1
|
Do DT. One-Pot Synthesis of Chiral Spiro-Imidazolidinone Cyclohexenones. J Org Chem 2025; 90:529-536. [PMID: 39710980 DOI: 10.1021/acs.joc.4c02459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We have developed a simple and straightforward synthesis of chiral spiro-imidazolidinone cyclohexenones, featuring six contiguous stereocenters, from feedstock chemicals such as aminophenols, α,β-unsaturated aldehydes, and α-amino acids. Remarkably, this one-pot multicomponent reaction exhibits exceptional diastereoselectivity (>20:1 dr) and relies solely on an amino acid precursor as the chiral source, avoiding the use of transition metals or additional organocatalysts. This reaction is efficient and scalable, enabling synthesis on a gram-scale.
Collapse
Affiliation(s)
- Dung Tien Do
- Department of Chemistry, The Citadel, 171 Moultrie Street, Charleston, South Carolina 29409, United States
| |
Collapse
|
2
|
Kramarova EP, Lyakhmun DN, Tarasenko DV, Borisevich SS, Khamitov EM, Yusupova AR, Korlyukov AA, Romanenko AR, Shmigol TA, Bylikin SY, Baukov YI, Negrebetsky VV. Reaction of Picolinamides with Ketones Producing a New Type of Heterocyclic Salts with an Imidazolidin-4-One Ring. Molecules 2023; 29:206. [PMID: 38202789 PMCID: PMC10780162 DOI: 10.3390/molecules29010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Reactions of picolinamides with 1,3-propanesultone in methanol followed by the treatment with ketones led to a series of previously unknown chemical transformations, yielding first pyridinium salts (2a-f), with a protonated endocyclic nitrogen atom, and then heterocyclic salts (3a-j) containing an imidazolidin-4-one ring. The structures of intermediate and final products were determined by IR and 1H, 13C NMR spectroscopy, and X-ray study. The effects of the ketone and alcohol structures on the product yield were studied by quantum-chemical calculations. The stability of salts 3a-j towards hydrolysis and alcoholysis makes them excellent candidates for the search for new types of biologically active compounds.
Collapse
Affiliation(s)
- Eugenia P. Kramarova
- Institute of Pharmacy and Medical Chemistry, Pirogov Russian National Research Medical University, Ostrovityanov St., Bl. 1, 117997 Moscow, Russia; (E.P.K.); (D.N.L.); (D.V.T.); (A.A.K.); (T.A.S.); (Y.I.B.)
| | - Dmitry N. Lyakhmun
- Institute of Pharmacy and Medical Chemistry, Pirogov Russian National Research Medical University, Ostrovityanov St., Bl. 1, 117997 Moscow, Russia; (E.P.K.); (D.N.L.); (D.V.T.); (A.A.K.); (T.A.S.); (Y.I.B.)
| | - Dmitry V. Tarasenko
- Institute of Pharmacy and Medical Chemistry, Pirogov Russian National Research Medical University, Ostrovityanov St., Bl. 1, 117997 Moscow, Russia; (E.P.K.); (D.N.L.); (D.V.T.); (A.A.K.); (T.A.S.); (Y.I.B.)
| | - Sophia S. Borisevich
- Ufa Institute of Chemistry, Oktyabrya Aven., 71, 450054 Ufa, Russia; (S.S.B.); (E.M.K.); (A.R.Y.)
| | - Edward M. Khamitov
- Ufa Institute of Chemistry, Oktyabrya Aven., 71, 450054 Ufa, Russia; (S.S.B.); (E.M.K.); (A.R.Y.)
| | - Alfia R. Yusupova
- Ufa Institute of Chemistry, Oktyabrya Aven., 71, 450054 Ufa, Russia; (S.S.B.); (E.M.K.); (A.R.Y.)
| | - Alexander A. Korlyukov
- Institute of Pharmacy and Medical Chemistry, Pirogov Russian National Research Medical University, Ostrovityanov St., Bl. 1, 117997 Moscow, Russia; (E.P.K.); (D.N.L.); (D.V.T.); (A.A.K.); (T.A.S.); (Y.I.B.)
