1
|
Luderer SE, Masoudi B, Sarkar A, Grant C, Jaganathan A, Jackson JE, Borhan B. Structure-Enantioselectivity Relationship (SER) Study of Cinchona Alkaloid Chlorocyclization Catalysts. J Org Chem 2024; 89:11921-11929. [PMID: 36795431 DOI: 10.1021/acs.joc.3c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Various structural elements of the Cinchona alkaloid dimers are interrogated to establish a structure-enantioselectivity relationship (SER) in three different halocyclization reactions. SER for chlorocyclizations of a 1,1-disubstituted alkenoic acid, a 1,1-disubstituted alkeneamide, and a trans-1,2-disubstituted alkeneamide showed variable sensitivities to linker rigidity and polarity, aspects of the alkaloid structure, and the presence of two or only one alkaloid side group defining the catalyst pocket. The conformational rigidity of the linker-ether connections was probed via DFT calculations on the methoxylated models, uncovering especially high barriers to ether rotation out of plane in the arene systems that include the pyridazine ring. These linkers are also found in the catalysts with the highest enantioinduction. The diversity of the SER results suggested that the three apparently analogous test reactions may proceed by significantly different mechanisms. Based on these findings, a stripped-down analogue of (DHQD)2PYDZ, termed "(trunc)2PYDZ", was designed, synthesized, and evaluated, showing modest but considerable asymmetric induction in the three test reactions, with the best performance on the 1,1-disubstituted alkeneamide cyclization. This first effort to map out the factors essential to effective stereocontrol and reaction promotion offers guidance for the simplified design and systematic refinement of new, selective organocatalysts.
Collapse
Affiliation(s)
- Sarah E Luderer
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Behrad Masoudi
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aritra Sarkar
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Calvin Grant
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arvind Jaganathan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Guo Q, Lai Z, Tian Z, Tang R, Ding T, Jiang X. Organocatalytic Enantioselective Chloroiminocyclization for the Synthesis of Imidazoline. Org Lett 2024; 26:5592-5596. [PMID: 38914478 DOI: 10.1021/acs.orglett.4c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Imidazoline is an important scaffold in organic synthesis and a pharmacophore in medicinal chemistry. We apply basic imines as nucleophiles for the catalytic asymmetric chloroiminocyclization to furnish tetrasubstituted stereocenter-containing imidazolines in excellent yields and enantioselectivities. The reaction can be conducted in the polar solvent acetonitrile under concentrated reaction conditions.
Collapse
Affiliation(s)
- Qifeng Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zhitao Lai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zeng Tian
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Ran Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Tengbo Ding
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Xiaojian Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| |
Collapse
|
3
|
Tsuji Y, Kon K, Horibe T, Ishihara K. Catalytic Site-, Diastereo-, and Enantioselective Cascade Iodocyclization of 2-Geranylarenols. Chem Asian J 2023; 18:e202300019. [PMID: 36745467 DOI: 10.1002/asia.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
A chiral amidophosphate-N-iodosuccinimide cooperative catalysis has been developed for the site-, diastereo-, and enantioselective iodocyclization of 2-geranylarenols with molecular iodine to give the corresponding iodo-containing polycyclic compounds with good levels of selectivity. This is the first example of a catalytic enantioselective iodocarbocyclization. A reactive chiral iodonium species is generated from molecular iodine via the dual halogen-bonding interactions with a chiral Lewis base and Lewis acid. The sterically demanding 3,3'-substituents of the chiral BINOL-derived amidophosphate are critical to induce the site-selective iodination at the less-hindered terminal alkenyl moiety of 2-geranylarenols.
Collapse
Affiliation(s)
- Yasutaka Tsuji
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Kazumasa Kon
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan.,Venture Business Laboratory, Nagoya University B2-4, Furo-cho, Chikusa, Nagoya, 464-814, Japan
| | - Takahiro Horibe
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| |
Collapse
|
4
|
Beng TK, Borg C, Rodriguez MJ. Contra-thermodynamic halolactonization of lactam-tethered 5-aryl-4( E)-pentenoic acids for the flexible and stereocontrolled synthesis of fused lactam-halolactones. RSC Adv 2022; 12:28685-28691. [PMID: 36320547 PMCID: PMC9549391 DOI: 10.1039/d2ra04177d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Halolactonization of alkenoic acids enables the construction of oxygen-heterocycles via intramolecular halonium-induced nucleophilic addition. Although the literature is currently inundated with halolactonizations of 5-aryl-4(E)-pentenoic acids that predictably afford the 6-endo cyclization adducts, methods that reliably alter the innate regioselectivity bias to instead deliver the thermodynamically less favored 5-exo cyclization products are relatively rare. Here, we attempt to bridge this gap and have found mild conditions for contra-thermodynamic halolactonization of lactam-tethered 5-aryl-4(E)-pentenoic acids that lead to the formation of trans-fused lactam-γ-lactones. The natural proclivity for these 5-aryl-4(E)-pentenoic acids to undergo 6-endo cyclization is overridden and 5-exo-trig cyclization predominates. The success of the approach hinges on the use of N,N-dimethylformamide (DMF) as the solvent and N-methylmorpholine oxide as the catalyst. The lactam-lactone products are synthesized in high diastereoselectivity, modularity, and chemoselectivity. Notably, most of the bicycles contain one benzylic quaternary stereocenter as well as an α-alkoxy quaternary stereocenter. The contra-thermodynamic halolactonization of lactam-tethered 5-aryl-4(E)-pentenoic acids, under solvent- and catalyst-controlled conditions, has facilitated the efficient and stereocontrolled synthesis of halogenated fused γ-lactone-lactams.![]()
