamber. AA was intravitreally injected into glaucomatous rats. RGC densities were analyzed by evaluating surviving RGC number of the retinal flatmounts and retinal sections, and the apoptotic cell number were evaluated by analyzing retinal sections. RGC function was assessed by measuring the photopic negative response (PhNR). Retinal Bcl-2, Bax, and cleaved caspase-3 expression were determined using a Simple Western System, real-time PCR and immunofluorescence staining. AA reduced the loss of RGCs and decreased the apoptotic RGC number. AA exerted neuroprotective effects and ameliorated retinal dysfunction in impaired RGCs in a rat model of glaucoma. AA protected RGCs by upregulating the expression of the antiapoptotic protein Bcl-2 and downregulating the expression of the pro-apoptotic proteins Bax and caspase-3. This study has provided important evidence indicating that AA may be a potential therapeutic agent for glaucoma.
Collapse
Affiliation(s)
- Wanjing Huang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Fengjuan Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Fangyuan Hu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jiancheng Huang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
| | - Min Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Ping Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Rong Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Junyi Chen
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Xinghuai Sun
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| |
Collapse
|
6
|
Lee JY, Oh SJ. Functional Analysis and Immunochemical Analyses of Ca 2+ Homeostasis-Related Proteins Expression of Glaucoma-Induced Retinal Degeneration in Rats. Exp Neurobiol 2018. [PMID: 29535566 PMCID: PMC5840458 DOI: 10.5607/en.2018.27.1.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The retinal degeneration resulting from elevated intraocular pressure was evaluated through functional and morphological analyses, for better understanding of the pathophysiology of glaucoma. Ocular hypertension was induced via unilateral episcleral venous cauterization in rats. Experimental time was set at 1 and 3 days, and 1, 2, 4, and 8 weeks post-operation. Retinal function was analyzed using electroretinography. For morphological analysis, retinal tissues were processed for immunochemistry by using antibodies against the calcium-sensing receptor and calcium-binding proteins. Apoptosis was analyzed using the TUNEL method and electron microscopy. Amplitudes of a- and b-wave in scotopic and photopic responses were found to be reduced in all glaucomatous retinas. Photopic negative response for ganglion cell function significantly reduced from 1-day and more significantly reduced in 2-week glaucoma. Calcium-sensing receptor immunoreactivity in ganglion cells remarkably reduced at 8 weeks; conversely, protein amounts increased significantly. Calcium-binding proteins immunoreactivity in amacrine cells clearly reduced at 8 weeks, despite of uneven changes in protein amounts. Apoptosis appeared in both photoreceptors and ganglion cells in 8-week glaucomatous retina. Apoptotic feature of photoreceptors was typical, whereas that of ganglion cells was necrotic in nature. These findings suggest that elevated intraocular pressure affects the sensitivity of photoreceptors and retinal ganglion cells, and leads to apoptotic death. The calcium-sensing receptor may be a useful detector for alteration of extracellular calcium levels surrounding the ganglion cells.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Su-Ja Oh
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
7
|
Zhao J, Zhu TH, Chen WC, Peng SM, Huang XS, Cho KS, Chen DF, Liu GS. Optic neuropathy and increased retinal glial fibrillary acidic protein due to microbead-induced ocular hypertension in the rabbit. Int J Ophthalmol 2016; 9:1732-1739. [PMID: 28003971 DOI: 10.18240/ijo.2016.12.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/19/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To characterize whether a glaucoma model with chronic elevation of the intraocular pressure (IOP) was able to be induced by anterior chamber injection of microbeads in rabbits. METHODS In order to screen the optimal dose of microbead injection, IOP was measured every 3d for 4wk using handheld applanation tonometer after a single intracameral injection of 10 µL, 25 µL, 50 µL or 100 µL microbeads (5×106 beads/mL; n=6/group) in New Zealand White rabbits. To prolong IOP elevation, two intracameral injections of 50 µL microbeads or phosphate buffer saline (PBS) were made respectively at days 0 and 21 (n=24/group). The fellow eye was not treated. At 5wk after the second injection of microbeads or PBS, bright-field microscopy and transmission electron microscopy (TEM) were used to assess the changes in the retina. The expression of glial fibrillary acidic protein (GFAP) in the retina was evaluated by immunofluorescence, quantitative real-time polymerase chain reaction and Western blot at 5wk after the second injection of microbeads. RESULTS Following a single intracameral injection of 10 µL, 25 µL, 50 µL or 100 µL microbead, IOP levels showed a gradual increase and a later decrease over a 4wk period after a single injection of microbead into the anterior chamber of rabbits. A peak IOP was observed at day 15 after injection. No significant difference in peak value of IOP was found between 10 µL and 25 µL groups (17.13±1.25 mm Hg vs 17.63±0.74 mm Hg; P=0.346). The peak value of IOP from 50 µL group (23.25±1.16 mm Hg) was significantly higher than 10 µL and 25 µL groups (all P<0.05). Administration of 100 µL microbead solution (23.00±0.93 mm Hg) did not lead to a significant increase in IOP compared to the 50 µL group (P=0.64). A prolonged elevated IOP duration up to 8wk was achieved by administering two injections of 50 µL microbeads (20.48±1.21 mm Hg vs 13.60±0.90 mm Hg in PBS-injected group; P<0.05). The bright-field and TEM were used to assess the changes of retinal ganglion cells (RGCs). Compared with PBS-injected group, the extended IOP elevation was associated with the degeneration of optic nerve, the reduction of RGC axons (47.16%, P<0.05) and the increased GFAP expression in the retina (4.74±1.10 vs 1.00±0.46, P<0.05). CONCLUSION Two injections of microbeads into the ocular anterior chamber of rabbits lead to a prolonged IOP elevation which results in structural abnormality as well as loss in RGCs and their axons without observable ocular structural damage or inflammatory response. We have therefore established a novel and practical model of experimental glaucoma in rabbits.
Collapse
Affiliation(s)
- Jun Zhao
- School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen 518040, Guangdong Province, China; Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen 518040, Guangdong Province, China
| | - Tian-Hui Zhu
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen 518040, Guangdong Province, China
| | - Wen-Chieh Chen
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen 518040, Guangdong Province, China
| | - Shi-Ming Peng
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen 518040, Guangdong Province, China
| | - Xiao-Sheng Huang
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen 518040, Guangdong Province, China
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston 02114, USA
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston 02114, USA
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| |
Collapse
|