1
|
Non-Lactic Probiotic Beverage Enriched with Microencapsulated Red Propolis: Microorganism Viability, Physicochemical Characteristics, and Sensory Perception. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This work aimed to develop a non-dairy functional beverage fermented with probiotic strains and fortified with Brazilian red propolis (microencapsulated and extracted). The non-dairy matrix consisted of oats (75 g), sunflower seeds (175 g), and almonds (75 g). It was fermented by a starter co-culture composed of Lactiplantibacillus plantarum CCMA 0743 and Debaryomyces hansenii CCMA 176. Scanning electron microscopy analysis was initially performed to verify the integrity of the microcapsules. The viability of the microorganisms after fermentation and storage, chemical composition (high performance liquid chromatography (HPLC) and gas chromatography coupled to mass spectrometry (GC-MS) analyses), rheology, antioxidant activity, and sensory profile of the beverages were determined. After fermentation and storage, the starter cultures were well adapted to the substrate, reducing the pH (6.50 to 4) and cell count above 7.0 log CFU/mL. Lactic acid was the main organic acid produced during fermentation and storage. In addition, 39 volatile compounds were detected by gas chromatography coupled to mass spectrometry (GC-MS), including acids, alcohols, aldehydes, alkanes, alkenes, esters, ethers, phenols, terpenes, and others. The addition of propolis extract increased the antioxidant and phenolic activity and the presence of volatile esters but reduced the beverage’s acceptability. The addition of microencapsulated propolis was more associated with the presence of higher alcohols and had similar acceptance to the control beverage. The combination of a non-dairy substrate, a starter co-culture, and the addition of propolis led to the development of a probiotic beverage with great potential for health benefits.
Collapse
|
2
|
Roncero JM, Álvarez-Ortí M, Pardo-Giménez A, Rabadán A, Pardo JE. Influence of Pressure Extraction Systems on the Performance, Quality and Composition of Virgin Almond Oil and Defatted Flours. Foods 2021; 10:foods10051049. [PMID: 34064705 PMCID: PMC8151718 DOI: 10.3390/foods10051049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 11/28/2022] Open
Abstract
Almond is the most cultivated nut throughout the world. The oil content of almonds in most varieties exceeds 50%, which encourages the oil extraction to be used in gastronomy or in the cosmetic industry. The preferred system to extract almond oil is by means of pressure, which leads to obtaining a virgin oil ready for consumption. In this work, almond oil has been obtained using two pressure systems: screw press (SP) and hydraulic press (HP). The performance of both methods, as well as their influence on quality and composition characteristics of the almond oils obtained are analyzed from both a physical-chemical and sensory point of view. From an industry perspective, the highest oil yield is obtained with the SP when it operates at temperatures of 100–150 °C. Regarding the quality and chemical composition, the oils obtained by HP showed better quality indices, as they are subjected to a less aggressive treatment without influence of temperature, but lower content in total sterols. Fatty acid pattern, characterized by the predominance of unsaturated fatty acids (>90%), was not affected by the pressing system. The different operational conditions tested did not greatly affect the performance or composition of the oils obtained, but sensory tests showed two clearly differentiated products, the oil obtained by HP and that obtained by SP, according to consumer preferences. The defatted almond flours obtained as a by-product of the oil extraction process are characterized by a high content in protein and fiber, and a higher content in fat when the flour is produced from the pressing cake of HP.