Collapse
Affiliation(s)
- Timothy K. Beng
- Department of Chemistry, Central Washington UniversityEllensburgWA 98926USA
| | - Claire Borg
- Department of Chemistry, Central Washington UniversityEllensburgWA 98926USA
| | | |
Collapse
|
5
|
Liao L, Xu X, Ji J, Zhao X. Asymmetric Intermolecular Iodinative Difunctionalization of Allylic Sulfonamides Enabled by Organosulfide Catalysis: Modular Entry to Iodinated Chiral Molecules. J Am Chem Soc 2022; 144:16490-16501. [PMID: 36053004 DOI: 10.1021/jacs.2c05668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrophilic halogenation of alkenes is a powerful transformation offering a convenient route for the construction of valuable functionalized molecules. However, as a highly important reaction in this field, catalytic asymmetric intermolecular iodinative difunctionalization remains a formidable challenge. Herein, we report that an efficient Lewis basic chiral sulfide-catalyzed approach enables this reaction. By this approach, challenging substrates such as γ,γ-disubstituted allylic sulfonamides and 1,1-disubstituted alkenes with an allylic sulfonamide unit undergo electrophilic iodinative difunctionalization to give a variety of iodine-functionalized chiral molecules in good yields with excellent enantio- and diastereoselectivities. A series of free phenols as nucleophiles are successfully incorporated into the substrates. Aside from phenols, primary and secondary alcohols, fluoride, and azide also serve as efficient nucleophiles. The obtained iodinated products are a good platform molecule, which can be easily transformed into various chiral compounds such as α-aryl ketones, chiral secondary amines, and aziridines via rearrangement or substitution. Mechanistic studies revealed that the chiral sulfide catalyst displays a superior effect on control of the reactivity of electrophilic iodine and the enantioselective construction of the chiral iodiranium ion intermediate and catalyst aggregates might be formed as a resting state in the reactions.
Collapse
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xinru Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jieying Ji
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Nishiyori R, Okuno K, Chan B, Shirakawa S. Chiral Bifunctional Selenide Catalysts for Asymmetric Iodolactonizations. Chem Pharm Bull (Tokyo) 2022; 70:599-604. [DOI: 10.1248/cpb.c22-00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryuichi Nishiyori
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | - Ken Okuno
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University
| | - Seiji Shirakawa
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| |
Collapse
|
7
|
Beng TK, Rodriguez MJ, Borg C. Stereocontrolled access to δ-lactone-fused-γ-lactams bearing angular benzylic quaternary stereocenters. RSC Adv 2022; 12:17617-17620. [PMID: 35765420 PMCID: PMC9194931 DOI: 10.1039/d2ra02167f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 01/16/2023] Open
Abstract
C-fused γ-lactam-lactones are resident in several bioactive molecules, including anticancer agents such as omuralide. In this embodiment, we report mild conditions for the catalytic halolactonization of lactam-tethered 5-aryl-4(E)-pentenoic acids. The use of dichloromethane as the solvent and Ph3P
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
S as the catalyst led to predominant 6-endo-trig cyclization and furnished the trans-fused-γ-lactam-δ-lactones. The transformation is modular, regioselective, chemoselective, and diastereoselective. The γ-lactam-δ-lactones bear angular quaternary benzylic stereocenters, which is noteworthy since the presence of a quaternary carbon in bioactive small molecules often promotes an element of conformational restriction that imparts potency, selectivity, and metabolic stability. The generated halogen and lactone motifs are important functional handles for late-stage diversification. The catalytic halolactonization of readily affordable γ-lactam-tethered alkenoic acids has facilitated the site-selective, efficient, and stereocontrolled synthesis of halogenated fused γ-lactam-δ-lactones.![]()
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Morgan J Rodriguez
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Claire Borg
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
8
|
Yamashita K, Hirokawa R, Ichikawa M, Hisanaga T, Nagao Y, Takita R, Watanabe K, Kawato Y, Hamashima Y. Mechanistic Details of Asymmetric Bromocyclization with BINAP Monoxide: Identification of Chiral Proton-Bridged Bisphosphine Oxide Complex and Its Application to Parallel Kinetic Resolution. J Am Chem Soc 2022; 144:3913-3924. [PMID: 35226811 DOI: 10.1021/jacs.1c11816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of our previously reported catalytic asymmetric bromocyclization reactions using 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) monoxide was examined in detail by the means of control experiments, NMR studies, X-ray structure analysis, and CryoSpray electrospray ionization mass spectrometry (ESI-MS) analysis. The chiral BINAP monoxide was transformed to a key catalyst precursor, proton-bridged bisphosphine oxide complex (POHOP·Br), in the presence of N-bromosuccinimide (NBS) and contaminating water. The thus-formed POHOP further reacts with NBS to afford BINAP dioxide and molecular bromine (Br2) simultaneously in equimolar amounts. While the resulting Br2 is activated by NBS to form a more reactive brominating reagent (Br2─NBS), BINAP dioxide serves as a bifunctional catalyst, acting as both a Lewis base that reacts with Br2─NBS to form a chiral brominating agent (P═O+─Br) and also as a Brønsted base for the activation of the substrate. By taking advantage of this novel concerted Lewis/Brønsted base catalysis by BINAP dioxide, we achieved the first regio- and chemodivergent parallel kinetic resolutions (PKRs) of racemic unsymmetrical bisallylic amides via bromocyclization.
