1
|
Fei X, Li Y, Zhang Q, Tian C, Li Y, Dong Q, Weir MD, Homayounfar N, Oates TW, Imazato S, Dai Q, Xu HHK, Ruan J. Novel pit and fissure sealant with nano-CaF 2 and antibacterial monomer: Fluoride recharge, microleakage, sealing ability and cytotoxicity. Dent Mater J 2024; 43:346-358. [PMID: 38583998 DOI: 10.4012/dmj.2023-166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Conventional resin-based sealants release minimal fluoride ions (F) and lack antibacterial activity. The objectives of this study were to: (1) develop a novel bioactive sealant containing calcium fluoride nanoparticles (nCaF2) and antibacterial dimethylaminohexadecyl methacrylate (DMAHDM), and (2) investigate mechanical performance, F recharge and re-release, microleakage, sealing ability and cytotoxicity. Helioseal F served as commercial control. The initial F release from sealant containing 20% nCaF2 was 25-fold that of Helioseal F. After ion exhaustion and recharge, the F re-release from bioactive sealant did not decrease with increasing number of recharge and re-release cycles. Elastic modulus of new bioactive sealant was 44% higher than Helioseal F. The new sealant had excellent sealing, minimal microleakage, and good cytocompatibility. Hence, the nanostructured sealant had substantial and sustained F release and antibacterial activity, good sealing ability and biocompatibility. The novel bioactive nCaF2 sealant is promising to provide long-term F ions for caries prevention.
Collapse
Affiliation(s)
- Xiuzhi Fei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| | - Yuncong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| | - Qian Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| | - Chunli Tian
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| | - Yue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| | - Qiannan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Negar Homayounfar
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry
| | - Quan Dai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| |
Collapse
|
2
|
Al Ansari N, Abid M. Enhancing Presurgical Infant Orthopedic Appliances: Characterization, Mechanics, and Biofilm Inhibition of a Novel Chlorhexidine-Halloysite Nanotube-Modified PMMA. Int J Biomater 2024; 2024:6281972. [PMID: 38962288 PMCID: PMC11221949 DOI: 10.1155/2024/6281972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 07/05/2024] Open
Abstract
Objectives This in vitro study aimed to develop a novel nanocomposite acrylic resin with inherent antimicrobial properties. This study evaluated its effectiveness against microbial biofilm formation, while also assessing its physical and mechanical properties. Methods Polymethylmethacrylate (PMMA) was modified with four different concentrations of chlorhexidine halloysite nanotubes (CHX-HNTs): 1%, 1.5%, 3%, and 4.5 wt.% by weight, along with a control group (0 wt.% CHX-HNTs). The biofilm inhibition ability of the modified CHX-HNTs acrylic against Candida albicans, Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus agalactiae was assessed using microtiter biofilm test. In addition, ten samples from each group were then tested for flexural strength, surface roughness, and hardness. Statistical analysis was performed using one-way ANOVA and Tukey's test for comparison (P < 0.05). Results CHX-HNTs effectively reduced the adhesion of Candida albicans and bacteria to the PMMA in a dose-dependent manner. The higher the concentration of CHX-HNTs, the greater the reduction in microbial adhesion, with the highest concentration (4.5 wt.%) showing the most significant effect with inhibition rates ≥98%. The addition of CHX-HNTs at any tested concentration (1%, 1.5%, 3%, and 4.5 wt.%) did not cause any statistically significant difference in the flexural strength, surface roughness, or hardness of the PMMA compared to the control group. Conclusions The novel integration of CHX-HNT fillers shows promising results as an effective biofilm inhibitor on acrylic appliances. This new approach has the potential to successfully control infectious diseases without negatively affecting the mechanical properties of the acrylic resin. Clinical Relevance. The integration of CHX-HNTs into presurgical infant orthopedic appliances should be thoroughly assessed as a promising preventive measure to mitigate microbial infections. This evaluation holds significant potential for controlling infectious diseases among infants with cleft lip and palate, thereby offering a valuable contribution to their overall well-being.