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Bl. 1, 119334 Moscow, Russia;
| | - Alexander R. Romanenko
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Bl. 1, 119334 Moscow, Russia;
- D.I. Mendeleev Russian University of Chemical Technology, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Tatiana A. Shmigol
- Institute of Pharmacy and Medical Chemistry, Pirogov Russian National Research Medical University, Ostrovityanov St., Bl. 1, 117997 Moscow, Russia; (E.P.K.); (D.N.L.); (D.V.T.); (A.A.K.); (T.A.S.); (Y.I.B.)
| | | | - Yuri I. Baukov
- Institute of Pharmacy and Medical Chemistry, Pirogov Russian National Research Medical University, Ostrovityanov St., Bl. 1, 117997 Moscow, Russia; (E.P.K.); (D.N.L.); (D.V.T.); (A.A.K.); (T.A.S.); (Y.I.B.)
| | - Vadim V. Negrebetsky
- Institute of Pharmacy and Medical Chemistry, Pirogov Russian National Research Medical University, Ostrovityanov St., Bl. 1, 117997 Moscow, Russia; (E.P.K.); (D.N.L.); (D.V.T.); (A.A.K.); (T.A.S.); (Y.I.B.)
| |
Collapse
|
3
|
Roblin A, Casaretto N, Archambeau A. Diastereo- and Enantioselective Palladium-Catalyzed Cycloadditions of 5-Vinyloxazolidine-2,4-diones with Electrophilic Imines. Org Lett 2023; 25:6453-6458. [PMID: 37639245 DOI: 10.1021/acs.orglett.3c01883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Despite the importance of the 4-imidazolidinone scaffold in bioactive compounds or organocatalysts, methodologies to access these nitrogenated heterocycles remain scarce. This manuscript describes a novel preparation of 4-imidazolidinones via a diastereo- and enantioselective (3 + 2) cycloaddition between 5-vinyloxazolidine-2,4-diones (VOxD) and electrophilic imines under palladium catalysis. This work supports the synthetic potential of VOxD as a promising equivalent of the C-C(═O)-N synthon.
Collapse
Affiliation(s)
- Antoine Roblin
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire, UMR 9168, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Alexis Archambeau
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| |
Collapse
|
4
|
Lamboley S, Vuichoud B, de Saint Laumer JY, Herrmann A. Release of Volatile Cyclopentanone Derivatives from Imidazolidin-4-One Profragrances in a Fabric Softener Application. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010382. [PMID: 36615574 PMCID: PMC9822342 DOI: 10.3390/molecules28010382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Imidazolidin-4-ones were investigated as hydrolytically cleavable profragrances to increase the long-lastingness of perfume perception in a fabric softener application. The reaction of different amino acid amides with 2-alkyl- or 2-alkenylcyclopentanones as the model fragrances to be released afforded the corresponding bi- or tricyclic imidazolidin-4-ones as mixtures of diastereoisomers, which were separated by column chromatography. In polar solution, the different stereoisomers equilibrated under thermodynamic conditions to form mixtures with constant isomeric distributions, as shown by NMR spectroscopy. Dynamic headspace analysis on dry cotton demonstrated the controlled fragrance release from the precursors in practical application. Under non-equilibrium conditions (continuous evaporation of the fragrance) and depending on the structure and stereochemistry of the profragrances, the recorded headspace concentrations of the fragrance released from the precursors increased by a factor of 2 up to 100 with respect to the unmodified reference. Prolinamide-based precursors released the highest amount of fragrance and were thus found to be particularly suitable for prolonging the evaporation of cyclopentanone-derived fragrances on a dry cotton surface.