Collapse
Affiliation(s)
- Kenji Yamashita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Hirokawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mamoru Ichikawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsunari Hisanaga
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshihiro Nagao
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Kawato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
9
|
Zhong H, Ding T, Guo Q, Tian Z, Yu P, Jiang X. Accessing Chiral 2,2-Disubstituted Morpholines via Organocatalytic Enantioselective Chlorocycloetherification. Org Chem Front 2022. [DOI: 10.1039/d2qo00390b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral morpholine is an important scaffold in organic synthesis and a pharmacophore in medicinal chemistry. However, catalytic enantioselective procedure for the construction of morpholine remains sparse. We report herein a...
Collapse
|
10
|
Okuno K, Hiraki M, Chan B, Shirakawa S. Non-Enzymatic Kinetic Resolution and Desymmetrization of α-Quaternary Carboxylic Acids via Chiral Bifunctional Sulfide-Catalyzed Bromolactonization. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ken Okuno
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mana Hiraki
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Seiji Shirakawa
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
11
|
Hiraki M, Okuno K, Nishiyori R, Noser AA, Shirakawa S. Efficient asymmetric syntheses of α-quaternary lactones and esters through chiral bifunctional sulfide-catalyzed desymmetrizing bromolactonization of α,α-diallyl carboxylic acids. Chem Commun (Camb) 2021; 57:10907-10910. [PMID: 34590630 DOI: 10.1039/d1cc03874e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Asymmetric halolactonizations are powerful methods for the syntheses of chiral lactones. Catalytic and highly enantioselective halolactonizations of α-allyl carboxylic acids, however, continue to present a formidable challenge. Herein, we report the chiral bifunctional sulfide-catalyzed desymmetrizing bromolactonizations of α,α-diallyl carboxylic acids. These reactions efficiently produced chiral α-quaternary lactones and esters.
Collapse
Affiliation(s)
- Mana Hiraki
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Ken Okuno
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Ryuichi Nishiyori
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Ahmed A Noser
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan. .,Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Seiji Shirakawa
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
12
|
Jiang X, Xu X, Xu W, Yu P, Yeung YY. Catalytic Enantioselective Halocyclizations to Access Benzoxazepinones and Benzoxazecinones. Org Lett 2021; 23:6316-6320. [PMID: 34342993 DOI: 10.1021/acs.orglett.1c02117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a catalytic asymmetric halocyclization protocol to furnish benzoxazepinones and benzoxazecinones using (DHQ)2PHAL as the catalyst. Various halogenated benzoxazepinones and benzoxazecinones were achieved in excellent yields and enantioselectivities under mild conditions. A cocrystal structure of the substrate and the catalyst was studied.
Collapse
Affiliation(s)
- Xiaojian Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xi Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Pei Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
13
|
Li J, Kwon E, Lear MJ, Hayashi Y. Halogen Bonding of
N
‐Halosuccinimides with Amines and Effects of
Brønsted
Acids in Quinuclidine‐Catalyzed Halocyclizations. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Li
- Department of Chemistry, Graduate School of Science Tohoku University Sendai 980-8578 Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science Tohoku University Sendai 980-8578 Japan
| | - Martin J. Lear
- School of Chemistry University of Lincoln, Brayford Pool Lincoln LN6 7TS United Kingdom
| | - Yujiro Hayashi
- Department of Chemistry, Graduate School of Science Tohoku University Sendai 980-8578 Japan
| |
Collapse
|
14
|
Toda Y, Korenaga T, Obayashi R, Kikuchi J, Terada M. Dynamic parallel kinetic resolution of α-ferrocenyl cation initiated by chiral Brønsted acid catalyst. Chem Sci 2021; 12:10306-10312. [PMID: 34447532 PMCID: PMC8336484 DOI: 10.1039/d1sc02122b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The dynamic parallel kinetic resolution (DPKR) of an α-ferrocenyl cation intermediate under the influence of a chiral conjugate base of a chiral phosphoric acid catalyst has been demonstrated in an SN1 type substitution reaction of a racemic ferrocenyl derivative with a nitrogen nucleophile. The present method provides efficient access to a ferrocenylethylamine derivative in a highly enantioselective manner, which is potentially useful as a key precursor of chiral ligands for metal catalysis. The mechanism of the present intriguing resolution system was elucidated by control experiments using the enantio-pure precursor of relevant α-ferrocenyl cation intermediates and the hydroamination of vinylferrocene. Further theoretical studies enabled the elucidation of the origin of the stereochemical outcome as well as the efficient DPKR. The present DPKR, which opens a new frontier for kinetic resolution, involves the racemization process through the formation of vinylferrocene and the chemo-divergent parallel kinetic resolution of the enantiomeric α-ferrocenyl cations generated by the protonation/deprotonation sequence of vinylferrocene.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai 980-8578 Japan http://www.orgreact.sakura.ne.jp/en-index.html
| | - Toshinobu Korenaga
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University Morioka 020-8551 Japan
| | - Ren Obayashi
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai 980-8578 Japan http://www.orgreact.sakura.ne.jp/en-index.html
| | - Jun Kikuchi
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai 980-8578 Japan http://www.orgreact.sakura.ne.jp/en-index.html
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai 980-8578 Japan http://www.orgreact.sakura.ne.jp/en-index.html
| |
Collapse
|
15
|
Guria S, Daniliuc CG, Hennecke U. Brønsted Acid‐Catalyzed Enantioselective Iodocycloetherification Enabled by Triphenylphosphine Selenide Cocatalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sudip Guria
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussel Belgium
| | | | - Ulrich Hennecke
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussel Belgium
| |
Collapse
|
16
|
Van Lommel R, Bock J, Daniliuc CG, Hennecke U, De Proft F. A dynamic picture of the halolactonization reaction through a combination of ab initio metadynamics and experimental investigations. Chem Sci 2021; 12:7746-7757. [PMID: 34168827 PMCID: PMC8188468 DOI: 10.1039/d1sc01014j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/22/2021] [Indexed: 01/23/2023] Open