Collapse
Affiliation(s)
- Nadia Al Ansari
- Department of Orthodontics, Al Rafidain University College, Baghdad, Iraq
- Department of Orthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Mushriq Abid
- Department of Orthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Timbó ICG, Oliveira MSCS, Lima RA, Chaves AV, Pereira VDA, Fechine PBA, Regis RR. Microbiological, physicomechanical, and surface evaluation of an experimental self-curing acrylic resin containing halloysite nanotubes doped with chlorhexidine. Dent Mater 2024; 40:348-358. [PMID: 38142145 DOI: 10.1016/j.dental.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE The objective was to synthesize halloysite nanotubes loaded with chlorhexidine (HNT/CHX) and evaluate the antimicrobial activity, microhardness, color change, and surface characteristics of an experimental self-curing acrylic resin containing varying concentrations of the synthesized nanomaterial. METHODS The characterization of HNT/CHX was carried out by calculating incorporation efficiency, morphological and compositional, chemical and thermal evaluations. SAR disks were made containing 0 %, 3 %, 5 %, and 10 % of HNT/CHX. Specimens (n = 3) were immersed in distilled water and spectral measurements were carried out using UV/Vis spectroscopy to evaluate the release of CHX for up to 50 days. The antimicrobial activity of the composite against Candida albicans and Streptococcus mutans was evaluated by disk-diffusion test. Microhardness, color analyses (ΔE), and surface roughness (Ra) (n = 9) were performed before and after 30 days of immersion. Data were analyzed using ANOVA/Bonferroni. {Results.} The incorporation efficiency of CHX into HNT was of 8.15 %. All test groups showed controlled and cumulative CHX release up to 30 or 50 days. Significant antimicrobial activity was verified against both microorganisms (p < 0.001). After the 30-day immersion period, the 10 % HNT/CHX group showed a significant increase in hardness (p < 0.05) and a progressive color change (p < 0.001). At T0, the 5 % and 10 % groups exhibited Ra values similar to the control group (p > 0.05), while at T30, all groups showed similar roughness values (p > 0.05). {Significance.} The modification of a SAR with HNT/CHX provides antimicrobial effect and controlled release of CHX, however, the immediate surface roughness in the 3 % group was compromised when compared to the control group.
Collapse
Affiliation(s)
- Isabelle C G Timbó
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil
| | - Mayara S C S Oliveira
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil
| | - Ramille A Lima
- Department of Dentistry, Unichristus, Fortaleza, CE, Brazil
| | - Anderson V Chaves
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Vanessa de A Pereira
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Pierre B A Fechine
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Romulo R Regis
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil.
| |
Collapse
|
4
|
Alansari N, Abid M, Dziedzic A. Enhanced antimicrobial efficacy of chlorhexidine-encapsulated halloysite nanotubes incorporated in presurgical orthopedic appliances: an in vitro, controlled study. Clin Oral Investig 2024; 28:68. [PMID: 38165480 DOI: 10.1007/s00784-023-05464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
AIMS AND OBJECTIVE Presurgical infant's orthopedic appliances (PSIOs) play an increasingly crucial role in the interdisciplinary management of neonatal CLP, aiming to improve and maintain adequate nasolabial aesthetics, followed by primary lip/nasal surgery in both unilateral and bilateral CLP cases. The use of PSIOs in cleft lip and palate patients can lead to contamination with oral microflora, acting as a potential reservoir for infectious microorganisms. Acrylic surfaces might provide retention niches for microorganisms to adhere, and inhabit, which is difficult to control in immunocompromised patients, thus predisposing them to increased infection risks. The objective of this multi-assay in vitro study was to investigate the effects of incorporating chlorhexidine-loaded halloysite nanotubes (CHX-HNTs) fillers on the morphological, cytotoxic, release, and antimicrobial characteristics of self-cured acrylic polymethyl methacrylate (PMMA) material used in pre-surgical orthopedic appliances. METHODS Disk-shaped PMMA specimens were prepared with