Collapse
|
5
|
Shimizu A, Shibata A, Kano T, Kumai Y, Kawakami R, Esaki H, Fukushima K, Tada N, Itoh A. Synthesis of 4-Imidazolidinones from Diamides and Ethynyl Benziodoxolones via Double Michael-Type Addition: Ethynyl Benziodoxolones as Electrophilic Ynol Synthons. Org Lett 2022; 24:8859-8863. [DOI: 10.1021/acs.orglett.2c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ayaka Shimizu
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Atsushi Shibata
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Takashi Kano
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yuuichi Kumai
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Ryouhei Kawakami
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroyoshi Esaki
- Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuaki Fukushima
- Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Norihiro Tada
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
6
|
Lan W, Lei R, Luo J, Qin Z, Fu B, Xie L. A Facile Approach to Benzosultam‐fused 4‐Imidazolidinone Derivatives from N‐Sulfonyl Ketimine and α‐Halogenated Hydroxamates. ChemistrySelect 2022. [DOI: 10.1002/slct.202103670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjie Lan
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Rong‐chao Lei
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Jiayu Luo
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Zhaohai Qin
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Bin Fu
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Lei Xie
- School of Pharmacy Liaocheng University Shandong 252000 P. R. China
| |
Collapse
|
7
|
Robert EGL, Le Du E, Waser J. Synthesis of Polycyclic Aminal Heterocycles via Decarboxylative Cyclisation of Dipeptide Derivatives. Chem Commun (Camb) 2022; 58:3473-3476. [DOI: 10.1039/d2cc00167e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An oxidative-decarboxylative intramolecular cyclisation of dipeptide derivatives is reported. This transformation is promoted by phenyl iodine (III) diacetate (PIDA) in combination with BF3·OEt2. The reaction gives access to a variety...
Collapse
|
8
|
Song G, Qu C, Lei J, Yan W, Tang D, Li H, Chen Z, Xu Z. A Decarboxylative C(
sp
3
)−N Bond Forming Reaction to Construct 4‐Imidazolidinones
via
Post‐Ugi Cascade Sequence in One Pot. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gui‐Ting Song
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
| | - Chuan‐Hua Qu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
| | - Jie Lei
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences Little Rock AR 72205 United States
| | - Wei Yan
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences Little Rock AR 72205 United States
| | - Dian‐Yong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
| | - Hong‐yu Li
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences Little Rock AR 72205 United States
| | - Zhong‐Zhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
| | - Zhi‐Gang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
| |
Collapse
|
9
|
Leas DA, Dong Y, Garrison JC, Wang X, Ezell EL, Stack DE, Vennerstrom JL. Tricyclic Imidazolidin-4-ones by Witkop Oxidation of Tetrahydro-β-carbolines. J Org Chem 2020; 85:2846-2853. [PMID: 31904963 DOI: 10.1021/acs.joc.9b03402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1-Substituted and 1,1-disubstituted tetrahydro-β-carbolines undergo sodium periodate oxidative ring expansion in the presence of formaldehyde and other aldehydes to form 5,6-dihydro-7H-1,4-methanobenzo[e][1,4]diazonine-2,7(3H)-diones in 30-81% yield. In most cases, the reaction to form this new 6/8/5-tricyclic ring system proceeds with high diastereoselectivity. These benzannulated medium-ring keto imidazolidin-4-ones expand the menu of tetrahydro-β-carboline oxidation products.
Collapse
Affiliation(s)
| | | | | | | | | | - Douglas E Stack
- Department of Chemistry , University of Nebraska at Omaha , Omaha , Nebraska 68182 , United States
| | | |
Collapse
|
10
|
Gomes LR, Low JN, Wardell JL, de Souza MVN, da Costa CF. Crystal structure, Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitro-benzyl-idene)amino]-2( R,S)-(4-nitro-phenyl)-5( S)-(propan-2-yl)imidazolidin-4-one. Acta Crystallogr E Crystallogr Commun 2019; 75:1774-1782. [PMID: 31709107 PMCID: PMC6829720 DOI: 10.1107/s2056989019013938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 11/10/2022]
Abstract
A 1:1 epimeric mixture of 3-[(4-nitro-benzyl-idene)amino]-2(R,S)-(4-nitro-phen-yl)-5(S)-(propan-2-yl)imidazolidin-4-one, C19H19N5O5, was isolated from a reaction mixture of 2(S)-amino-3-methyl-1-oxo-butane-hydrazine and 4-nitro-benz-alde-hyde in ethanol. The product was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxo-butane-hydrazine at its hydrazine group to provide a 4-nitro-benzyl-idene derivative, followed by a cyclization reaction with another mol-ecule of 4-nitro-benzaldehyde to form the chiral five-membered imidazolidin-4-one ring. The formation of the five-membered imidazolidin-4-one ring occurred with retention of the configuration at the 5-position, but with racemization at the 2-position. In the crystal, N-H⋯O(nitro) hydrogen bonds, weak C-H⋯O(carbon-yl) and C-H⋯O(nitro) hydrogen bonds, as well as C-H⋯π, N-H⋯π and π-π inter-actions, are present. These combine to generate a three-dimensional array. Hirshfeld surface analysis and PIXEL calculations are also reported.