Collapse
Affiliation(s)
- José M. Roncero
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
- Correspondence:
| | - Manuel Álvarez-Ortí
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| | - Arturo Pardo-Giménez
- Mushroom Research, Experimentation and Service Centre, C/Peñicas, s/n, Apartado 63, 16220 Quintanar del Rey, Spain;
| | - Adrián Rabadán
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| | - José E. Pardo
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| |
Collapse
|
3
|
Bartkiene E, Bartkevics V, Pugajeva I, Borisova A, Zokaityte E, Lele V, Starkute V, Zavistanaviciute P, Klupsaite D, Zadeike D, Juodeikiene G. The Quality of Wheat Bread With Ultrasonicated and Fermented By-Products From Plant Drinks Production. Front Microbiol 2021; 12:652548. [PMID: 33815341 PMCID: PMC8009971 DOI: 10.3389/fmicb.2021.652548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/25/2021] [Indexed: 01/28/2023] Open
Abstract
During plant-based drinks production a significant amount of valuable by-products (BPs) is obtained. The valorization of BPs is beneficial for both the environment and the food industry. The direct incorporation of the fermented and/or ultrasonicated almond, coconut, and oat drinks production BPs in other food products, such as wheat bread (WB) could lead to the better nutritional value as well as quality of WB. Therefore, in this study, various quantities (5, 10, 15, and 20%) of differently treated [ultrasonicated (37 kHz) or fermented with Lacticaseibacillus casei LUHS210] almond, coconut, and oat drinks preparation BPs were used in wheat bread (WB) formulations. Microbiological and other quality parameters (acidity, color, specific volume, porosity, moisture content, overall acceptability) as well as bread texture hardness during the storage and acrylamide content in the WB were evaluated. Among the fermented samples, 12-h-fermented almond and oat, as well as 24-h-fermented coconut drinks preparation BPs (pH values of 2.94, 2.41, and 4.50, respectively; total enterobacteria and mold/yeast were not found) were selected for WB production. In most cases, the dough and bread quality parameters were significantly (p ≤ 0.05) influenced by the BPs used, the treatment of the BPs, and the quantity of the BPs. The highest overall acceptability of the WB prepared with 20% fermented almond drink preparation by-product (AP), 15% fermented oat drink preparation by-product (OP), and 15% ultrasonicated OP was established. After 96 h of storage, the lowest hardness (on average, 1.2 mJ) of the breads prepared with 5% fermented AP, coconut drink preparation by-product (CP), and OP and ultrasonicated CP was found. The lowest content of acrylamide in the WB prepared with OP was found (on average, 14.7 μg/kg). Finally, 15% fermented OP could be safely used for WB preparation because the prepared bread showed high overall acceptability, as well as low acrylamide content.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Centre of Food Chemistry, University of Latvia, Riga, Latvia.,Institute of Food Safety, Animal Health and Environment "BIOR," Riga, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR," Riga, Latvia
| | - Anastasija Borisova
- Institute of Food Safety, Animal Health and Environment "BIOR," Riga, Latvia
| | - Egle Zokaityte
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vita Lele
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulina Zavistanaviciute
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Klupsaite
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Daiva Zadeike
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Grazina Juodeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
4
|
Zeb A. A comprehensive review on different classes of polyphenolic compounds present in edible oils. Food Res Int 2021; 143:110312. [PMID: 33992331 DOI: 10.1016/j.foodres.2021.110312] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Edible oils are used as a frying medium and in the preparation of several food products. They are mainly constituting triacylglycerols as major components, while other compounds are classified as minor constituents, which include polyphenols. This class of compounds plays an important role in the thermal stability and quality attributes of the finished industrial food products. In addition to other antioxidants, the desired thermal stability of edible is achieved by either fortification or mixing of edible oils. This comprehensive review was therefore aimed to review the different classes of polyphenolic compounds present in commonly consumed edible oils. The edible oils reviewed include soybean, olive, rapeseed, canola, sunflower, flaxseed, sesame, cottonseed, palm, almond, peanut, chestnut, coconut, and hazelnut oils. The identified classes of polyphenolic compounds such as simple phenols, hydroxybenzoic acids, phenylethanoids, hydroxycinnamic acid, esters of hydroxycinnamic acids, coumarins & chromans, stilbenes, flavonoids, anthocyanins, and lignans were discussed. It was observed that a single edible from different origins showed the varied composition of the different classes of phenolic compounds. Among the oils, soybean, sunflower, olive, and brassica oils received higher attention in terms of polyphenol composition. Some classes of phenolic compounds were either not reported or absent in one edible oil, while present in others. Among the different classes of phenolics, hydroxybenzoic acids, hydroxycinnamic acid and flavonoids were the most widely present compounds. Phenolic compounds in edible oils possess several health benefits such as antioxidant, antibacterial, anti-viral, anti-inflammatory, anti-tumour, antioxidants, cardioprotective, neuroprotective, anti-diabetic properties and anti-obesity.