varying proportions of CHX-HNTs. A control group without any addition served as a reference, and four experimental samples contained a range of different concentrations of CHX-HNTs (1.0, 1.5, 3, and 4.5 wt%). The antimicrobial efficacy was assessed using an agar diffusion test against common reference microorganisms: Candida albicans, Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus agalactiae. Cytotoxicity was examined using the L929 cell line (mouse fibroblasts) through a (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, MTT) cell viability assay. The release kinetics of CHX were monitored using UV-spectral measurements. The statistical analysis used a one-way ANOVA followed by Tukey's post hoc test. RESULTS The integration of CHX-HNTs in PMMA exhibited a substantial dose-dependent antifungal and antibacterial effect against microorganisms at tested mass fractions (1.0 to 4.5 wt%). CHX release was sustained for up to 60 days, supporting prolonged antimicrobial activity. Furthermore, no significant cytotoxicity was determined in the L929 fibroblast cell line (control), indicating the biocompatibility of the CHX-HNTs-enhanced PMMA. CONCLUSION Incorporating CHX-HNTs in PMMA successfully enhanced its antimicrobial properties, providing sustained CHX release and superior antimicrobial efficacy. These findings demonstrate the potential of antimicrobial nanoparticles in dental therapies to improve therapeutic outcomes. However, rigorous further clinical trials and observational studies are warranted to validate the practical application, safety, and efficacy. CLINICAL RELEVANCE This study has the potential to make a major impact on the health of infants born with cleft lip and palate by helping to reduce the prevalence of infectious illnesses. The incorporation of CHX-HNTs into PMMA-based appliances is a novel promising preventive approach to reduce microbial infections.
Collapse
Affiliation(s)
- Nadia Alansari
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, 01110, Iraq
- Department of Orthodontics, Al Rafidain University College, Baghdad, Iraq
| | - Mushriq Abid
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, 01110, Iraq.
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Sile, 40-055, Katowice, Poland
| |
Collapse
|
5
|
Yassin SM, Mohamad D, Togoo RA, Sanusi SY, Johari Y. Do nanofillers provide better physicomechanical properties to resin-based pit and fissure sealants? A systematic review. J Mech Behav Biomed Mater 2023; 145:106037. [PMID: 37499522 DOI: 10.1016/j.jmbbm.2023.106037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
The purpose of this study was to systematically review the impact of nanofillers on the physicomechanical properties of resin-based pit and fissure sealants (RBS). This review included in vitro studies with full-length English-language articles reporting on the physicomechanical properties of nanofilled RBS until February 2023. PubMed, Web of Sciences, Scopus, and LILACS databases were accessed for literature searches. The review was formulated based on the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and used the Consolidated Standards of Reporting Trials (CONSORT) guidelines and risk of bias Cochrane tool for quality assessment. The search resulted in 539 papers, of which 22 were eligible to be included in the review. Inorganic, polymeric, core-shell, and composite nanomaterials were used to reinforce the studied RBS. The inherent nature of the nanomaterial used, its morphology, concentration, and volume used were the primary parameters that determined the nanomaterial's success as a filler in RBS. These parameters also influenced their interaction with the resin matrix, which influenced the final physicomechanical properties of RBS. The use of nanofillers that were non-agglomerated and well dispersed in the resin matrix enhanced the physicomechanical properties of RBS.
Collapse
Affiliation(s)
- Syed M Yassin
- Biomaterials and Craniofacial Aesthetics Research Cluster, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia; Department of Pediatric Dentistry and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia.
| | - Dasmawati Mohamad
- Biomaterials and Craniofacial Aesthetics Research Cluster, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Rafi Ahmad Togoo
- Department of Pediatric Dentistry and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia.