Abstract
The halolactonization reaction is one of the most common electrophilic addition reactions to alkenes. The mechanism is generally viewed as a two-step pathway, which involves the formation of an ionic intermediate, in most cases a haliranium ion. Recently, an alternative concerted mechanism was proposed, in which the nucleophile of the reaction played a key role in the rate determining step by forming a pre-polarized complex with the alkene. This pathway was coined the nucleophile-assisted alkene activation (NAAA) mechanism. Metadynamics simulations on a series of model halolactonization reactions were used to obtain the full dynamic trajectory from reactant to product and investigate the explicit role of the halogen source and solvent molecules in the mechanism. The results in this work ratify the occasional preference of a concerted mechanism over the classic two-step transformation under specific reaction conditions. Nevertheless, as the stability of both the generated substrate cation and counter-anion increase, a transition towards the classic two-step mechanism was observed. NCI analyses on the transition states revealed that the activating role of the nucleophile is independent of the formation and stability of the intermediate. Additionally, the dynamic insights obtained from the metadynamics simulations and NCI analyses employed in this work, unveiled the presence of syn-directing noncovalent interactions, such as hydrogen bonding, between the alkenoic acid and the halogen source, which rationalized the experimentally observed diastereoselectivities. Explicit noncovalent interactions between the reactants and a protic solvent or basic additive are able to disrupt these syn-directing noncovalent interactions, affecting the diastereoselective outcome of the reaction.
Collapse
Affiliation(s)
- Ruben Van Lommel
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven Chem&Tech, box 2404 3001 Leuven Belgium
| | - Jonathan Bock
- Organic Chemistry Research Group (ORGC), Department of Chemistry, Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Constantin G Daniliuc
- Institute for Organic Chemistry, University of Muenster Corrensstr. 40 48149 Münster Germany
| | - Ulrich Hennecke
- Organic Chemistry Research Group (ORGC), Department of Chemistry, Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| |
Collapse
|
17
|
Okuno K, Nakamura T, Shirakawa S. Asymmetric Catalysis of Chiral Bifunctional Selenides and Selenonium Salts Bearing a Urea Group. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ken Okuno
- Department of Environmental Science Graduate School of Fisheries and Environmental Sciences Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Takumi Nakamura
- Department of Environmental Science Graduate School of Fisheries and Environmental Sciences Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Seiji Shirakawa
- Department of Environmental Science Graduate School of Fisheries and Environmental Sciences Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
18
|
Nishiyori R, Okada M, Maynard JRJ, Shirakawa S. Chiral Bifunctional Sulfide‐Catalyzed Highly Enantioselective Bromolactonizations of 4‐Pentenoic Acids. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ryuichi Nishiyori
- Department of Environmental Science Graduate School of Fisheries and Environmental Sciences Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Megumi Okada
- Department of Environmental Science Graduate School of Fisheries and Environmental Sciences Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - John R. J. Maynard
- Department of Environmental Science Graduate School of Fisheries and Environmental Sciences Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
- Department of Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Seiji Shirakawa
- Department of Environmental Science Graduate School of Fisheries and Environmental Sciences Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
19
|
Bock J, Guria S, Wedek V, Hennecke U. Enantioselective Dihalogenation of Alkenes. Chemistry 2021; 27:4517-4530. [DOI: 10.1002/chem.202003176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/01/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Jonathan Bock
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Sudip Guria
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Volker Wedek
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Ulrich Hennecke
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| |
Collapse
|
20
|
Li J, Shi Y. Catalytic enantioselective bromohydroxylation of cinnamyl alcohols. RSC Adv 2021; 11:13040-13046. [PMID: 35423889 PMCID: PMC8697332 DOI: 10.1039/d1ra02297k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
This work describes an effective enantioselective bromohydroxylation of cinnamyl alcohols with (DHQD)2PHAL as the catalyst and H2O as the nucleophile, providing a variety of corresponding optically active bromohydrins with up to 95% ee. Optically active bromohydrins are obtained with up to 95% ee via asymmetric bromohydroxylation of cinnamyl alcohols with H2O as nucleophile.![]()
Collapse
Affiliation(s)
- Jing Li
- Institute of Natural and Synthetic Organic Chemistry
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry
- Changzhou University
- Changzhou 213164
- P. R. China
- Department of Chemistry
| |
Collapse
|
21
|
China H, Kumar R, Kikushima K, Dohi T. Halogen-Induced Controllable Cyclizations as Diverse Heterocycle Synthetic Strategy. Molecules 2020; 25:molecules25246007. [PMID: 33353126 PMCID: PMC7765919 DOI: 10.3390/molecules25246007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
In organic synthesis, due to their high electrophilicity and leaving group properties, halogens play pivotal roles in the activation and structural derivations of organic compounds. Recently, cyclizations induced by halogen groups that allow the production of diverse targets and the structural reorganization of organic molecules have attracted significant attention from synthetic chemists. Electrophilic halogen atoms activate unsaturated and saturated hydrocarbon moieties by generating halonium intermediates, followed by the attack of carbon-containing, nitrogen-containing, oxygen-containing, and sulfur-containing nucleophiles to give highly functionalized carbocycles and heterocycles. New transformations of halogenated organic molecules that can control the formation and stereoselectivity of the products, according to the difference in the size and number of halogen atoms, have recently been discovered. These unique cyclizations may possibly be used as efficient synthetic strategies with future advances. In this review, innovative reactions controlled by halogen groups are discussed as a new concept in the field of organic synthesis.