Collapse
Affiliation(s)
- Alam Zeb
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
5
|
Sakar EH, El Yamani M, Boussakouran A, Ainane A, Ainane T, Gharby S, Rharrabti Y. Variability of oil content and its physicochemical traits from the main almond [Prunus dulcis Mill. DA Webb] cultivars grown under contrasting environments in north-eastern Morocco. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Mahoney NE, Cheng LW, Palumbo JD. Fate of Aflatoxins during Almond Oil Processing. J Food Prot 2021; 84:106-112. [PMID: 32882027 DOI: 10.4315/jfp-20-229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/03/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Almonds rejected as inedible are often used for production of almond oil. However, low-quality almonds are frequently contaminated with aflatoxins, and little is known regarding transfer of aflatoxins to almond oil during processing. In this study, oil was produced from reject almonds by hexane extraction. Of 19 almond samples that were naturally contaminated with aflatoxins, 17 oil samples contained measurable amounts of aflatoxins, and aflatoxin content of contaminated oil was correlated with aflatoxin content of the nuts. However, oil aflatoxin levels were not correlated with the oxidation level of the oil as measured by percent free fatty acids and peroxide value. Adsorbents used in oil refining were tested for their ability to remove aflatoxins from contaminated oil. Fuller's earth and bentonite were the most effective, removing 96 and 86% of total aflatoxins from contaminated oil samples, respectively. Treatment with diatomaceous earth, in contrast, had no effect on aflatoxin levels in oil. These results show that oil refining steps using mineral clay adsorbents may also function to remove aflatoxins from contaminated oil. HIGHLIGHTS
Collapse
Affiliation(s)
- Noreen E Mahoney
- Foodborne Toxin Detection and Prevention Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, USA
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, USA
| | - Jeffrey D Palumbo
- Foodborne Toxin Detection and Prevention Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, USA.,(ORCID: https://orcid.org/0000-0002-2668-7950 [J.D.P.])
| |
Collapse
|
7
|
Abstract
Bread and cheese have been a popular combination since early times. Indeed, the history of bread dates back to 8000 BC and that of cheese to 7200 BC. However, new types of breads and cheeses are increasingly popular for several reasons, such as allergies, lifestyles, economy and religion. The major challenge is that food manufacturers are offering new products most of which are not welcomed by consumers. Therefore, recently, researchers have placed importance on their relationships with consumers to boost the success of new products. This short review summarizes the backgrounds of recent trends, processes, and principles to manufacture new bread and cheese products, and discusses future perspectives. The development of additive-free, gluten-free rice bread we have recently done from basic research to commercialization of the products is highly focused in this review. Additionally, ongoing studies on plant-based cheeses are introduced from material selection to suggest future outlooks.
