1
|
El-Wahab AHFA, Borik RM, Al-Dies AAM, Fouda AM, Mohamed HM, El-Eisawy RA, Sharaf MH, Alzahrani AYA, Elhenawy AA, El-Agrody AM. Targeted potent antimicrobial and antitumor oxygen-heterocyclic-based pyran analogues: synthesis and computational studies. Sci Rep 2024; 14:9862. [PMID: 38684707 PMCID: PMC11058275 DOI: 10.1038/s41598-024-59193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
The process of creating a series of 3-amino-1-aryl-8-methoxy-1H-benzo[f]chromene-2-carbonitriles (4a-q) involved reacting 6-methoxynaphthalen-2-ol (1), the appropriate aromatic aldehydes (2a-q), and malononitrile (3) in an absolute ethanol/piperidine solution under Ultrasonic irradiation. However, the attempt to create 3-amino-1-aryl-1H-benzo[f]chromene-2,8-dicarbonitrile (6a, d, e) was unsuccessful when 6-cyanonaphthalen-2-ol (5) was stirred at room temperature, reflux, Microwave irradiation, or Ultrasonic irradiation. In addition, the target molecules were screened against Staphylococcus aureus (MRSA), Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Escherichia coli and Klebsiella pneumonia, as well as a panel of three human cancer cells lines such as MCF-7, HCT-116, HepG-2 and two normal cell lines HFL-1 and WI-38. The obtained results confirmed that the pyran derivatives (4 m, i, k) which have a double chlorine at 3,4/2,3/2,5-positions, a single halogen atom 3-Cl/4-Br (4c, e) and a double bromine at 3,5-positions with a single methoxy group at 2-position (4n), of phenyl ring, and, to a lesser extent, other pyran derivatives with monoihalogenated (4a, b, d, f), dihalogenated (4 g, h, j, l) or trisubstituent phenyl ring (4o, p, q). Furthermore, compounds 4b-e, g, i, j, m, and n showed negligible activity against the two normal cell lines, HFL-1 and WI-38. Moreover, compound 4 g exhibited the strongest antimicrobial activity among the other pyran derivatives (4a-f, g-q) when compared to Ciprofloxacin. The MIC was assessed and screened for compound 4 g, revealing bactericidal effects. Lastly, SAR and molecular docking were studied.
Collapse
Affiliation(s)
- Ashraf H F Abd El-Wahab
- Department of Chemistry, College of Science, Jazan University, B.O. Box 114, 45142, Jazan, Kingdom of Saudi Arabia
| | - Rita M Borik
- Department of Chemistry, College of Science, Jazan University, B.O. Box 114, 45142, Jazan, Kingdom of Saudi Arabia
| | - Al-Anood M Al-Dies
- Chemistry Department, Umm Al-Qura University, Al-Qunfudah University College, 21912, Al-Qunfudah, Saudi Arabia
| | - Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
| | - Hany M Mohamed
- Department of Chemistry, College of Science, Jazan University, B.O. Box 114, 45142, Jazan, Kingdom of Saudi Arabia
| | - Raafat A El-Eisawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Department of Chemistry, Faculty of Science, Al-Baha University, 65528, Al-Baha, Saudi Arabia
| | - Mohamed H Sharaf
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Abdullah Y A Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Chemistry Department, Faculty of Science and Art, AlBaha University, 65731, Al Bahah, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
3
|
Dotsenko VV, Khalatyan KV, Russkikh AA, Varzieva EA, Kramareva DA, Vasilin VK, Aksenov NA, Aksenova IV. Synthesis and Some Properties of 2-Amino-4-aryl-6-hexyl-7-hydroxy-4H-chromene-3-carbonitriles. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
The Crystal Structure of 3-Amino-1-(4-Chlorophenyl)-9-Methoxy-1H-Benzo[f]Chromene-2-Carbonitrile: Antimicrobial Activity and Docking Studies. CRYSTALS 2022. [DOI: 10.3390/cryst12070982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Compound 3-amino-1-(4-chlorophenyl)-9-methoxy-1H-benzo[f]chromene-2-carbonitrile (4), was synthesized via the reaction of 7-methoxynaphthalen-2-ol (1), 4-chlorobenzaldehyde (2), and malononitrile (3) in an ethanolic piperidine solution under microwave irradiation. The synthesized pyran derivative 4 was asserted through spectral data and X-ray diffraction. The molecular structure of compound 4 was established unambiguously through the single crystal X-ray measurements and crystallized in the Triclinic, P-1, a = 8.7171 (4) Å, b = 10.9509 (5) Å, c = 19.5853 (9) Å, α = 78.249 (2)°, β = 89.000 (2)°, γ = 70.054 (2)°, V = 1717.88 (14) Å3, Z = 4. The target molecule has been screened for antibacterial and antifungal functionality. Compound 4 exhibited favorable antimicrobial activities that resembled the reference antimicrobial agents with an IZ range of 16–26 mm. In addition, MIC, MBC, and MFC were assessed and screened for molecule 4, revealing bactericidal and fungicidal effects. Lastly, a molecular docking analysis was addressed and conducted for this desired molecule.