| | - Sarliza Yasmin Sanusi
- Biomaterials and Craniofacial Aesthetics Research Cluster, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Yanti Johari
- Biomaterials and Craniofacial Aesthetics Research Cluster, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
6
|
Teimoory N, Katebi K, Ghahramanzadeh A, Vafaei A. Effects of topical fluoride treatment on the bond strength of pit and fissure sealants: A systematic review. J Dent Res Dent Clin Dent Prospects 2023; 17:81-86. [PMID: 37649817 PMCID: PMC10462464 DOI: 10.34172/joddd.2023.39160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background This systematic review aimed to evaluate the available scientific evidence concerning the effects of topical fluoride treatment on the bond strength of pit and fissure sealants. Prevention of dental caries is one of the crucial issues in pediatric dentistry. Pit and fissure sealant and fluoride therapies are two caries prevention procedures that may be performed in one session. However, fluoride therapy may affect the bond strength of pit and fissure sealants. Methods An electronic search for in vitro studies published in English and Persian on topical fluoride therapy and the bond strength of pit and fissure sealants was performed via PubMed/ Medline, Web of Science, Google Scholar, Embase, and Scopus databases until May 2022. The articles were independently reviewed for quality by two reviewers. Textual data were analyzed manually, and the bond strength of sealants placed after fluoride application was compared with control groups. Results A total of 8482 articles were initially identified and reviewed by two independent reviewers, and 13 were selected for full-text evaluation. Finally, six articles were included in the systematic review. A total of 250 teeth were studied, 148 of which were in the case group (fluoride group) and 102 in the control group. Tensile and shear bond strengths were compared between groups in the studies. Conclusion In the studies in which the tooth surfaces were washed after applying fluoride, there was no change in the fissure sealant bond strength. However, in studies in which fluoride was not washed, the bond strength decreased significantly, independent of the fluoride type.
Collapse
Affiliation(s)
- Naimeh Teimoory
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Katayoun Katebi
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Ghahramanzadeh
- Department of Pediatrics, Faculty of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Ali Vafaei
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Lang Y, Wang B, Chang MW, Sun R, Zhang L. Sandwich-structured electrospun pH-responsive dental pastes for anti-caries. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Xu VW, Nizami MZI, Yin IX, Lung CYK, Yu OY, Chu CH. Caries Management with Non-Metallic Nanomaterials: A Systematic Review. Int J Nanomedicine 2022; 17:5809-5824. [PMID: 36474525 PMCID: PMC9719741 DOI: 10.2147/ijn.s389038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/23/2022] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Non-metallic nanomaterials do not stain enamel or dentin. Most have better biocompatibility than metallic nanomaterials do for management of dental caries. OBJECTIVE The objective of this study is to review the types, properties and potential uses of non-metallic nanomaterials systematically for managing dental caries. METHODS Two researchers independently performed a literature search of publications in English using PubMed, Scopus and Web of Science. The keywords used were (nanoparticles OR nanocomposites OR nanomaterials) AND (caries OR tooth decay). They screened the titles and abstracts to identify potentially eligible publications of original research reporting non-metallic nanomaterials for caries management. Then, they retrieved and studied the full text of the identified publications for inclusion in this study. RESULTS Out of 2497 resulting publications, this study included 75 of those. The non-metallic nanomaterials used in these publications were categorized as biological organic nanomaterials (n=45), synthetic organic nanomaterials (n=15), carbon-based nanomaterials (n=13) and selenium nanomaterials (n=2). They inhibited bacteria growth and/or promoted remineralization. They could be incorporated in topical agents (29/75, 39%), dental adhesives (11/75, 15%), restorative fillers (4/75, 5%), dental sealant (3/75, 4%), oral drugs (3/75, 4%), toothpastes (2/75, 3%) and functional candies (1/75, 1%). Other publications (22/75, 29%) do not mention specific applications. However, most publications (67/75, 89%) were in vitro studies. Six publications (6/75, 8%) were animal studies, and only two publications (2/75, 3%) were clinical studies. CONCLUSION The literature showed non-metallic nanomaterials have antibacterial and/or remineralising properties. The most common type of non-metallic nanomaterials for caries management is organic nanomaterials. Non-metallic nanomaterials can be incorporated into dental sealants, toothpaste, dental adhesives, topical agents and even candies and drugs. However, the majority of the publications are in vitro studies, and only two publications are clinical studies.