Collapse
|
8
|
Roncero JM, Álvarez-Ortí M, Pardo-Giménez A, Rabadán A, Pardo JE. Review about Non-Lipid Components and Minor Fat-Soluble Bioactive Compounds of Almond Kernel. Foods 2020; 9:E1646. [PMID: 33187330 PMCID: PMC7697880 DOI: 10.3390/foods9111646] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/28/2022] Open
Abstract
This work presents a bibliographic review about almond kernel non-lipid components, in particular about the protein fraction, the carbohydrates and the mineral fraction. In addition, other fat-soluble phytochemicals which are present in minor concentrations but show important antioxidant activities are reviewed. Almond kernel is a rich protein food (8.4-35.1%), in which the globulin-albumin fraction dominates, followed by glutelins and prolamins. Within the almond kernel protein profile, amandine dominates. Free amino acids represent a small amount of the total nitrogen quantity, highlighting the presence of glutamic acid and aspartic acid, followed by arginine. Carbohydrates that appear in almond kernels (14-28%) are soluble sugars (mainly sucrose), starch and other polysaccharides such as cellulose and non-digestible hemicelluloses. Regarding the mineral elements, potassium is the most common, followed by phosphorus; both macronutrients represent more than 70% of the total mineral fraction, without taking into account nitrogen. Microminerals include sodium, iron, copper, manganese and zinc. Within the phytochemical compounds, tocopherols, squalene, phytosterols, stanols, sphingolipids, phospholipids, chlorophylls, carotenoids, phenols and volatile compounds can be found.
Collapse
Affiliation(s)
- José M. Roncero
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| | - Manuel Álvarez-Ortí
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| | - Arturo Pardo-Giménez
- Mushroom Research, Experimentation and Service Centre, C/Peñicas, s/n, Apartado 63, Quintanar del Rey, 16220 Cuenca, Spain;
| | - Adrián Rabadán
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| | - José E. Pardo
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| |
Collapse
|
9
|
Mašán V, Vaštík L, Burg P, Sotolář R, Macák M. The evaluation of extraction of some nut oils using screw pressing. POTRAVINARSTVO 2020. [DOI: 10.5219/1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Today's consumers prefer low-sugar, low-calorie, natural, and so-called safe products. These trends are also reflected in nuts products and groceries. Globally, the European Union is the largest importing market of edible nuts. Considering the increasing demand for new sources of food, the importance becomes the efficiency of production. This study evaluates the influence of rotation speed in the extraction of almond nut, walnut, hazelnut, cashew nut, and peanut oils using screw pressing. In tested samples, the oil content was on average between 69.14 ±0.79% (walnut) and 46.7 ±1.45% (peanut). From the pressing of oils, it is seen that the oil yield decreased when pressing speed increased (from 30 rpm to 90 rpm, for example in walnut from 0.36 kg to 0.16 kg.h-1) and that the oil sediment yield increased when speed increased (for example in hazelnut nut from 8.51% to 17.37%). The highest amount of oil yields had hazelnut with 3.03 ±0.05 kg.h-1, then walnut with 2.05 ±0.02 kg.h-1, almond nut with 2.34 ±0.05 kg.h-1, peanut with 2.15 ±0.01 kg.h-1, and finally cashew nut with 2.07 ±0.03 kg.h-1.
Collapse
|
10
|
Bashiri S, Ghanbarzadeh B, Ayaseh A, Dehghannya J, Ehsani A. Preparation and characterization of chitosan-coated nanostructured lipid carriers (CH-NLC) containing cinnamon essential oil for enriching milk and anti-oxidant activity. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108836] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Özcan MM, Al Juhaimi F, Ghafoor K, Babiker EE, Özcan MM. Characterization of physico-chemical and bioactive properties of oils of some important almond cultivars by cold press and soxhlet extraction. Journal of Food Science and Technology 2019; 57:955-961. [PMID: 32123416 DOI: 10.1007/s13197-019-04128-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
The oleic acid composition of almonds oils expressed by cold press varied from 73.56% in Cristomorto cultivar to 76.59% in Tuono while oleic acid in oils extracted by soxhlet method ranged from 71.86% in Cristomorto and 75.63% in Tuono cultivars. Also, oil from cold press extraction contained 19.51% and 21.86% linoleic acid for Ferragnes and Tuono almond cultivars, respectively, while 18.74 and 20.51% linoleic acid was recorded in Soxhlet extracted oil from Ferragnes and Tuono almonds, respectively. In addition, α-tocopherol contents of the oil samples varied significantly (p < 0.05) from 14.18 to 16.86 mg/100 g in Tuono and 15.71-17.96 mg/100 g in Ferragnes for cold-press and soxhlet extracted oils, respectively. β-Sitosterol composition of the oil obtained by cold press ranged from 157.94 (Tuono) and 171.68 mg/100 g (Cristomorto) while β-sitosterol content varied from 148.91 (Tuono) and 159.68 mg/100 g (Cristomorto) for oil extracted by Soxhlet method.