Collapse
Affiliation(s)
- Ligia R. Gomes
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal
- FP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal
| | - John Nicolson Low
- Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland
| | - James L. Wardell
- Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland
- Instituto de Tecnologia em Fármacos–Farmanguinhos, Fundaçâo Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
| | - Marcus V. N. de Souza
- Instituto de Tecnologia em Fármacos–Farmanguinhos, Fundaçâo Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
| | - Cristiane F. da Costa
- Instituto de Tecnologia em Fármacos–Farmanguinhos, Fundaçâo Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Kanyiva KS, Tane M, Shibata T. Iodine-Catalyzed Synthesis of Chiral 4-Imidazolidinones Using α-Amino Acid Derivatives via Dehydrogenative N–H/C(sp3)–H Coupling. J Org Chem 2019; 84:12773-12783. [DOI: 10.1021/acs.joc.9b01154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyalo Stephen Kanyiva
- Global Center of Science and Engineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Marina Tane
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
12
|
Szabó KE, Kyriakis E, Psarra AMG, Karra AG, Sipos Á, Docsa T, Stravodimos GA, Katsidou E, Skamnaki VT, Liggri PGV, Zographos SE, Mándi A, Király SB, Kurtán T, Leonidas DD, Somsák L. Glucopyranosylidene-spiro-imidazolinones, a New Ring System: Synthesis and Evaluation as Glycogen Phosphorylase Inhibitors by Enzyme Kinetics and X-ray Crystallography. J Med Chem 2019; 62:6116-6136. [PMID: 31251604 DOI: 10.1021/acs.jmedchem.9b00356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epimeric series of aryl-substituted glucopyranosylidene-spiro-imidazolinones, an unprecedented new ring system, were synthesized from the corresponding Schiff bases of O-perbenzoylated (gluculopyranosylamine)onamides by intramolecular ring closure of the aldimine moieties with the carboxamide group elicited by N-bromosuccinimide in pyridine. Test compounds were obtained by Zemplén O-debenzoylation. Stereochemistry and ring tautomers of the new compounds were investigated by NMR, time-dependent density functional theory (TDDFT)-electronic circular dichroism, and DFT-NMR methods. Kinetic studies with rabbit muscle and human liver glycogen phosphorylases showed that the (R)-imidazolinones were 14-216 times more potent than the (S) epimers. The 2-naphthyl-substituted (R)-imidazolinone was the best inhibitor of the human enzyme (Ki 1.7 μM) and also acted on HepG2 cells (IC50 177 μM). X-ray crystallography revealed that only the (R) epimers bound in the crystal. Their inhibitory efficacy is based on the hydrogen-bonding interactions of the carbonyl oxygen and the NH of the imidazolinone ring.
Collapse
Affiliation(s)
- Katalin E Szabó
- Department of Organic Chemistry , University of Debrecen , P.O. Box 400, H-4002 Debrecen , Hungary
| | - Efthimios Kyriakis
- Department of Biochemistry and Biotechnology , University of Thessaly, Biopolis , 41500 Larissa , Greece
| | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology , University of Thessaly, Biopolis , 41500 Larissa , Greece
| | - Aikaterini G Karra
- Department of Biochemistry and Biotechnology , University of Thessaly, Biopolis , 41500 Larissa , Greece
| | - Ádám Sipos
- Department of Medical Chemistry, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - George A Stravodimos
- Department of Biochemistry and Biotechnology , University of Thessaly, Biopolis , 41500 Larissa , Greece
| | - Elisabeth Katsidou
- Department of Biochemistry and Biotechnology , University of Thessaly, Biopolis , 41500 Larissa , Greece
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology , University of Thessaly, Biopolis , 41500 Larissa , Greece
| | - Panagiota G V Liggri
- Department of Biochemistry and Biotechnology , University of Thessaly, Biopolis , 41500 Larissa , Greece.,Institute of Biology, Pharmaceutical Chemistry and Biotechnology , National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue , 11635 Athens , Greece
| | - Spyros E Zographos
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology , National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue , 11635 Athens , Greece
| | - Attila Mándi
- Department of Organic Chemistry , University of Debrecen , P.O. Box 400, H-4002 Debrecen , Hungary
| | - Sándor Balázs Király
- Department of Organic Chemistry , University of Debrecen , P.O. Box 400, H-4002 Debrecen , Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry , University of Debrecen , P.O. Box 400, H-4002 Debrecen , Hungary