Collapse
Affiliation(s)
- Veena Wenqing Xu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | | | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Christie Ying Kei Lung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|
9
|
Lai CC, Lin CP, Wang YL. Development of antibacterial composite resin containing chitosan/fluoride microparticles as pit and fissure sealant to prevent caries. J Oral Microbiol 2021; 14:2008615. [PMID: 34992735 PMCID: PMC8725701 DOI: 10.1080/20002297.2021.2008615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Develop a fissure sealant containing chitosan/fluoride microparticles (C/F) with antibacterial, fluoride release and recharge ability. MATERIALS AND METHODS Chitosan/fluoride microparticles were synthesized and added to Bis-GMA as C/F. The experimental group comprised 0%, 2%, 4% C/F, with ClinproTM fissure sealant as control. Antibacterial activity was detected by Alamar Blue assay and colony-forming units (CFU). Biocompatibility was determined by WST-1 and LDH test. Curing depth, flowability, tensile strength and flexural strength were measured according to the ISO standard; microhardness by Vickers hardness test. Fluoride release and recharge were recorded through ionic chromatography. Statistical analysis was performed with an independent t-test, one-way and two-way ANOVA. P values less than 0.05 were considered significant. RESULTS 2% and 4% C/F showed antibacterial ability with CFU ratios decreasing to 10% and 25% respectively (P < 0.01). Nonetheless, 4% C/F was concerned because biocompatibility revealed cytotoxicity compared to medium (P < 0.001). 2% C/F had superior mechanical properties to ClinproTM fissure sealant in terms of curing depth (P < 0.001), microhardness and tensile strength (P < 0.01). It had good fluoride release and recharge ability (P = 0.67). CONCLUSIONS 2% C/F could be an antibacterial sealant with good mechanical strength, fluoride release and recharge ability.
Collapse
Affiliation(s)
- Chun-Cheng Lai
- Pediatric Dentistry, Far Eastern Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yin-Lin Wang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Kamran MA, Alshahrani A, Alnazeh AA, Udeabor SE, Qasim M, Alshahrani I. Ultrastructural and physicochemical characterization of pH receptive chlorhexidine-loaded poly-L-glycolic acid-modified orthodontic adhesive. Microsc Res Tech 2021; 85:996-1004. [PMID: 34716725 DOI: 10.1002/jemt.23968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
This study aims to evaluate the feasibility of chlorhexidine (CHX)-loaded poly-L-glycolic acid (PLGA) nanoparticles as a modifier of a commercial orthodontic adhesive via the assessment of physicochemical, biological, and mechanical properties at tooth-bracket interface. CHX-loaded PLGA nanoparticles were synthesized using double emulsion-solvent evaporation method and characterized using transmission electron microscopy and Raman analysis. CHX-loaded PLGA nanoparticles in Transbond XT orthodontic adhesive were prepared using two different concentrations of the CHX (25 and 50%) and characterized for degree of conversion (DC), antimicrobial, and cytotoxicity testing. Bonded specimens were tested for shear bond strength (SBS) and adhesive remnant index (ARI) at tooth-bracket interface. The synthesized PLGA nanoparticles averaged between 60 and 80 nm in size. After loading CHX inside PLGA nanoparticles, the morphology of the PLGA nanoparticles was considerably changed. Orthodontic bracket bonded with 25% CHX-loaded PLGA-modified adhesive demonstrated DC scores similar to control group. Both 25 and 50% CHX-loaded PLGA-modified adhesive specimens showed higher antibacterial activity against S. mutans compared to control group. The least mean SBS values were exhibited by 50% CHX-loaded PLGA-modified adhesive samples, while a statistically significant difference was observed in the mean ARI values among all study groups at all-time points (p = .018). This study indicates that the addition of CHX-loaded PLGA nanoparticles in Transbond XT achieved stable bonds with enhanced antimicrobial and mechanical properties.
Collapse
Affiliation(s)
- Muhammad Abdullah Kamran
- Department of Pediatric and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Abdulaziz Alshahrani
- Department of Pediatric and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Abdullah A Alnazeh
- Department of Pediatric and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Samuel Ebele Udeabor
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Qasim
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Ibrahim Alshahrani
- Department of Pediatric and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|