Collapse
Affiliation(s)
- Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, 1266, Tamuracho Nagahama-shi, Shiga 526-0829, Japan
- Correspondence: (H.C.); (T.D.)
| | - Ravi Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana 121006, India;
| | - Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-0058, Japan;
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-0058, Japan;
- Correspondence: (H.C.); (T.D.)
| |
Collapse
|
22
|
Qi C, Force G, Gandon V, Lebœuf D. Hexafluoroisopropanol‐Promoted Haloamidation and Halolactonization of Unactivated Alkenes. Angew Chem Int Ed Engl 2020; 60:946-953. [DOI: 10.1002/anie.202010846] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chenxiao Qi
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris 91128 Palaiseau France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 67000 Strasbourg France
| |
Collapse
|
23
|
Qi C, Force G, Gandon V, Lebœuf D. Hexafluoroisopropanol‐Promoted Haloamidation and Halolactonization of Unactivated Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chenxiao Qi
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris 91128 Palaiseau France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 67000 Strasbourg France
| |
Collapse
|
24
|
Kaasik M, Kanger T. Supramolecular Halogen Bonds in Asymmetric Catalysis. Front Chem 2020; 8:599064. [PMID: 33195108 PMCID: PMC7609521 DOI: 10.3389/fchem.2020.599064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Halogen bonding has received a significant increase in attention in the past 20 years. An important part of this interest has centered on catalytic applications of halogen bonding. Halogen bond (XB) catalysis is still a developing field in organocatalysis, although XB catalysis has outgrown its proof of concept phase. The start of this year witnessed the publication of the first example of a purely XB-based enantioselective catalytic reaction. While the selectivity can be improved upon, there are already plenty of examples in which halogen bonds, among other interactions, play a crucial role in the outcome of highly enantioselective reactions. This paper will give an overview of the current state of the use of XBs in catalytic stereoselective processes.
Collapse
Affiliation(s)
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
25
|
Wang H, Zhong H, Xu X, Xu W, Jiang X. Catalytic Enantioselective Bromoaminocyclization and Bromocycloetherification. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haitao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Haijing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Xi Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Wei Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| | - Xiaojian Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University Guangzhou 510632 People's Republic of China
| |
Collapse
|
26
|
New syntheses of haloketo acid methyl esters and their transformation to halolactones by reductive cyclization. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Arai T, Horigane K, Suzuki TK, Itoh R, Yamanaka M. Catalytic Asymmetric Iodoesterification of Simple Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Kodai Horigane
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takumi K. Suzuki
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Ryosuke Itoh
- Department of Chemistry Research Center for Smart Molecules Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima-ku Tokyo 171-8588 Japan
| | - Masahiro Yamanaka
- Department of Chemistry Research Center for Smart Molecules Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
28
|
Tang PT, Shao YX, Wang LN, Wei Y, Li M, Zhang NJ, Luo XP, Ke Z, Liu YJ, Zeng MH. Synthesis of seven-membered lactones by regioselective and stereoselective iodolactonization of electron-deficient olefins. Chem Commun (Camb) 2020; 56:6680-6683. [PMID: 32412017 DOI: 10.1039/c9cc10080f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A regio- and stereoselective iodolactonization of internal electron-deficient olefinic acids has been reported, which provides a straightforward access to a series of multi-functionalized seven-membered lactones containing two consecutive chiral centers. The ester substituents on the olefins played a key role in achieving high regioselectivity. This result was proved through experiments and DFT calculations.
Collapse
Affiliation(s)
- Pan-Ting Tang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - You-Xiang Shao
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Liang-Neng Wang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Yi Wei
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Ming Li
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Ni-Juan Zhang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Xiao-Peng Luo
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue-Jin Liu
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China. and Department Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
29
|
Arai T, Horigane K, Suzuki TK, Itoh R, Yamanaka M. Catalytic Asymmetric Iodoesterification of Simple Alkenes. Angew Chem Int Ed Engl 2020; 59:12680-12683. [DOI: 10.1002/anie.202003886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Kodai Horigane
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takumi K. Suzuki
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Research Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Ryosuke Itoh
- Department of Chemistry Research Center for Smart Molecules Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima-ku Tokyo 171-8588 Japan
| | - Masahiro Yamanaka
- Department of Chemistry Research Center for Smart Molecules Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
30
|
Nakamura T, Okuno K, Kaneko K, Yamanaka M, Shirakawa S. Chiral bifunctional sulfide-catalyzed asymmetric bromoaminocyclizations. Org Biomol Chem 2020; 18:3367-3373. [PMID: 32315021 DOI: 10.1039/d0ob00459f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A BINOL-derived chiral bifunctional sulfide catalyst bearing a phenylurea moiety was applied to enantioselective bromoaminocyclization reactions of 2-allylaniline derivatives, which provide optically active 2-substituted indoline products as important motifs for biologically active compounds. A protecting group on the nitrogen of the 2-allylaniline substrate was carefully optimized, and highly enantioselective reactions were achieved by employing the p-biphenylsulfonyl-protected substrates. The origin of the good level of enantioselectivity for the present bromoaminocyclization was also investigated on the basis of DFT calculations. The resultant optically active 2-(bromomethyl)indoline products could be transformed to various 2-substituted indolines with no loss of the optical purity.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Ken Okuno
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Kazuma Kaneko
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | - Seiji Shirakawa
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
31
|
Panger JL, Denmark SE. Enantioselective Synthesis of γ-Lactams by Lewis Base Catalyzed Sulfenoamidation of Alkenes. Org Lett 2020; 22:2501-2505. [PMID: 31858805 PMCID: PMC7127933 DOI: 10.1021/acs.orglett.9b04347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for the catalytic, enantioselective, intramolecular 1,2-sulfenoamidation of alkenes is described. Lewis base activation of a suitable sulfur electrophile generates an enantioenriched, thiiranium ion intermediate from a β,γ-unsaturated sulfonyl carboxamide. This intermediate is subsequently intercepted by the sulfonamide nitrogen resulting in cyclization to form γ-lactams. Electron-poor alkenes required the use of a new selenophosphoramidate Lewis base catalyst. Subsequent manipulations of the products harness the latent reactivity of both the amide and thioether functionality.