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology , University of Thessaly, Biopolis , 41500 Larissa , Greece
| | - László Somsák
- Department of Organic Chemistry , University of Debrecen , P.O. Box 400, H-4002 Debrecen , Hungary
| |
Collapse
|
13
|
Zhu Z, Lv X, Anesini JE, Seidel D. Synthesis of Polycyclic Imidazolidinones via Amine Redox-Annulation. Org Lett 2017; 19:6424-6427. [PMID: 29144764 PMCID: PMC5715285 DOI: 10.1021/acs.orglett.7b03309] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 11/30/2022]
Abstract
α-Ketoamides undergo redox-annulations with cyclic secondary amines, such as 1,2,3,4-tetrahydroisoquinoline, pyrrolidine, piperidine, and morpholine. Catalytic amounts of benzoic acid significantly accelerate these transformations. This approach provides polycyclic imidazolidinone derivatives in typically good yields.
Collapse
Affiliation(s)
- Zhengbo Zhu
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Xin Lv
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department
of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic
of China
| | - Jason E. Anesini
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Daniel Seidel
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
14
|
Engeser M, Mundt C, Bauer C, Grimme S. N-Methylimidazolidin-4-one organocatalysts: gas-phase fragmentations of radical cations by experiment and theory. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:452-458. [PMID: 28485047 DOI: 10.1002/jms.3948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Electron ionisation mass spectra of N-methylimidazolidin-4-one organocatalysts were studied by experimental and theoretical means. The molecular ions mostly undergo alpha cleavages of exocyclic substituents that leave the five-membered ring intact. The type of substituent strongly dominates the appearance of the spectra. Fragmentation cascades are corroborated by metastable ion mass spectra. Quantum Chemistry Electron Ionisation Mass Spectra calculations correlate reasonably well with the experimental electron ionisation spectra and reveal mechanistic details of fragmentation pathways. The drawbacks and benefits of such calculations are discussed. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Engeser
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - C Mundt
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - C Bauer
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4-6, 53115, Bonn, Germany
| | - S Grimme
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4-6, 53115, Bonn, Germany
| |
Collapse
|
15
|
Schmidt ML, Engeser M. Gas-phase fragmentations of N-methylimidazolidin-4-one organocatalysts. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:367-371. [PMID: 28423220 DOI: 10.1002/jms.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
N-methylimidazolidin-4-one organocatalysts were studied in the gas phase. Protonated and sodium-cationized (sodiated) molecules are conveniently accessible by electrospray mass spectrometry. Protonation enables three different closed-shell paths of ring cleavage leading to iminium ions. The fragmentation pattern is largely unaffected by exocyclic substituents and thus is valuable to characterize the substance type as N-methylimidazolidin-4-ones. Sodiated species show a distinctly different fragmentation that is less useful for characterization purposes: apart from signal loss due to dissociation of Na+ , the observation of benzyl radical loss is by far predominant. Only in absence of a benzyl substituent, an analogue of the third ring cleavage (loss of [C2 H5 NO]) is observed. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M L Schmidt
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, Bonn, 53121, Germany
| | - M Engeser
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, Bonn, 53121, Germany
| |
Collapse
|
16
|
Yu H, Shen J. Dehydrogenative cyclization of N-acyl dipeptide esters for the synthesis of imidazolidin-4-ones. RSC Adv 2015. [DOI: 10.1039/c4ra15019h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dehydrogenative cyclization of N-acyl dipeptide esters was developed and imidazolidin-4-ones were obtained in moderate to good yields by using TBHP as oxidant and KI as catalyst under mild conditions.
Collapse
Affiliation(s)
- Hui Yu
- Department of Chemistry
- Tongji University
- Shanghai
- P. R. China
| | - Jie Shen
- Department of Chemistry
- Tongji University
- Shanghai
- P. R. China
| |
Collapse
|
17
|
|