Collapse
|
5
|
The Crystal Structure of 2-Amino-4-(2,3-Dichlorophenyl)-6-Methoxy-4H-Benzo[h]chromene-3-Carbonitrile: Antitumor and Tyrosine Kinase Receptor Inhibition Mechanism Studies. CRYSTALS 2022. [DOI: 10.3390/cryst12050737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The target compound, 2-amino-4-(2,3-dichlorophenyl)-6-methoxy-4H-benzo[h]chromene -3-carbonitrile (4), was synthesized via the reaction of 4-methoxynaphthalen-1-ol (1), 2,3-dichlorobenzaldehyde (2), and malononitrile (3) in an ethanolic piperidine solution under microwave irradiation. The synthesized β-enaminonitrile derivative (4) was characterized by spectral data and X-ray diffraction. The in vitro anti-proliferative profile was conducted against five cancer cell lines and was assessed for compound 4, which revealed strong and selective cytotoxic potency. This derivative showed promising inhibition efficacy against the EGFR and VEGFR-2 kinases in comparison to Sorafenib as a reference inhibitor. Lastly, the docking analysis into the EGFR and VEGFR-2 active sites was performed to clarify our biological findings.
Collapse
|
7
|
Ismiyev AI, Dotsenko VV, Aksenov NA, Aksenova IV, Magarramov AM. Pseudo-Five-Component Stereoselective Synthesis of Highly Functionalized 3-Azabicyclo[3.3.1]nona-2,7-dienes. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221050029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Rohini, Paul K, Luxami V. 8-Hydroxyquinoline Fluorophore for Sensing of Metal Ions and Anions. CHEM REC 2020; 20:1430-1473. [PMID: 33151013 DOI: 10.1002/tcr.202000082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/11/2022]
Abstract
Among various known hydroxyquinolines, 8-hydroxyquinoline (8-HQ) is the most prevalent moiety due to excellent property for the formation of the complex with different metal ions and anions, and utilized in a wide variety of applications in pharmacological and medicinal fields. 8-Hydroxyquinoline moiety and its analogues acts as fluorophoric ligands on complex formation with alkali and alkaline as well as transition metal ions and anions, thus, considered as an ideal building block in metallo-supramolecular chemistry for recognition, separation, and quantitative investigation of cations. 8-Hydroxyquinoline moiety is also used in various applications for the advancement of novel fluorescent chemosensors in a wide variety of areas viz., material chemistry, bioorganic chemistry, molecular imaging, analytical chemistry, molecular recognition, medical and biological science communities. The present review emphasises on the progress of sensing properties of 8-HQ centred small-molecule fluorescent chemosensors towards several metal ions viz., Fe3+ , Al3+ , Ag+ , Hg2+ , Cu2+ , Pd2+ , Zn2+ , Cr3+ , Cd2+ , Mn2+ , Ca2+ , and K+ and anions such as F- , CN- and PPi, from 2008 to 2020, because of their sensitivity and selectivity in terms of diverse colour changes for different species. This critical and comprehensive review might facilitate the improvement of more prevailing chemosensors for future exciting and broad applications.
Collapse
Affiliation(s)
- Rohini
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147 001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147 001, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147 001, India
| |
Collapse
|
9
|
Aoki S, Ariyasu S, Hanaya K, Hisamatsu Y, Sugai T. Chemical Reactions of 8-Quinolinol Derivatives and Their Applications to Biochemical Tools and Enzyme Inhibitors. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Shinya Ariyasu
- School of Physical & Mathematical Sciences, Nanyang Technological University
| | | | | | | |
Collapse
|