Collapse
Affiliation(s)
- Jesse L. Panger
- Roger Adams Laboratory, University of Illinois, 600 S. Mathews Ave., Urbana, Illinois 61801
| | - Scott E. Denmark
- Roger Adams Laboratory, University of Illinois, 600 S. Mathews Ave., Urbana, Illinois 61801
| |
Collapse
|
32
|
Yousefi R, Sarkar A, Ashtekar KD, Whitehead DC, Kakeshpour T, Holmes D, Reed P, Jackson JE, Borhan B. Mechanistic Insights into the Origin of Stereoselectivity in an Asymmetric Chlorolactonization Catalyzed by (DHQD) 2PHAL. J Am Chem Soc 2020; 142:7179-7189. [PMID: 32202109 DOI: 10.1021/jacs.0c01830] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrophilic halofunctionalization reactions have undergone a resurgence sparked by recent discoveries in the field of catalytic asymmetric halocyclizations. To build mechanistic understanding of these asymmetric transformations, a toolbox of analytical methods has been deployed, addressing the roles of catalyst, electrophile (halenium donor), and nucleophile in determining rates and stereopreferences. The test reaction, (DHQD)2PHAL-catalyzed chlorocyclization of 4-arylpent-4-enoic acid with 1,3-dichloro-5,5-dimethylhydantoin (DCDMH), is revealed to be first order in catalyst and chlorenium ion donor and zero order in alkenoic acid substrate under synthetically relevant conditions. The simplest interpretation is that rapid substrate-catalyst binding precedes rate-limiting chlorenium attack, controlling the face selectivity of both chlorine attack and lactone closure. ROESY and DFT studies, aided by crystal structures of carboxylic acids bound by the catalyst, point to a plausible resting state of the catalyst-substrate complex predisposed for asymmetric chlorolactonization. As revealed by our earlier labeling studies, these findings suggest modes of binding in the (DHQD)2PHAL chiral pocket that explain the system's remarkable control over rate- and enantioselection-determining events. Though a comprehensive modeling analysis is beyond the scope of the present work, quantum chemical analysis of the fragments' interactions and candidate reaction paths point to a one-step concerted process, with the nucleophile playing a critical role in activating the olefin for concomitant electrophilic attack.
Collapse
Affiliation(s)
- Roozbeh Yousefi
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aritra Sarkar
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kumar Dilip Ashtekar
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C Whitehead
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tayeb Kakeshpour
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel Holmes
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Paul Reed
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
33
|
Lyubchuk TV, Hordiyenko OV. The use of N-halosuccinimides for cyclization with the formation of five-membered heterocyclic compounds. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02616-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Hua TB, Xiao C, Yang QQ, Chen JR. Recent advances in asymmetric synthesis of 2-substituted indoline derivatives. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Nishiyori R, Maynard JRJ, Shirakawa S. Chiral Bifunctional Selenide Catalysts for Asymmetric Bromolactonization. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ryuichi Nishiyori
- Department of Environmental Science Graduate School of Fisheries and Environmental SciencesNagasaki University 1–14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - John R. J. Maynard
- Department of Environmental Science Graduate School of Fisheries and Environmental SciencesNagasaki University 1–14 Bunkyo-machi Nagasaki 852-8521 Japan
- Department of ChemistryUniversity of Southampton Highfield Southampton SO17 1BJ (UK
| | - Seiji Shirakawa
- Department of Environmental Science Graduate School of Fisheries and Environmental SciencesNagasaki University 1–14 Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
36
|
Gan M, Wang W, Wang H, Wang Y, Jiang X. Enantioselective Halolactonizations Using Amino-Acid-Derived Phthalazine Catalysts. Org Lett 2019; 21:8275-8279. [PMID: 31584284 DOI: 10.1021/acs.orglett.9b03028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amino-acid-derived phthalazine catalysts have been designed and synthesized for enantioselective halolactonization of prochiral dienoic acids. The scope of the reaction is evidenced by 17 examples of spiro α-exo-methylene-halolactones with up to 99.8% enantiomeric excess. The resulting enantio-enriched spiro halolactone products are found to exhibit potent antitumor effects. In addition, both antipodes of products with equally excellent enantioselevity could be obtained since a pair of enantiomeric catalysts is guaranteed.