Collapse
Affiliation(s)
- Mehmet Musa Özcan
- 1Department of Food Engineering, Faculty of Agriculture, University of Selçuk, 42031 Konya, Turkey
| | - Fahad Al Juhaimi
- 2Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kashif Ghafoor
- 2Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elfadıl E Babiker
- 2Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mustafa Mete Özcan
- 3Aydoğanlar High Vocational College, Selçuk University, Karapınar, Konya Turkey
| |
Collapse
|
12
|
Araiza-Villanueva MG, Olicón-Hernández DR, Pardo JP, Vázquez-Meza H, Guerra-Sánchez G. Monitoring of the enzymatic activity of intracellular lipases of Ustilago maydis expressed during the growth under nitrogen limitation and its correlation in lipolytic reactions. GRASAS Y ACEITES 2019. [DOI: 10.3989/gya.1049182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Under nitrogen starvation, Ustilago maydis forms lipid droplets (LDs). Although the dynamics of these organelles are known in the literature, the identity of the lipases implicated in their degradation is unknown. We determined lipase activity and identified the intracellular lipases expressed during growth under nitrogen starvation and YPD media by zymograms. The results showed that cytosolic extracts exhibited higher lipase activity when cells were grown in YPD. Under nitrogen starvation, lipase activity was not detected after 24 h of culture, resulting in lipid accumulation in LDs. This suggests that these lipases could be implicated in LD degradation. In the zymogram, two bands, one of 25 and the other of 37 kDa, presented lipase activity. The YPD extracts showed lipase activity in olive and almond oils, which contain triacylglycerols with mono and polyunsaturated fatty acids. This is the first report about U. maydis cytosolic lipases involved in LD degradation.
Collapse
|
13
|
Schripsema J. Similarity and differential NMR spectroscopy in metabolomics: application to the analysis of vegetable oils with 1H and 13C NMR. Metabolomics 2019; 15:39. [PMID: 30843128 DOI: 10.1007/s11306-019-1502-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In NMR based metabolomics there is a need for tools to easily compare spectra and to extract the maximum of information from the data. OBJECTIVES The calculation of similarity and performing differential NMR spectroscopy provides important additional information for classification and validation in metabolomics experiments. METHODS From 13 different vegetable oils samples were analysed by 1H and 13C NMR. The similarity between spectra was calculated and differential NMR spectroscopy was used to discover marker compounds. RESULTS The similarity between the individual spectra was calculated for the spectra of all samples. The similarity was used to verify and improve the alignment. For vegetable oils which showed a high similarity, e.g. chia seed oil and linseed oil, differential NMR spectroscopy was used to discover marker compounds. CONCLUSIONS The calculation of similarity is an important tool to reveal variability between samples and spectra and can be used to verify data sets and improve alignment or binning procedures. With differential spectroscopy marker compounds are easily discovered. The methods can be seen as an important addition to the routine procedures of metabolomics experiments.
Collapse
Affiliation(s)
- Jan Schripsema
- Grupo Metabolômica, Laboratório de Ciências Quimicas, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
14
|
Fallone CJ, Yahya A. Effect of triglyceride glycerol CH signal on olefinic resonance quantification with proton magnetic resonance spectroscopy at 3 T. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab05ab] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Rabadán A, Pardo JE, Gómez R, Álvarez-Ortí M. Effect of almond roasting, light exposure and addition of different garlic cultivars on almond oil stability. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2947-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|