Collapse
Affiliation(s)
- Min Gan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy , Jinan University , Guangzhou 510632 , China
| | - Wei Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy , Jinan University , Guangzhou 510632 , China
| | - Haitao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy , Jinan University , Guangzhou 510632 , China
| | - Yuqiang Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy , Jinan University , Guangzhou 510632 , China
| | - Xiaojian Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
37
|
Wang W, He H, Gan M, Wang H, Wang Y, Jiang X. Enantioselective Syntheses of α‐
exo
‐Methylene‐Lactones via Organocatalytic Halolactonization. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Haoquan He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Min Gan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Haitao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Yuqiang Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Xiaojian Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| |
Collapse
|
38
|
Maji B. Stereoselective Haliranium, Thiiranium and Seleniranium Ion‐Triggered Friedel–Crafts‐Type Alkylations for Polyene Cyclizations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biswajit Maji
- Department of ChemistryIndira Gandhi National Tribal University Amarkantak – 484886 Madhya Pradesh India
| |
Collapse
|
39
|
Wedek V, Van Lommel R, Daniliuc CG, De Proft F, Hennecke U. Organokatalytische, enantioselektive Dichlorierung unfunktionalisierter Alkene. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Volker Wedek
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Deutschland
| | - Ruben Van Lommel
- General Chemistry Research GroupDepartment of ChemistryVrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgien
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Deutschland
| | - Frank De Proft
- General Chemistry Research GroupDepartment of ChemistryVrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgien
| | - Ulrich Hennecke
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Deutschland
- Organic Chemistry Research GroupDepartment of Chemistry and Department of Bioengineering SciencesVrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgien
| |
Collapse
|
40
|
Wedek V, Van Lommel R, Daniliuc CG, De Proft F, Hennecke U. Organocatalytic, Enantioselective Dichlorination of Unfunctionalized Alkenes. Angew Chem Int Ed Engl 2019; 58:9239-9243. [PMID: 31012510 DOI: 10.1002/anie.201901777] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/27/2019] [Indexed: 12/14/2022]
Abstract
The use of a new class of unsymmetrical cinchona-alkaloid-based, phthalazine-bridged organocatalysts enabled the highly enantioselective dichlorination of unfunctionalized alkenes. In combination with the electrophilic chlorinating agent 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) and triethylsilyl chloride (TES-Cl) as the source of nucleophilic chloride, 1-aryl-2-alkyl alkenes were dichlorinated with enantioselectivities of up to 94:6 er. Initial mechanistic investigations suggest that no free chlorine is formed, and by replacement of the chloride by fluoride, enantioselective chlorofluorinations of alkenes are possible.
Collapse
Affiliation(s)
- Volker Wedek
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany
| | - Ruben Van Lommel
- General Chemistry Research Group, Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany
| | - Frank De Proft
- General Chemistry Research Group, Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| | - Ulrich Hennecke
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany.,Organic Chemistry Research Group, Department of Chemistry and Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
41
|
Shi Y, Wong J, Ke Z, Yeung YY. Lipophilic Indole-Catalyzed Intermolecular Bromoesterification of Olefins in Nonpolar Media. J Org Chem 2019; 84:4017-4024. [DOI: 10.1021/acs.joc.9b00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yao Shi
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT Hong Kong (China)
| | - Jonathan Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT Hong Kong (China)
| | - Zhihai Ke
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT Hong Kong (China)
| | - Ying-Yeung Yeung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT Hong Kong (China)
| |
Collapse
|
42
|
Cao Q, Luo J, Zhao X. Chiral Sulfide Catalysis for Desymmetrizing Enantioselective Chlorination. Angew Chem Int Ed Engl 2019; 58:1315-1319. [PMID: 30456895 DOI: 10.1002/anie.201811621] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/15/2018] [Indexed: 02/01/2023]
Abstract
An unprecendented chiral sulfide catalyzed desymmetrizing enantioselective chlorination is disclosed. Various aryl-tethered diolefins and diaryl-tethered olefins afforded teralins and tricyclic hexahydrophenalene derivatives, respectively, bearing multiple stereogenic centers in high yields with excellent enantio- and diastereoselectivities. In contrast, the tertiary amine catalyst (DHQD)2 PHAL led to a diastereomeric product. The products could be transformed into a variety of compounds, such as spiro-N-heterocycles.
Collapse
Affiliation(s)
- Qingxiang Cao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jie Luo
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
43
|
Cao Q, Luo J, Zhao X. Chiral Sulfide Catalysis for Desymmetrizing Enantioselective Chlorination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qingxiang Cao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 China
| | - Jie Luo
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 China
| |
Collapse
|
44
|
Okada M, Kaneko K, Yamanaka M, Shirakawa S. BINOL-derived bifunctional sulfide catalysts for asymmetric synthesis of 3,3-disubstituted phthalides via bromolactonization. Org Biomol Chem 2019; 17:3747-3751. [DOI: 10.1039/c9ob00417c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An efficient enantioselective synthesis of 3,3-disubstituted phthalides possessing a chiral quaternary carbon center was achieved via catalytic asymmetric bromolactonization using BINOL-derived bifunctional sulfide catalysts.
Collapse
Affiliation(s)
- Megumi Okada
- Department of Environmental Science
- Graduate School of Fisheries and Environmental Sciences
- Nagasaki University
- Nagasaki 852-8521
- Japan
| | - Kazuma Kaneko
- Department of Chemistry and Research Center for Smart Molecules
- Faculty of Science
- Rikkyo University
- Tokyo 171-8501
- Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules
- Faculty of Science
- Rikkyo University
- Tokyo 171-8501
- Japan
| | - Seiji Shirakawa
- Department of Environmental Science
- Graduate School of Fisheries and Environmental Sciences
- Nagasaki University
- Nagasaki 852-8521
- Japan
| |
Collapse
|
45
|
Nishikawa Y, Hamamoto Y, Satoh R, Akada N, Kajita S, Nomoto M, Miyata M, Nakamura M, Matsubara C, Hara O. Enantioselective Bromolactonization of Trisubstituted Olefinic Acids Catalyzed by Chiral Pyridyl Phosphoramides. Chemistry 2018; 24:18880-18885. [PMID: 30230634 DOI: 10.1002/chem.201804630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 11/11/2022]
Abstract
Enantioselective bromolactonization of trisubstituted olefinic acids producing synthetically useful chiral lactones with two contiguous asymmetric centers has remained mainly unexplored except for the 6-exo cyclization mode. In this work, the 5-exo- and 6-endo modes of bromocyclization of trisubstituted olefinic acids were enabled for the first time using N-bromosuccinimide and a pyridyl phosphoramide catalyst. The utility of the resulting bromolactones was demonstrated by transformations harnessing reactive alkyl bromide moieties without losing stereochemical information. Optimization studies and control experiments revealed that the basicity of pyridine moieties and presence of N-H protons in the phosphoramide species strongly affected both the reactivity and enantioselectivity parameters.
Collapse
Affiliation(s)
- Yasuhiro Nishikawa
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Yuhta Hamamoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Rika Satoh
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Naho Akada
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Shuhei Kajita
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Marina Nomoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Megumi Miyata
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Madoka Nakamura
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Chinatsu Matsubara
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Osamu Hara
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| |
Collapse
|
46
|
Seidl FJ, Min C, Lopez JA, Burns NZ. Catalytic Regio- and Enantioselective Haloazidation of Allylic Alcohols. J Am Chem Soc 2018; 140:15646-15650. [PMID: 30403852 DOI: 10.1021/jacs.8b10799] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein we report a highly regio- and stereoselective haloazidation of allylic alcohols. This enantioselective reaction uses readily available materials and can be performed on a variety of alkyl-substituted alkenes and can incorporate either bromine or chlorine as the electrophilic halogen component. Both halide and azido groups of the resulting products can be transformed into valuable building blocks with complete stereospecificity. The first example of an enantioselective 1,4-haloazidation of a conjugated diene is reported as well as its application to a concise synthesis of an aza-sugar.
Collapse
Affiliation(s)
- Frederick J Seidl
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Chang Min
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Jovan A Lopez
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Noah Z Burns
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
47
|
Cai Y, Liu X, Zhou P, Feng X. Asymmetric Catalytic Halofunctionalization of α,β-Unsaturated Carbonyl Compounds. J Org Chem 2018; 84:1-13. [PMID: 30339377 DOI: 10.1021/acs.joc.8b01951] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Halofunctionalization methods enable the vicinal difunctionalization of alkenes with heteroatom nucleophiles and halogen moieties. As a fundamental transformation in organic synthesis, the catalytic asymmetric variants have only recently been reported. In sharp contrast to the asymmetric halocyclization of simple alkenes which involves a nucleophile-assisted alkene activation process, the asymmetric halofunctionalization of enones developed by our laboratory features an electrophile-assisted 1,4-addition pathway. Our work in this area has resulted in the development of several different types of regio-, diastereo-, and enantioselective processes, including inter- and intramolecular haloaminations, haloetherifications, and haloazidations. The scope, updated mechanism, limitations, and future perspective of these reactions are discussed.
Collapse
Affiliation(s)
- Yunfei Cai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China.,School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing 400030 , China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Pengfei Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
48
|
Nishiyori R, Tsuchihashi A, Mochizuki A, Kaneko K, Yamanaka M, Shirakawa S. Design of Chiral Bifunctional Dialkyl Sulfide Catalysts for Regio-, Diastereo-, and Enantioselective Bromolactonization. Chemistry 2018; 24:16747-16752. [PMID: 30203864 DOI: 10.1002/chem.201803703] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/10/2018] [Indexed: 11/09/2022]
Abstract
Although a wide variety of chiral organocatalysts have been developed for asymmetric transformations, effective chiral dialkyl sulfide organocatalysts remain relatively rare and under-developed, despite the potential utility of dialkyl sulfide catalysts. Herein, we report the development of chiral bifunctional dialkyl sulfide catalysts possessing a urea moiety for regio-, diastereo-, and enantioselective bromolactonization. The importance of the bifunctional design of chiral sulfide catalysts was clearly demonstrated in the present work. The roles of both the sulfide and urea moieties of the catalyst were clarified based on the results of experimental and theoretical investigation.
Collapse
Affiliation(s)
- Ryuichi Nishiyori
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Ayano Tsuchihashi
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Ayaka Mochizuki
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Kazuma Kaneko
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Seiji Shirakawa
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
49
|
Einaru S, Shitamichi K, Nagano T, Matsumoto A, Asano K, Matsubara S. trans
‐Cyclooctenes as Halolactonization Catalysts. Angew Chem Int Ed Engl 2018; 57:13863-13867. [DOI: 10.1002/anie.201808320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Shunsuke Einaru
- Department of Material ChemistryGraduate School of EngineeringKyoto University, Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| | - Kenta Shitamichi
- Department of Material ChemistryGraduate School of EngineeringKyoto University, Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| | - Tagui Nagano
- Department of Material ChemistryGraduate School of EngineeringKyoto University, Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| | - Akira Matsumoto
- Department of Material ChemistryGraduate School of EngineeringKyoto University, Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| | - Keisuke Asano
- Department of Material ChemistryGraduate School of EngineeringKyoto University, Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| | - Seijiro Matsubara
- Department of Material ChemistryGraduate School of EngineeringKyoto University, Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| |
Collapse
|
50
|
Enantioselective intermolecular iodoacetalization of enol ethers catalyzed by chiral Co(III)-complex-templated Brønsted acids. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.08.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|